Advertisement

Dysphagia pp 549-562 | Cite as

In Vitro Models for Simulating Swallowing

  • Waqas Muhammad QaziEmail author
  • Mats Stading
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

This chapter gives an overview of the in vitro models that are currently used for studying swallowing. The focus is on the construction, geometry, and performance of mechanical models. Swallowing simulations and mathematical modeling are also considered. The in vitro models that are concerned with the oral, pharyngeal, and esophageal phases of swallowing linked to bolus properties are discussed. The pharyngeal phase is given special consideration, as it is involved in both food transport to the stomach and air transport to the lungs, and therefore constitutes the most critical phase of swallowing.

Notes

Acknowledgments

The Swedish Scientific Council Formas is gratefully acknowledged for financing Waqas M Qazi. We thank Eva Ekman, Johan Wiklund, and Olle Ekberg for their valuable inputs. Fredrik Holmberg is gratefully acknowledged for the mechanical and electronic construction work on the Gothenburg Throat model.

References

  1. Arvisenet G, Billy L, Poinot P, Vigneau E, Bertrand D, Prost C (2008) Effect of apple particle state on the release of volatile compounds in a new artificial mouth device. J Agric Food Chem 56(9):3245–3253. doi: 10.1021/jf073145z CrossRefPubMedGoogle Scholar
  2. Bonawitz SC, Duvvuri U (2013) Robotic-assisted oropharyngeal reconstruction with local flaps. Oper Tech Otolaryngol Head Neck Surg 24(2):115–119. doi: 10.1016/j.otot.2013.04.001 CrossRefGoogle Scholar
  3. Butler SG, Stuart A, Castell D, Russell GB, Koch K, Kemp S (2009) Effects of age, gender, bolus condition, viscosity, and volume on pharyngeal and upper esophageal sphincter pressure and temporal measurements during swallowing. J Speech Lang Hear Res 52(1):240–253CrossRefPubMedGoogle Scholar
  4. Chang MW, Rosendall B, Finlayson BA (1998) Mathematical modeling of normal pharyngeal bolus transport: a preliminary study. J Rehabil Res Dev 35(3):327PubMedGoogle Scholar
  5. Chen FJ, Dirven S, Xu WL, Bronlund J, Li XN, Pullan A (2012) Review of the swallowing system and process for a biologically mimicking swallowing robot. Mechatronics 22(5):556–567. doi: 10.1016/j.mechatronics.2012.02.005 CrossRefGoogle Scholar
  6. Chen J, Khandelwal N, Liu Z, Funami T (2013) Influences of food hardness on the particle size distribution of food boluses. Arch Oral Biol 58(3):293–298. doi: 10.1016/j.archoralbio.2012.10.014 CrossRefPubMedGoogle Scholar
  7. Chen FJ, Dirven S, Xu WL, Li XN (2014) Soft actuator mimicking human esophageal peristalsis for a swallowing robot. IEEE/ASME Trans Mechatron 19(4):1300–1308. doi: 10.1109/TMECH.2013.2280119 CrossRefGoogle Scholar
  8. Daniel MM, Lorenzi MC, Leite CC, Lorenzi-Filho G (2007) Pharyngeal dimensions in healthy men and women. Clinics 62:5–10CrossRefPubMedGoogle Scholar
  9. Daumas B, Xu WL, Bronlund J (2005) Jaw mechanism modeling and simulation. Mech Mach Theory 40(7):821–833. doi: 10.1016/j.mechmachtheory.2004.12.011 CrossRefGoogle Scholar
  10. de Loubens C, Magnin A, Verin E, Doyennette M, Tréléa IC, Souchon I (2010) A lubrication analysis of pharyngeal peristalsis: Application to flavour release. J Theor Biol 267(3):300–311. doi: 10.1016/j.jtbi.2010.09.003 CrossRefPubMedGoogle Scholar
  11. de Loubens C, Magnin A, Doyennette M, Tréléa IC, Souchon I (2011) A biomechanical model of swallowing for understanding the influence of saliva and food bolus viscosity on flavor release. J Theor Biol 280(1):180–188. doi: 10.1016/j.jtbi.2011.04.016 CrossRefPubMedGoogle Scholar
  12. Dirven S, Xu W, Cheng LK (2015a) Sinusoidal peristaltic waves in soft actuator for mimicry of esophageal swallowing. IEEE/ASME Trans Mechatron 20(3):1331–1337. doi: 10.1109/TMECH.2014.2337291 CrossRefGoogle Scholar
  13. Dirven S, Xu W, Cheng LK, Allen J (2015b) Biomimetic investigation of intrabolus pressure signatures by a peristaltic swallowing robot. IEEE Trans Instrum Meas 64(4):967–974. doi: 10.1109/TIM.2014.2360800 CrossRefGoogle Scholar
  14. Ekberg O, Stading M, Johansson D, Bulow M, Ekman S, Wendin K (2010) Flow properties of oral contrast medium formulations depend on the temperature. Acta Radiol 51(4):363–367. doi: 10.3109/02841851003645751 CrossRefPubMedGoogle Scholar
  15. Ferris L, Rommel N, Doeltgen S, Scholten I, Kritas S, Abu-Assi R, McCall L, Seiboth G, Lowe K, Moore D, Faulks J, Omari T (2016) Pressure-flow analysis for the assessment of pediatric oropharyngeal dysphagia. J Pediatr 177:279–285.e271. doi: 10.1016/j.jpeds.2016.06.032 CrossRefPubMedGoogle Scholar
  16. Harrison SM, Cleary PW, Eyres G, Sinnott MD, Lundin L (2014) Challenges in computational modelling of food breakdown and flavour release. Food Funct 5(11):2792–2805. doi: 10.1039/C4FO00786G CrossRefPubMedGoogle Scholar
  17. Hayoun P, Engmann J, Mowlavi S, Le Reverend B, Burbidge A, Ramaioli M (2015) A model experiment to understand the oral phase of swallowing of Newtonian liquids. J Biomech.  https://doi.org/10.1016/j.jbiomech.2015.09.022
  18. Hoebler C, Devaux MF, Karinthi A, Belleville C, Barry JL (2000) Particle size of solid food after human mastication and in vitro simulation of oral breakdown. Int J Food Sci Nutr 51(5):353–366CrossRefPubMedGoogle Scholar
  19. Ishihara S, Nakao S, Nakauma M, Funami T, Hori K, Ono T, Kohyama K, Nishinari K (2013) Compression test of food gels on artificial tongue and its comparison with human test. J Texture Stud 44(2):104–114. doi: 10.1111/jtxs.12002 CrossRefGoogle Scholar
  20. Jørgensen F, Hesse B, Tromholt N, Højgaard L, Stubgaard M (1992) Esophageal scintigraphy: reproducibility and normal ranges. J Nucl Med 33(12):2106–2109PubMedGoogle Scholar
  21. Kikuchi T, Kobayashi H, Michiwaki Y (2009) Development of a swallowing robot reproducing hyoid bone and epiglottis during swallowing. In: Seventeenth annual dysphagia research society meeting, New Orleans, Louisiana.Google Scholar
  22. Kikuchi T, Michiwaki Y, Kamiya T, Toyama Y, Tamai T, Koshizuka S (2015) Human swallowing simulation based on videofluorography images using Hamiltonian MPS method. Comput Partic Mech 2(3):247–260. doi: 10.1007/s40571-015-0049-4 CrossRefGoogle Scholar
  23. Kikuchi T, Michiwaki Y, Koshizuka S, Kamiya T, Toyama Y (2017) Numerical simulation of interaction between organs and food bolus during swallowing and aspiration. Comput Biol Med 80:114–123. doi: 10.1016/j.compbiomed.2016.11.017 CrossRefPubMedGoogle Scholar
  24. Koga H, Usuda Y, Matsuno M, Ogura Y, Ishii H, Solis J, Takanishi A, Katsumata A Development of the Oral Rehabilitation Robot WAO-1. In: Biomedical robotics and biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, 19–22 October 2008. pp 556–561. doi:10.1109/BIOROB.2008.4762801Google Scholar
  25. Leonard RJ, White C, McKenzie S, Belafsky PC (2014) Effects of bolus rheology on aspiration in patients with dysphagia. J Acad Nutr Diet 114(4):590–594. doi: 10.1016/j.jand.2013.07.037 CrossRefPubMedGoogle Scholar
  26. Lin S, Chen J, Hertz P, Kahrilas PJ (1996) Dynamic reconstruction of the orophanryngeal swallow using computer based animation. Comput Med Imaging Graph 20(2):69–75. doi: 10.1016/0895-6111(96)00030-4 CrossRefPubMedGoogle Scholar
  27. Lin T, Xu G, Dou Z, Lan Y, Yu F, Jiang L (2014) Effect of bolus volume on pharyngeal swallowing assessed by high-resolution manometry. Physiol Behav 128:46–51. doi: 10.1016/j.physbeh.2014.01.030 CrossRefPubMedGoogle Scholar
  28. Mackley MR, Tock C, Anthony R, Butler SA, Chapman G, Vadillo DC (2013) The rheology and processing behavior of starch and gum-based dysphagia thickeners. J Rheol 57(6):1533–1553.  https://doi.org/10.1122/1.4820494 CrossRefGoogle Scholar
  29. Matsuo K, Palmer JB (2016) Video fluoroscopic techniques for the study of oral food processing. Curr Opin Food Sci 9:1–10. doi: 10.1016/j.cofs.2016.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  30. McFarland DH, Martin-Harris B, Fortin AJ, Humphries K, Hill E, Armeson K (2016) Respiratory-swallowing coordination in normal subjects: lung volume at swallowing initiation. Respir Physiol Neurobiol 234:89–96. doi: 10.1016/j.resp.2016.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Meng Y, Rao MA, Datta AK (2005) Computer simulation of the pharyngeal bolus transport of newtonian and non-newtonian fluids. Food Bioprod Process 83(4):297–305. doi: 10.1205/fbp.04209 CrossRefGoogle Scholar
  32. Morell P, Hernando I, Fiszman SM (2014) Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends Food Sci Tech 35(1):18–31. doi: 10.1016/j.tifs.2013.10.005 CrossRefGoogle Scholar
  33. Mowlavi S, Engmann J, Burbidge A, Lloyd R, Hayoun P, Le Reverend B, Ramaioli M (2016) In vivo observations and in vitro experiments on the oral phase of swallowing of Newtonian and shear-thinning liquids. J Biomechanics 49(16):3788–3795. doi: 10.1016/j.jbiomech.2016.10.011 CrossRefGoogle Scholar
  34. Nicosia MA, Robbins J (2001) The fluid mechanics of bolus ejection from the oral cavity. J Biomech 34(12):1537–1544. doi: 10.1016/S0021-9290(01)00147-6 CrossRefPubMedGoogle Scholar
  35. Noh Y, Shimomura A, Segawa M, Ishii H, Solis J, Takanishi A, Hatake K (2009) Development of tension/compression detection sensor system designed to acquire quantitative force information while training the airway management task. In: Advanced intelligent mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on, 14–17 July 2009. pp 1264–1269. doi:  https://doi.org/10.1109/AIM.2009.5229798
  36. Noh Y, Segawa M, Sato K, Wang C, Ishii H, Solis J, Takanishi A, Katsumata A, Iida Y (2011) Development of a robot which can simulate swallowing of food boluses with various properties for the study of rehabilitation of swallowing disorders. Paper presented at the International Conference on Robotics and AutomationGoogle Scholar
  37. Nystrom M, Qazi WM, Bülow M, Ekberg O, Stading M (2015) Effects of rheological factors on perceived ease of swallowing. Appl Rheol 25(6):40–48Google Scholar
  38. Popa Nita S, Murith M, Chisholm H, Engmann J (2013) Matching the rheological properties of videofluoroscopic contrast agents and thickened liquid prescriptions. Dysphagia 28(2):245–252. doi: 10.1007/s00455-012-9441-x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Salinas-Vázquez M, Vicente W, Brito-de la Fuente E, Gallegos C, Márquez J, Ascanio G (2014) Early numerical studies on the peristaltic flow through the pharynx. J Texture Stud 45(2):155–163. doi: 10.1111/jtxs.12060 CrossRefGoogle Scholar
  40. Salles C, Tarrega A, Mielle P, Maratray J, Gorria P, Liaboeuf J, Liodenot JJ (2007) Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment. J Food Eng 82(2):189–198. doi: 10.1016/j.jfoodeng.2007.02.008 CrossRefGoogle Scholar
  41. Spence CJT, Buchmann NA, Jermy MC, Moore SM (2011) Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy. Exp Fluids 50(4):1005–1017. doi: 10.1007/s00348-010-0984-z CrossRefGoogle Scholar
  42. Stading M, Qazi W (2017) An in vitro model of the pharynx for evaluation of bolus flow, submittedGoogle Scholar
  43. Steele CM, Molfenter SM, Péladeau-Pigeon M, Stokely S (2013) Challenges in preparing contrast media for videofluoroscopy. Dysphagia 28(3):464–467. doi: 10.1007/s00455-013-9476-7 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Steele CM, Molfenter SM, Péladeau-Pigeon M, Polacco RC, Yee C (2014) Variations in tongue-palate swallowing pressures when swallowing xanthan gum-thickened liquids. Dysphagia 29(6):678–684. doi: 10.1007/s00455-014-9561-6 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Steele C, Alsanei W, Ayanikalath S, Barbon CA, Chen J, Cichero JY, Coutts K, Dantas R, Duivestein J, Giosa L, Hanson B, Lam P, Lecko C, Leigh C, Nagy A, Namasivayam A, Nascimento W, Odendaal I, Smith C, Wang H (2015) The influence of food texture and liquid consistency modification on swallowing physiology and function: a systematic review. Dysphagia 30(1):2–26. doi: 10.1007/s00455-014-9578-x CrossRefPubMedGoogle Scholar
  46. Wang X, Chen J (2017) Food oral processing: recent developments and challenges. Curr Opin Colloid Interface Sci 28:22–30. doi: 10.1016/j.cocis.2017.01.001 CrossRefGoogle Scholar
  47. Waqas MQ, Wiklund J, Altskär A, Ekberg O, Stading M (2017) Shear and extensional rheology of commercial thickeners used for dysphagia management. J Texture Stud. doi: 10.1111/jtxs.12264
  48. Wiklund J, Shahram I, Stading M (2007) Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques. Chemical Engineering Science 62(16):4277–4293. doi: 10.1016/j.ces.2007.05.007
  49. Wiklund J, Stading M (2008) Application of in-line ultrasound Doppler-based UVP–PD rheometry method to concentrated model and industrial suspensions. Flow Meas Instrum 19(3–4):171–179.  https://doi.org/10.1016/j.flowmeasinst.2007.11.002 CrossRefGoogle Scholar
  50. William G. Paterson (2006) Esophageal peristalsis. doi:  https://doi.org/10.1038/gimo13
  51. Woda A, Mishellany-Dutour A, Batier L, François O, Meunier JP, Reynaud B, Alric M, Peyron MA (2010) Development and validation of a mastication simulator. J Biomech 43(9):1667–1673. doi: 10.1016/j.jbiomech.2010.03.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Product Design and PerceptionResearch Institutes of SwedenGothenburgSweden

Personalised recommendations