Skip to main content

PET Radiochemistry and Radiopharmacy

  • Chapter

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The vast majority of PET radiopharmaceuticals today are cyclotron produced. Carbon-11 (11C), Nitrogen-13 (13N), Oxygen-15 (15O) products are created for in-house use only due to their short half-lives. The longer half-life of Fluorine-18 means that 18F-labeled PET radiotracers can be widely distributed. Production of radiopharmaceuticals is computer-controlled and automated. Automation increases both reliability and efficiency of PET operations while decreasing the radiation dose to the staff. For today, FDG remains the workhorse of oncologic PET imaging. Additional 18F PET radiotracers directed at a range of molecular processes are being studied and should become available in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ak I, Stokkel MP, Pauwels EK (2000) Positron emission tomography with 2-[18F]fluoro-2-deoxy-d-glucose in oncology. Part II. The clinical value in detecting and staging primary tumors. J Cancer Res Clin Oncol 126:560–574

    Article  PubMed  CAS  Google Scholar 

  • Avril N, Menzel M, Dose J, Schelling M, Weber W, Jänicke F, Nathrath W, Schwaiger M (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42(1):9–16

    PubMed  CAS  Google Scholar 

  • Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(2):648-805

    Google Scholar 

  • Becherer A, Szabo M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with [18]F-FDOPA PET. J Nucl Med 45:1161–1167

    PubMed  CAS  Google Scholar 

  • Beck R, Roper B, Carlsen JM et al (2007) Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J Nucl Med 48:973–980

    Article  PubMed  CAS  Google Scholar 

  • Blake GM, Park-Holohan SJ, Cook GJ et al (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49

    Article  PubMed  CAS  Google Scholar 

  • Blau M, Nagler W, Bender MA (1962) A new isotope for bone scanning. J Nucl Med 3:332–334

    PubMed  CAS  Google Scholar 

  • Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CF (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20(2):379–387

    Article  PubMed  CAS  Google Scholar 

  • Breeman WAP, Verbruggen AM (2007) The 68 Ge/68 Ga generator has high potential, but when can we use 68 Ga-labeled tracers in clinical routine? Eur J Nucl Med Mol Imaging 34:978–981

    Article  PubMed  Google Scholar 

  • Buck AK, Halter G, Schirrmeister H et al (2003) Imaging of proliferation in lung tumors with PET: 18FLT versus 18FDG. J Nucl Med 44:1426–1431

    PubMed  CAS  Google Scholar 

  • Carolan P, Hunt C, McConnell D et al (2012) Radiation exposure reduction to PET technologists with the use of an automated dosage delivery system. J Nucl Med 53:2185

    Google Scholar 

  • Ceyssens S, Van Laere K, de Groot T et al (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR 27:1432–1437

    PubMed  CAS  Google Scholar 

  • Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  • Cobben DC, Elsinga PH, Suurmeijer AJ et al (2004) Detection and grading of soft tissue sarcomas of the extremities with 18F–3-fluoro-3-deoxy-l-thymidine. Clin Cancer Res 10:1685–1690

    Article  PubMed  CAS  Google Scholar 

  • Cobben DC, Jager PL, Elsinga PH et al (2003) 18F–3-fluoro-3-deoxy-l-thymidine: a new tracer or staging of metastatic melanoma? J Nucl Med 44:1927–1932

    PubMed  CAS  Google Scholar 

  • Coleman RE (1999) PET in lung cancer. J Nucl Med 40(5):814–820

    PubMed  CAS  Google Scholar 

  • DeGrado TR, Coleman RE, Wang S et al (2001) Synthesis and evaluation of 18F labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61:110–117

    PubMed  CAS  Google Scholar 

  • Delbeke D (1999) Oncological applications of FDG PET imaging. J Nucl Med 40(10):1706–1715

    PubMed  CAS  Google Scholar 

  • Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F–fluoride PET/CT and comparison between 18F–fluoride PET and 18F–fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  • Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patient with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and -field-of view SPECT, 18F–fluoride PET, and 18F–fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  • Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46:1356–1367

    PubMed  Google Scholar 

  • Foo SS, Abbott DF, Lawrentschuk N et al (2004) Functional imaging of intra-tumoral hypoxia. Mol Imaging Biol 6:291–305

    Article  PubMed  Google Scholar 

  • Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of [18F]-3-fluoro-3-deoxy-thymidine versus [18F]-fluoro-2- deoxy-d-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30:988–994

    Article  PubMed  CAS  Google Scholar 

  • Galldiks N, Kracht LW, Burghaus L et al (2006) Use of 11Cmethionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33:516–524

    Article  PubMed  CAS  Google Scholar 

  • Gatley SJ (2003) Labeled glucose analogs in the genomic era. J Nucl Med 44(7):1082–1086

    PubMed  CAS  Google Scholar 

  • Hara T, Kosaka N, Kishi H (2002) Development of [18F]-Fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199

    PubMed  CAS  Google Scholar 

  • Hara T, Kosaka N, Shinoura N et al (1997) PET imaging of brain tumor with [methyl-11C] choline. J Nucl Med 38:842–847

    PubMed  CAS  Google Scholar 

  • Hetzel M, Arslandemir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness and impact on patient management. J Bone Miner Res 18:2206–2214

    Article  PubMed  Google Scholar 

  • Hicks RJ, Rischin D, Fisher R et al (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32:1384–1391

    Article  PubMed  Google Scholar 

  • Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, Doi R, Hosotani R, Imamura M, Konishi J (2002) Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 43(2):173–180

    Google Scholar 

  • Hoegerle S, Altehoefer C, Ghanem N et al (2001a) 18F-DOPA positron emission tomography for tumor detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28:64–71

    Article  PubMed  CAS  Google Scholar 

  • Hoegerle S, Altehoefer C, Ghanem N, Koehler G, Waller CF, Scheruebl H, Moser E, Nitzsche E (2001b) Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 220(2):373–380

    PubMed  CAS  Google Scholar 

  • Hoegerle S, Nitzsche E, Altehoefer C et al (2002) Pheochromocytomas: detection with 18F DOPA whole body PET—initial results. Radiology 222:507–512

    Article  PubMed  Google Scholar 

  • Hoegerle S, Schneider B, Kraft A, Moser E, Nitzsche EU (1999) Imaging of a metastatic gastrointestinal carcinoid by F-18-DOPA positron emission tomography. Nuklearmedizin 38:127–130

    PubMed  CAS  Google Scholar 

  • Howard BV, Howard WJ (1975) Lipids in normal and tumor cells in culture. Prog Biochem Pharmacol 10:135–166

    PubMed  CAS  Google Scholar 

  • Ido T, Wan CN, Casella JS et al (1978) Labeled 2-deoxy-d-glucose analogs: 18F labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C–2-deoxy-2-fluoro-d-glucose. J Label Compd Radiopharmacol 14:175–183

    Article  CAS  Google Scholar 

  • Ilias I, Chen CC, Carrasquillo JA et al (2008) Comparison of 6-[18F]-fluorodopamine positron emission tomography to [123I]-metaiodobenzylguanidine and [111In]-pentetreotide scintigraphy in the localization of non-metastatic and metastatic pheochromocytoma. J Nucl Med 49:1613–1619

    Article  PubMed  Google Scholar 

  • Jackowski S (1994) Coordination of membrane phospholipid synthesis with the cell cycle. J Biol Chem 269:3858–3867

    PubMed  CAS  Google Scholar 

  • Jacobs AH, Thomas A, Kracht LW et al (2005) 18F-fluoro-l-thymidine and 11C-Methylmetionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958

    PubMed  CAS  Google Scholar 

  • Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  • Koh WJ, Bergman KS, Rasey JS et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human non-small cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33:391–398

    Article  PubMed  CAS  Google Scholar 

  • Laszlo J, Humphreys SR, Goldin A (1960) Effects of glucose analogues (2-deoxy-d-glucose, 2-deoxy-D-galactose) on experimental tumors. J Natl Cancer Inst 24:267–281

    PubMed  CAS  Google Scholar 

  • Lee ST, Scott AM (2007) Hypoxia positron emission tomography imaging with 18F-fluoromisonidazole. Semin Nucl Med 37:451–461

    Article  PubMed  Google Scholar 

  • Luxen A, Guillaume M, Melega WP et al (1992) Production of 6-[18F]fluoro-L-dopa and its metabolism in vivo—a critical review. Int J Radiat Appl Instrum B 19:149–158

    CAS  Google Scholar 

  • McCarthy TJ, Welch MJ (1998) The state of positron emitting radionuclide production in 1997. Semin Nucl Med 28(3):235–46

    Google Scholar 

  • Mees G, Dierckx R, Vangestel C et al (2009) Molecular imaging of hypoxia with radiolabeled agents. Eur J Nucl Med Mol Imaging 36:1674–1686

    Article  PubMed  CAS  Google Scholar 

  • Mertens K, Slaets D, Lambert B, Acou M, De Vos F, Goethals I (2010) PET with (18)F-labeled choline-based tracers for tumor imaging: a review of the literature. Eur J Nucl Med Mol Imaging 37(11):2188–2193

    Google Scholar 

  • Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, Hosokawa M, Kohanawa M, Tamaki N (2001) FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 42(10):1551–1555

    PubMed  CAS  Google Scholar 

  • Nutt R (2002) The history of positron emission tomography (PET). Mol Imaging Biol 4:11–26

    Article  PubMed  Google Scholar 

  • Nuutinen J, Sonninen P, Lehikoinen P et al (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C] methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52

    Article  PubMed  CAS  Google Scholar 

  • Pacák J, Cerny M (2002) History of the First Synthesis of 2-Deoxy-2-Fluoro-d-Glucose the Unlabeled Forerunner of 2-Deoxy-2-[18F]Fluoro-d-Glucose. Mol Imaging Biol 4:353–354

    Google Scholar 

  • Picchio M, Messa C, Landoni C et al (2003) Value of [11C]choline positron emission tomography for re-staging prostate cancer: a comparison with [18F] fluorodeoxyglucose-positron emission tomography. J Urol 169:1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12:5435–5441

    Article  PubMed  CAS  Google Scholar 

  • Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304

    Article  PubMed  CAS  Google Scholar 

  • Ribom D, Engler H, Blomquist E, Smits A (2002) Potential significance of (11)C-methionine PET as marker for the radiosensitivity of low-grade gliomas. Eur J Nucl Med Mol Imaging 29:632–640

    Article  PubMed  CAS  Google Scholar 

  • Rice SL, Roney CA, Daumar P, Lewis JS (2011) The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin Nucl Med 41(4):265–282

    Google Scholar 

  • Roivainen A, Forsback S, Grönroos T et al (2000) Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 27:25–32

    Article  PubMed  CAS  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2007) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    Google Scholar 

  • Schiepers C, Nuytes J, Bormans G et al (1997) Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 38:1970–1976

    PubMed  CAS  Google Scholar 

  • Schirrmeister H, Glatting G, Hetzel J et al (2001) Prospective evaluation of clinical value of planar bone scans, SPECT, and18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42:1800–1804

    PubMed  CAS  Google Scholar 

  • Schlyer DJ (2004) PET tracers and radiochemistry. Ann Acad Med Singapore 33:146–154

    PubMed  CAS  Google Scholar 

  • Schuster DM, John R, Votaw JR et al (2007) Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 48:56–63

    PubMed  CAS  Google Scholar 

  • Shaiju VS, Sharma SD, Kumar R, Sarin B (2009) Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India. J Med Phys 34(3):161–166

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Krause G, Ebadi M (2006) Radiation safety and quality control in the cyclotron laboratory. Radiat Prot Dosimetry 118:431–439

    Article  PubMed  CAS  Google Scholar 

  • Sherley JL, Kelly TJ (1988) Regulation of human thymidine kinase during the cell cycle. J Biol Chem 263:8350–8358

    PubMed  CAS  Google Scholar 

  • Shields AF (2003) PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J Nucl Med 44:1432–1434

    PubMed  CAS  Google Scholar 

  • Shields AF, Grierson JR, Kozawa SM et al (1996) Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 23:17–22

    Article  PubMed  CAS  Google Scholar 

  • Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Smith TA (2000) Mammalian hexokinases and their abnormal expression in cancer. Br J Biomed Sci 57:170–178

    PubMed  CAS  Google Scholar 

  • Smyczek-Gargya B, Fersis N, Dittmann H et al (2004) PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 31:720–724

    Article  PubMed  Google Scholar 

  • Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41(4):246–264

    Google Scholar 

  • Vallabhajosula S (2007) (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37(6):400–419

    Article  PubMed  Google Scholar 

  • Vaupel P, Schlenger K, Hoeckel M (1992) Blood flow and tissue oxygenation of human tumors: an update. Adv Exp Med Biol 317:139–151

    Article  PubMed  CAS  Google Scholar 

  • Vesselle H, Grierson J, Muzi M et al (2002) In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 8:3315–3323

    PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Williams HA, Robinson S, Julyan P et al (2005) A comparison of PET imaging characteristics of various copper radioisotopes. Eur J Nucl Med Mol Imaging 32:1473–1480

    Article  PubMed  Google Scholar 

  • Zhao S, Kuge Y, Tsukamoto E, Mochizuki T, Kato T, Hikosaka K, Hosokawa M, Kohanawa M, Tamaki N (2001) Effects of insulin and glucose loading on FDG uptake in experimental malignant tumors and inflammatory lesions. Eur J Nucl Med 28(6):730–735

    Article  PubMed  CAS  Google Scholar 

  • Zhernosekov KP, Filosofov DV, Baum RP et al (2007) Processing of generator-produced 68 Ga for medical application. J Nucl Med 48:1741–1748

    Article  PubMed  CAS  Google Scholar 

  • Zweit J, Goodall R, Cox M, Babich JW, Potter GA, Sharma HL, Ott RJ (1992) Development of a high performance zinc-62/copper-62 radionuclide generator for positron emission tomography. Eur J Nucl Med 19(6):418–425

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobson, M.S., Steichen, R.A., Peller, P.J. (2012). PET Radiochemistry and Radiopharmacy. In: Peller, P., Subramaniam, R., Guermazi, A. (eds) PET-CT and PET-MRI in Oncology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_703

Download citation

  • DOI: https://doi.org/10.1007/174_2012_703

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01138-2

  • Online ISBN: 978-3-642-01139-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics