Benign Primary Brain Tumors

  • Samuel E. Day
  • Lia M. HalaszEmail author
Part of the Medical Radiology book series (MEDRAD)


Radiation therapy plays an integral role in the management of benign primary brain tumors as either primary or adjuvant treatment. These tumors are generally associated with good prognosis, which makes consideration of the risk of late treatment toxicity especially important. Though they are nonmalignant, benign primary brain tumors can certainly cause significant morbidity or even mortality owing to their intracranial and skull base locations, with possible mass effects on the cranial nerves or the brain itself. Given the competing considerations of toxicity and therapeutic need, controversy frequently surrounds the decision between the use of surgery and radiation therapy for primary treatment. When surgery is limited or resection is subtotal, there may also be controversy regarding the timing of. In radiation therapy addition, as technological advancements in planning and delivery of conformal radiation therapy allow for decreased risk of acute and long-term side effects, additional controversies over fractionation (e.g., standard fractionation versus radiosurgery) and the technique for delivery of radiation therapy (e.g., protons versus IMRT) are ongoing. In this chapter we highlight the controversies in management of meningioma, vestibular schwannoma, craniopharyngioma, pituitary adenoma, and glomus tumor and review the pertinent literature.


  1. Abu Dabrh AM et al (2015) Radiotherapy versus radiosurgery in treating patients with acromegaly: a systematic review and meta-analysis. Endocr Pract 21(8):943–956CrossRefGoogle Scholar
  2. Aghi MK, et al (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64(1):56–60; discussion 60Google Scholar
  3. Aizer AA et al (2014) Adjuvant radiation therapy, local recurrence, and the need for salvage therapy in atypical meningioma. Neuro Oncol 16(11):1547–1553CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alexiou GA et al (2010) Management of meningiomas. Clin Neurol Neurosurg 112(3):177–182CrossRefGoogle Scholar
  5. Andrews DW et al (2001) Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. Int J Radiat Oncol Biol Phys 50(5):1265–1278CrossRefGoogle Scholar
  6. Andrews DW, et al (2002) Fractionated stereotactic radiotherapy for the treatment of optic nerve sheath meningiomas: preliminary observations of 33 optic nerves in 30 patients with historical comparison to observation with or without prior surgery. Neurosurgery 51(4):890–902; discussion 903–904Google Scholar
  7. Arvold ND et al (2009) Visual outcome and tumor control after conformal radiotherapy for patients with optic nerve sheath meningioma. Int J Radiat Oncol Biol Phys 75(4):1166–1172CrossRefGoogle Scholar
  8. Attia A et al (2012) Patterns of failure after treatment of atypical meningioma with gamma knife radiosurgery. J Neurooncol 108(1):179–185CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barbaro NM et al (1987) Radiation therapy in the treatment of partially resected meningiomas. Neurosurgery 20(4):525–528CrossRefGoogle Scholar
  10. Battaglia A, Mastrodimos B, Cueva R (2006) Comparison of growth patterns of acoustic neuromas with and without radiosurgery. Otol Neurotol 27(5):705–712CrossRefGoogle Scholar
  11. Becker G et al (2002) Stereotactic fractionated radiotherapy in patients with optic nerve sheath meningioma. Int J Radiat Oncol Biol Phys 54(5):1422–1429CrossRefGoogle Scholar
  12. Beltran C, Roca M, Merchant TE (2012) On the benefits and risks of proton therapy in pediatric craniopharyngioma. Int J Radiat Oncol Biol Phys 82(2):e281–e287CrossRefGoogle Scholar
  13. Bishop AJ et al (2014) Proton beam therapy versus conformal photon radiation therapy for childhood craniopharyngioma: multi-institutional analysis of outcomes, cyst dynamics, and toxicity. Int J Radiat Oncol Biol Phys 90(2):354–361CrossRefPubMedPubMedCentralGoogle Scholar
  14. Black PM (1993) Meningiomas. Neurosurgery 32(4):​643–657CrossRefGoogle Scholar
  15. Boehling NS et al (2012) Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int J Radiat Oncol Biol Phys 82(2):643–652CrossRefGoogle Scholar
  16. Borba LA et al (2010) Surgical management of glomus jugulare tumors: a proposal for approach selection based on tumor relationships with the facial nerve. J Neurosurg 112(1):88–98CrossRefGoogle Scholar
  17. Boskos C et al (2009) Combined proton and photon conformal radiotherapy for intracranial atypical and malignant meningioma. Int J Radiat Oncol Biol Phys 75(2):399–406CrossRefGoogle Scholar
  18. Brochier S et al (2010) Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur J Endocrinol 163(2):193–200CrossRefGoogle Scholar
  19. Bunin GR et al (1997) The descriptive epidemiology of craniopharyngioma. Neurosurg Focus 3(6):e1CrossRefGoogle Scholar
  20. Carlson ML et al (2015) Natural history of glomus jugulare: a review of 16 tumors managed with primary observation. Otolaryngol Head Neck Surg 152(1):98–105CrossRefGoogle Scholar
  21. Castinetti F et al (2005) Outcome of gamma knife radiosurgery in 82 patients with acromegaly: correlation with initial hypersecretion. J Clin Endocrinol Metab 90(8):4483–4488CrossRefGoogle Scholar
  22. Castinetti F et al (2007) Gamma knife radiosurgery is a successful adjunctive treatment in Cushing's disease. Eur J Endocrinol 156(1):91–98CrossRefGoogle Scholar
  23. Chretien PB et al (1971) Surgical management of intravascular glomus jugulare tumor. Am J Surg 122(6):740–743CrossRefGoogle Scholar
  24. Coke CC et al (1998) Atypical and malignant meningiomas: an outcome report of seventeen cases. J Neurooncol 39(1):65–70CrossRefGoogle Scholar
  25. Colin P et al (2005) Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys 62(2):333–341CrossRefGoogle Scholar
  26. Combs SE et al (2005) Management of acoustic neuromas with fractionated stereotactic radiotherapy (FSRT): long-term results in 106 patients treated in a single institution. Int J Radiat Oncol Biol Phys 63(1):75–81CrossRefGoogle Scholar
  27. Condra KS et al (1997) Benign meningiomas: primary treatment selection affects survival. Int J Radiat Oncol Biol Phys 39(2):427–436CrossRefGoogle Scholar
  28. Dekkers OM et al (2006) Observation alone after transsphenoidal surgery for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 91(5):1796–1801CrossRefGoogle Scholar
  29. Ebersold MJ et al (1992) Current results of the retrosigmoid approach to acoustic neurinoma. J Neurosurg 76(6):901–909CrossRefGoogle Scholar
  30. Estrada J et al (1997) The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing's disease. N Engl J Med 336(3):172–177CrossRefGoogle Scholar
  31. Flickinger JC et al (1996) Evolution in technique for vestibular schwannoma radiosurgery and effect on outcome. Int J Radiat Oncol Biol Phys 36(2):275–280CrossRefGoogle Scholar
  32. Flickinger JC et al (2004) Acoustic neuroma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol Biol Phys 60(1):225–230CrossRefGoogle Scholar
  33. Flint D, Fagan P, Panarese A (2005) Conservative management of sporadic unilateral acoustic neuromas. J Laryngol Otol 119(6):424–428CrossRefGoogle Scholar
  34. Foote KD et al (2001) Analysis of risk factors associated with radiosurgery for vestibular schwannoma. J Neurosurg 95(3):440–449CrossRefGoogle Scholar
  35. Fortnum H et al (2009) The role of magnetic resonance imaging in the identification of suspected acoustic neuroma: a systematic review of clinical and cost effectiveness and natural history. Health Technol Assess 13(18):iii–iv, ix–xi, 1–154Google Scholar
  36. Fuss M et al (2000) Conventionally fractionated stereotactic radiotherapy (FSRT) for acoustic neuromas. Int J Radiat Oncol Biol Phys 48(5):1381–1387CrossRefGoogle Scholar
  37. Gallagher MJ et al (2016) WHO grade 1 meningioma recurrence: are location and Simpson grade still relevant? Clin Neurol Neurosurg 141:117–121CrossRefGoogle Scholar
  38. Gittoes NJ et al (1998) Radiotherapy for non-function pituitary tumours. Clin Endocrinol (Oxf) 48(3):331–337CrossRefGoogle Scholar
  39. Glasscock ME 3rd, et al (1997) Management of acoustic neuroma in the elderly population. Am J Otol 18(2):236–241; discussion 241–242Google Scholar
  40. Goldsmith BJ et al (1994) Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 80(2):195–201CrossRefGoogle Scholar
  41. Gormley WB, et al (1997) Acoustic neuromas: results of current surgical management. Neurosurgery 41(1):50–58; discussion 58–60.Google Scholar
  42. Gottfried ON, Liu JK, Couldwell WT (2004) Comparison of radiosurgery and conventional surgery for the treatment of glomus jugulare tumors. Neurosurg Focus 17(2):E4CrossRefGoogle Scholar
  43. Goyal LK et al (2000) Local control and overall survival in atypical meningioma: a retrospective study. Int J Radiat Oncol Biol Phys 46(1):57–61CrossRefGoogle Scholar
  44. Greenfield BJ et al (2015) Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma. Radiother Oncol 114(2):224–229CrossRefGoogle Scholar
  45. Greenman Y et al (2003) Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clin Endocrinol (Oxf) 58(6):763–769CrossRefGoogle Scholar
  46. Guss ZD et al (2011) Radiosurgery of glomus jugulare tumors: a meta-analysis. Int J Radiat Oncol Biol Phys 81(4):e497–e502CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hajioff D et al (2008) Conservative management of vestibular schwannomas: third review of a 10-year prospective study. Clin Otolaryngol 33(3):255–259CrossRefGoogle Scholar
  48. Hammouche S et al (2014) Long-term survival analysis of atypical meningiomas: survival rates, prognostic factors, operative and radiotherapy treatment. Acta Neurochir 156(8):1475–1481CrossRefGoogle Scholar
  49. Hankinson TC et al (2012) Limited utility despite accuracy of the national SEER dataset for the study of craniopharyngioma. J Neurooncol 110(2):271–278CrossRefGoogle Scholar
  50. Hankinson TC et al (2013) Patterns of care for craniopharyngioma: survey of members of the american association of neurological surgeons. Pediatr Neurosurg 49(3):131–136CrossRefGoogle Scholar
  51. Hansasuta A et al (2011) Multisession stereotactic radiosurgery for vestibular schwannomas: single-institution experience with 383 cases. Neurosurgery 69(6):1200–1209CrossRefGoogle Scholar
  52. Harrabi SB et al (2014) Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects. Radiat Oncol 9:203CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hasegawa T, et al (2005a) Stereotactic radiosurgery for vestibular schwannomas: analysis of 317 patients followed more than 5 years. Neurosurgery 57(2):257–265; discussion 257–65Google Scholar
  54. Hasegawa T et al (2005b) Long-term outcomes in patients with vestibular schwannomas treated using gamma knife surgery: 10-year follow up. J Neurosurg 102(1):10–16CrossRefGoogle Scholar
  55. Hecht CS et al (1997) Hearing preservation after acoustic neuroma resection with tumor size used as a clinical prognosticator. Laryngoscope 107(8):1122–1126CrossRefGoogle Scholar
  56. Hoistad DL et al (2001) Update on conservative management of acoustic neuroma. Otol Neurotol 22(5):682–685CrossRefGoogle Scholar
  57. Howitz MF et al (2000) Incidence of vestibular schwannoma in Denmark, 1977-1995. Am J Otol 21(5):690–694PubMedGoogle Scholar
  58. Hoybye C, et al (2001) Adrenocorticotropic hormone-producing pituitary tumors: 12- to 22-year follow-up after treatment with stereotactic radiosurgery. Neurosurgery 49(2):284–291; discussion 291–292Google Scholar
  59. Hug EB et al (2000) Management of atypical and malignant meningiomas: role of high-dose, 3D-conformal radiation therapy. J Neurooncol 48(2):151–160CrossRefGoogle Scholar
  60. Ivan ME et al (2011) A meta-analysis of tumor control rates and treatment-related morbidity for patients with glomus jugulare tumors. J Neurosurg 114(5):​1299–1305CrossRefGoogle Scholar
  61. Jääskeläinen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol 26(5):461–469CrossRefGoogle Scholar
  62. Jääskeläinen J, Haltia M, Servo A (1986) Atypical and anaplastic meningiomas: Radiology, surgery, radiotherapy, and outcome. Surg Neurol 25(3):233–242CrossRefGoogle Scholar
  63. Jenkinson MD et al (2015) The ROAM/EORTC-1308 trial: radiation versus observation following surgical resection of atypical meningioma: study protocol for a randomised controlled trial. Trials 16:519CrossRefPubMedPubMedCentralGoogle Scholar
  64. Jensen R, Lee J (2012) Predicting outcomes of patients with intracranial meningiomas using molecular markers of hypoxia, vascularity, and proliferation. Neurosurgery 71(1):146–156CrossRefGoogle Scholar
  65. Kano H et al (2007) Stereotactic radiosurgery for atypical and anaplastic meningiomas. J Neurooncol 84(1):41–47CrossRefGoogle Scholar
  66. Kano H et al (2013) Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma: clinical article. J Neurosurg 119(Suppl):863–873Google Scholar
  67. Kapoor S et al (2011) Long-term outcomes of vestibular schwannomas treated with fractionated stereotactic radiotherapy: an institutional experience. Int J Radiat Oncol Biol Phys 81(3):647–653CrossRefGoogle Scholar
  68. Karavitaki N et al (2005) Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol (Oxf) 62(4):397–409CrossRefGoogle Scholar
  69. Karpinos M et al (2002) Treatment of acoustic neuroma: stereotactic radiosurgery vs. microsurgery. Int J Radiat Oncol Biol Phys 54(5):1410–1421CrossRefGoogle Scholar
  70. Katz TS et al (2005) Pushing the limits of radiotherapy for atypical and malignant meningioma. Am J Clin Oncol 28(1):70–74CrossRefGoogle Scholar
  71. Kaylie DM et al (2000) A meta-analysis comparing outcomes of microsurgery and gamma knife radiosurgery. Laryngoscope 110(11):1850–1856CrossRefGoogle Scholar
  72. Kida Y et al (1995) A new strategy for the treatment of jugular foramen tumors using radiosurgery. No Shinkei Geka 23(8):671–675PubMedGoogle Scholar
  73. Kobayashi T et al (2005) Long-term results of gamma knife surgery for growth hormone-producing pituitary adenoma: is the disease difficult to cure? J Neurosurg 102(Suppl):119–123CrossRefGoogle Scholar
  74. Komotar RJ et al (2012) The role of radiotherapy following gross-total resection of atypical meningiomas. J Neurosurg 117(4):679–686CrossRefGoogle Scholar
  75. Kondziolka D et al (1998) Long-term outcomes after radiosurgery for acoustic neuromas. N Engl J Med 339(20):1426–1433CrossRefGoogle Scholar
  76. Korah MP et al (2010) Radiation therapy alone for imaging-defined meningiomas. Int J Radiat Oncol Biol Phys 76(1):181–186CrossRefGoogle Scholar
  77. Landolt AM et al (1998) Stereotactic radiosurgery for recurrent surgically treated acromegaly: comparison with fractionated radiotherapy. J Neurosurg 88(6):1002–1008CrossRefGoogle Scholar
  78. Lanser MJ, Sussman SA, Frazer K (1992) Epidemiology, pathogenesis, and genetics of acoustic tumors. Otolaryngol Clin North Am 25(3):499–520PubMedGoogle Scholar
  79. Larson DA, Flickinger JC, Loeffler JS (1993) The radiobiology of radiosurgery. Int J Radiat Oncol Biol Phys 25(3):557–561CrossRefGoogle Scholar
  80. Lederman G et al (1997) Acoustic neuroma: potential benefits of fractionated stereotactic radiosurgery. Stereotact Funct Neurosurg 69(1–4 Pt 2):175–182CrossRefGoogle Scholar
  81. Lee KD et al (2013) Atypical meningiomas: is postoperative radiotherapy indicated? Neurosurg Focus 35(6):E15CrossRefGoogle Scholar
  82. Leenstra JL, et al (2010) Factors associated with endocrine deficits after stereotactic radiosurgery of pituitary adenomas. Neurosurgery 67(1):27–32; discussion 32–33Google Scholar
  83. Levine ZT et al (1999) Proposed grading system to predict the extent of resection and outcomes for cranial base meningiomas. Neurosurgery 45(2):221–230CrossRefGoogle Scholar
  84. Linskey ME (2013) Stereotactic radiosurgery versus stereotactic radiotherapy for patients with vestibular schwannoma: a Leksell Gamma Knife Society 2000 debate. J Neurosurg 119(Suppl):90–92Google Scholar
  85. Littley MD et al (1991) The effect of external pituitary irradiation on elevated serum prolactin levels in patients with pituitary macroadenomas. Q J Med 81(296):985–998CrossRefGoogle Scholar
  86. Losa M et al (2008) The role of stereotactic radiotherapy in patients with growth hormone-secreting pituitary adenoma. J Clin Endocrinol Metab 93(7):2546–2552CrossRefGoogle Scholar
  87. Louis DN et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mahmood A et al (1993) Atypical and malignant meningiomas: a clinicopathological review. Neurosurgery 33(6):955–963PubMedGoogle Scholar
  89. Mair R et al (2011) Radiotherapy for atypical meningiomas. J Neurosurg 115(4):811–819CrossRefGoogle Scholar
  90. Maniakas A, Saliba I (2012) Microsurgery versus stereotactic radiation for small vestibular schwannomas: a meta-analysis of patients with more than 5 years' follow-up. Otol Neurotol 33(9):1611–1620CrossRefGoogle Scholar
  91. Marks LB (1993) Conventional fractionated radiation therapy vs. radiosurgery for selected benign intracranial lesions (arteriovenous malformations, pituitary adenomas, and acoustic neuromas). J Neurooncol 17(3):223–230CrossRefGoogle Scholar
  92. Mathiesen T et al (1996) Recurrence of cranial base meningiomas. Neurosurgery 39(1):2–9CrossRefGoogle Scholar
  93. Meijer OW et al (2000) Fractionated stereotactic radiation therapy and single high-dose radiosurgery for acoustic neuroma: early results of a prospective clinical study. Int J Radiat Oncol Biol Phys 46(1):45–49CrossRefGoogle Scholar
  94. Mendenhall WM et al (1996) Preliminary results of linear accelerator radiosurgery for acoustic schwannomas. J Neurosurg 85(6):1013–1019CrossRefGoogle Scholar
  95. Milker-Zabel S et al (2009) Fractionated stereotactic radiation therapy in the management of primary optic nerve sheath meningiomas. J Neurooncol 94(3):419–424CrossRefGoogle Scholar
  96. Miller RC et al (1999) Decrease in cranial nerve complications after radiosurgery for acoustic neuromas: a prospective study of dose and volume. Int J Radiat Oncol Biol Phys 43(2):305–311CrossRefGoogle Scholar
  97. Milosevic MF et al (1996) Radiotherapy for atypical or malignant intracranial meningioma. Int J Radiat Oncol Biol Phys 34(4):817–822CrossRefGoogle Scholar
  98. Minniti G et al (2007) Long-term follow-up results of postoperative radiation therapy for Cushing's disease. J Neurooncol 84(1):79–84CrossRefGoogle Scholar
  99. Minniti G, et al (2009) The role of fractionated radiotherapy and radiosurgery in the management of patients with craniopharyngioma. Neurosurg Rev 32(2):125–132; discussion 132Google Scholar
  100. Miralbell R et al (1992) The role of radiotherapy in the treatment of subtotally resected benign meningiomas. J Neurooncol 13(2):157–164CrossRefGoogle Scholar
  101. Mirimanoff RO et al (1985) Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62(1):18–24CrossRefGoogle Scholar
  102. Mitsumori M et al (1998) Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys 42(3):573–580CrossRefGoogle Scholar
  103. Myrseth E, et al (2005) Vestibular schwannomas: clinical results and quality of life after microsurgery or gamma knife radiosurgery. Neurosurgery 56(5):927–935; discussion 927–935Google Scholar
  104. Nakamura M, et al (2003) The natural history of incidental meningiomas. Neurosurgery 53(1):62–70; discussion 70–71Google Scholar
  105. Netterville JL, Civantos FJ (1993) Rehabilitation of cranial nerve deficits after neurotologic skull base surgery. Laryngoscope 103(11 Pt 2 Suppl 60):45–54CrossRefGoogle Scholar
  106. Nikolopoulos TP, O'Donoghue GM (2002) Acoustic neuroma management: an evidence-based medicine approach. Otol Neurotol 23(4):534–541CrossRefGoogle Scholar
  107. Niranjan A et al (2010) Radiosurgery for craniopharyngioma. Int J Radiat Oncol Biol Phys 78(1):64–71CrossRefGoogle Scholar
  108. Ojemann RG (1992) Skull-base surgery: a perspective. J Neurosurg 76(4):569–570CrossRefGoogle Scholar
  109. O'Leary S et al (2007) Atypical imaging appearances of intracranial meningiomas. Clin Radiol 62(1):10–17CrossRefGoogle Scholar
  110. Olivero WC, Lister JR, Elwood PW (1995) The natural history and growth rate of asymptomatic meningiomas: a review of 60 patients. J Neurosurg 83(2):222–224CrossRefGoogle Scholar
  111. Olsson DS et al (2015) Excess mortality and morbidity in patients with craniopharyngioma, especially in patients with childhood onset: a population-based study in Sweden. J Clin Endocrinol Metab 100(2):​467–474CrossRefGoogle Scholar
  112. Oya S et al (2011) The natural history of intracranial meningiomas. J Neurosurg 114(5):1250–1256CrossRefGoogle Scholar
  113. Park HJ et al (2013) The role of adjuvant radiotherapy in atypical meningioma. J Neurooncol 115(2):241–247CrossRefGoogle Scholar
  114. Pearson BE et al (2008) Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria. Neurosurg Focus 24(5):E3CrossRefGoogle Scholar
  115. Perry A et al (1997) Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21(12):1455–1465CrossRefGoogle Scholar
  116. Perry A et al (1999) ‘Malignancy’ in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85(9):2046–2056PubMedGoogle Scholar
  117. Petit JH, et al (2001) Reduced-dose radiosurgery for vestibular schwannomas. Neurosurgery 49(6):1299–1306; discussion 1306–1307Google Scholar
  118. Petit JH et al (2007) Proton stereotactic radiosurgery in management of persistent acromegaly. Endocr Pract 13(7):726–734CrossRefGoogle Scholar
  119. Petit JH et al (2008) Proton stereotactic radiotherapy for persistent adrenocorticotropin-producing adenomas. J Clin Endocrinol Metab 93(2):393–399CrossRefGoogle Scholar
  120. Poen JC, et al (1999) Fractionated stereotactic radiosurgery and preservation of hearing in patients with vestibular schwannoma: a preliminary report. Neurosurgery 45(6):1299–1305; discussion 1305–1307Google Scholar
  121. Pollock BE, et al (1995) Outcome analysis of acoustic neuroma management: a comparison of microsurgery and stereotactic radiosurgery. Neurosurgery 36(1):215–224; discussion 224–229Google Scholar
  122. Pollock BE, Lunsford LD, Noren G (1998) Vestibular schwannoma management in the next century: a radiosurgical perspective. Neurosurgery 43(3):475–481; discussion 481–483Google Scholar
  123. Pollock BE, et al (2006) Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery 59(1):77–85; discussion 77–85Google Scholar
  124. Pollock BE et al (2007) Radiosurgery of growth hormone-producing pituitary adenomas: factors associated with biochemical remission. J Neurosurg 106(5):833–838CrossRefGoogle Scholar
  125. Pollock BE et al (2008) Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol Biol Phys 70(5):1325–1329CrossRefGoogle Scholar
  126. Regis J et al (2002) Functional outcome after gamma knife surgery or microsurgery for vestibular schwannomas. J Neurosurg 97(5):1091–1100CrossRefGoogle Scholar
  127. Ronson BB et al (2006) Fractionated proton beam irradiation of pituitary adenomas. Int J Radiat Oncol Biol Phys 64(2):425–434CrossRefGoogle Scholar
  128. Samii M, Matthies C (1997) Management of 1000 vestibular schwannomas (acoustic neuromas): the facial nerve--preservation and restitution of function. Neurosurgery 40(4):684–694; discussion 694–695Google Scholar
  129. Santacroce A, et al (2012) Long-term tumor control of benign intracranial meningiomas after radiosurgery in a series of 4565 patients. Neurosurgery 70(1):32–39; discussion 39Google Scholar
  130. Satar B, Yetiser S, Ozkaptan Y (2003) Impact of tumor size on hearing outcome and facial function with the middle fossa approach for acoustic neuroma: a meta-analytic study. Acta Otolaryngol 123(4):499–505CrossRefGoogle Scholar
  131. Sekhar LN, Gormley WB, Wright DC (1996) The best treatment for vestibular schwannoma (acoustic neuroma): microsurgery or radiosurgery?. Am J Otol 17(4):676–682; discussion 683–689Google Scholar
  132. Sheehan JM et al (2000) Radiosurgery for Cushing's disease after failed transsphenoidal surgery. J Neurosurg 93(5):738–742CrossRefGoogle Scholar
  133. Sheehan JP et al (2005) Stereotactic radiosurgery for pituitary adenomas: an intermediate review of its safety, efficacy, and role in the neurosurgical treatment armamentarium. J Neurosurg 102(4):678–691CrossRefGoogle Scholar
  134. Sheehan JP et al (2011) Gamma Knife surgery for pituitary adenomas: factors related to radiological and endocrine outcomes. J Neurosurg 114(2):303–309CrossRefGoogle Scholar
  135. Shin YJ et al (2000) Effectiveness of conservative management of acoustic neuromas. Am J Otol 21(6):857–862PubMedGoogle Scholar
  136. Simpson D (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 20(1):22–39CrossRefPubMedPubMedCentralGoogle Scholar
  137. Skeie BS, et al (2010) Gamma knife surgery of meningiomas involving the cavernous sinus: long-term follow-up of 100 patients. Neurosurgery 66(4):661–668; discussion 668–669Google Scholar
  138. Soyuer S et al (2004) Radiotherapy after surgery for benign cerebral meningioma. Radiother Oncol 71(1):85–90CrossRefGoogle Scholar
  139. Springate SC, Weichselbaum RR (1990) Radiation or surgery for chemodectoma of the temporal bone: a review of local control and complications. Head Neck 12(4):303–307CrossRefGoogle Scholar
  140. Springate SC, Haraf D, Weichselbaum RR (1991) Temporal bone chemodectomas – comparing surgery and radiation therapy. Oncology (Williston Park) 5(4):131–137; discussion 140, 143Google Scholar
  141. Stafford SL et al (1998) Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc 73(10):936–942CrossRefGoogle Scholar
  142. Stangerup SE et al (2006) The natural history of vestibular schwannoma. Otol Neurotol 27(4):547–552PubMedGoogle Scholar
  143. Stangerup SE et al (2008) Change in hearing during 'wait and scan' management of patients with vestibular schwannoma. J Laryngol Otol 122(7):673–681CrossRefGoogle Scholar
  144. Stripp DC et al (2004) Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. Int J Radiat Oncol Biol Phys 58(3):714–720CrossRefGoogle Scholar
  145. Subach BR et al (1999) Stereotactic radiosurgery in the management of acoustic neuromas associated with neurofibromatosis Type 2. J Neurosurg 90(5):815–822CrossRefGoogle Scholar
  146. Sughrue ME et al (2011) Endocrinologic, neurologic, and visual morbidity after treatment for craniopharyngioma. J Neurooncol 101(3):463–476CrossRefGoogle Scholar
  147. Suh JH et al (2000) Results of linear accelerator-based stereotactic radiosurgery for recurrent and newly diagnosed acoustic neuromas. Int J Cancer 90(3):145–151CrossRefGoogle Scholar
  148. Sun SQ, et al (2014) Management of atypical cranial meningiomas, part 2: predictors of progression and the role of adjuvant radiation after subtotal resection. Neurosurgery 75(4):356–363; discussion 363Google Scholar
  149. Szumacher E et al (2002) Fractionated stereotactic radiotherapy for the treatment of vestibular schwannomas: combined experience of the Toronto-Sunnybrook Regional Cancer Centre and the Princess Margaret Hospital. Int J Radiat Oncol Biol Phys 53(4):987–991CrossRefGoogle Scholar
  150. Thomassin JM et al (1998) Preservation of hearing in acoustic neuromas treated by gamma knife surgery. Stereotact Funct Neurosurg 70(Suppl 1):74–79CrossRefGoogle Scholar
  151. Turbin RE, et al (2002) A long-term visual outcome comparison in patients with optic nerve sheath meningioma managed with observation, surgery, radiotherapy, or surgery and radiotherapy. Ophthalmology 109(5):890–899; discussion 899–900Google Scholar
  152. Turner HE et al (1999) Audit of selected patients with nonfunctioning pituitary adenomas treated without irradiation - a follow-up study. Clin Endocrinol (Oxf) 51(3):281–284CrossRefGoogle Scholar
  153. Umezu H, Aiba T (1994) Preservation of hearing after surgery for acoustic schwannomas: correlation between cochlear nerve function and operative findings. J Neurosurg 80(5):844–848CrossRefGoogle Scholar
  154. van den Bergh AC et al (2007) Immediate postoperative radiotherapy in residual nonfunctioning pituitary adenoma: beneficial effect on local control without additional negative impact on pituitary function and life expectancy. Int J Radiat Oncol Biol Phys 67(3):863–869CrossRefGoogle Scholar
  155. van Roijen L et al (1997) Costs and effects of microsurgery versus radiosurgery in treating acoustic neuroma. Acta Neurochir 139(10):942–948CrossRefGoogle Scholar
  156. Vernooij MW et al (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821–1828CrossRefGoogle Scholar
  157. Voges J et al (2006) Linear accelerator radiosurgery for pituitary macroadenomas: a 7-year follow-up study. Cancer 107(6):1355–1364CrossRefGoogle Scholar
  158. Wara WM et al (1975) Radiation therapy of meningiomas. Am J Roentgenol Radium Ther Nucl Med 123(3):453–458CrossRefGoogle Scholar
  159. Wen PY et al (2010) Medical therapies for meningiomas. J Neurooncol 99(3):365–378CrossRefGoogle Scholar
  160. Whittle IR et al (2004) Meningiomas. Lancet 363(9420):1535–1543CrossRefGoogle Scholar
  161. Wiemels J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neurooncol 99(3):307–314CrossRefPubMedPubMedCentralGoogle Scholar
  162. Winkfield KM et al (2009) Surveillance of craniopharyngioma cyst growth in children treated with proton radiotherapy. Int J Radiat Oncol Biol Phys 73(3):716–721CrossRefGoogle Scholar
  163. Yang I et al (2010a) A comprehensive analysis of hearing preservation after radiosurgery for vestibular schwannoma. J Neurosurg 112(4):851–859CrossRefGoogle Scholar
  164. Yang I et al (2010b) Craniopharyngioma: a comparison of tumor control with various treatment strategies. Neurosurg Focus 28(4):E5CrossRefGoogle Scholar
  165. Yomo S et al (2012) Longitudinal analysis of hearing before and after radiosurgery for vestibular schwannoma. J Neurosurg 117(5):877–885CrossRefGoogle Scholar
  166. Yoneoka Y, Fujii Y, Tanaka R (2000) Growth of incidental meningiomas. Acta Neurochir 142(5):507–511CrossRefGoogle Scholar
  167. Zhang N et al (2000) Radiosurgery for growth hormone-producing pituitary adenomas. J Neurosurg 93(Suppl 3):6–9CrossRefGoogle Scholar
  168. Zierhut D et al (1995) External radiotherapy of pituitary adenomas. Int J Radiat Oncol Biol Phys 33(2):307–314CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Radiation Oncology and Neurological SurgeryUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations