MRI-Guided Thermal Ablation Techniques

  • R. Jason Stafford
  • Kamran Ahrar
Part of the Medical Radiology book series (MEDRAD)


The practice of employing tissue ablation techniques, such as cryo or thermal ablation, for local disease management has both grown and changed substantially in recent years. The primary draw of these techniques is that they can be delivered via minimally invasive or completely non-invasive means. The primary goal of replacing standard surgical interventions with such approaches is to deliver an effective therapy in a cost-effective manner while concomitantly reducing the impact of the therapeutic intervention on patient morbidity and quality of life. Tissue ablation is assisted by image-guidance for planning, targeting, monitoring and verifying treatment delivery. Owing to its diverse contrast mechanisms for visualization of anatomy, physiology, metabolism and tissue temperature, magnetic resonance imaging (MRI) has emerged as a modality uniquely suited to providing guidance to those procedures that might not otherwise be considered to be potentially safe or effective without such guidance. The ability to often provide treatment planning, targeting, monitoring and verification of delivery using a single modality as a "closed-loop" solution to guidance is one of the strongest features of MRI. In this chapter, we provide a brief overview of MRI-guided thermal ablation techniques of potential interest.


Thermal Ablation Microwave Ablation Tissue Ablation Thermal Therapy Thermal Ablation Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmed M, Brace CL, Lee FT Jr, Goldberg SN (2011) Principles of and advances in percutaneous ablation. Radiology 258:351–369PubMedCrossRefGoogle Scholar
  2. Brace CL (2009) Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol 38:135–143PubMedCrossRefGoogle Scholar
  3. Brown DB (2010) Thermal ablation 2010: unprecedented growth and promise. Introduction. J Vasc Interv Radiol 21:S177PubMedCrossRefGoogle Scholar
  4. Callstrom MR, York JD, Gaba RC et al (2009) Research reporting standards for image-guided ablation of bone and soft tissue tumors. J Vasc Interv Radiol 20:1527–1540PubMedCrossRefGoogle Scholar
  5. Carpentier A, Chauvet D, Reina V, Beccaria K, Leclerq D, McNichols RJ, Goeda A, Cornu P, Delattre J-Y (2012) MR-guided LITT for recurrent glioblastomas. Lasers Surg Med doi: 10.1002/lsm.22025
  6. Carpentier A, McNichols RJ, Stafford RJ et al. (2008) Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63:ONS21–28Google Scholar
  7. Chen JC, Moriarty JA, Derbyshire JA et al (2000) Prostate cancer: MR imaging and thermometry during microwave thermal ablation-initial experience. Radiology 214:290–297PubMedGoogle Scholar
  8. Cline HE, Schenck JF, Hynynen K et al (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16:956–965PubMedCrossRefGoogle Scholar
  9. Colen RR, Jolesz FA (2010) Future potential of MRI-guided focused ultrasound brain surgery neuroimaging. Clin North Am 20:355–366Google Scholar
  10. Damianou CA, Hynynen K, Fan XB (1995) Evaluation of accuracy of a theoretical-model for predicting the necrosed tissue volume during focused ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control 42:182–187CrossRefGoogle Scholar
  11. de Senneville BD, Ries M, Bartels LW, Moonen CTW (2012) MRI-guided high-intensity focused ultrasound sonication of liver and kidney. In: Kahn T., Busse H (eds) Interventional magnetic resonance imaging. Springer-Verlag, BerlinGoogle Scholar
  12. Deckers R, Rome C, Moonen CT (2008) The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging 27:400–409PubMedCrossRefGoogle Scholar
  13. Delabrousse E, Salomir R, Birer A et al (2010) Automatic temperature control for MR-guided interstitial ultrasound ablation in liver using a percutaneous applicator: ex vivo and in vivo initial studies. Magn Reson Med 63:667–679PubMedCrossRefGoogle Scholar
  14. Dewhirst MW, Vujaskovic Z, Jones E, Thrall D (2005) Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia 21:779–790PubMedCrossRefGoogle Scholar
  15. Diederich CJ, Nau WH, Ross AB et al (2004) Catheter-based ultrasound applicators for selective thermal ablation: progress towards MRI-guided applications in prostate. Int J Hyperthermia 20:739–756PubMedCrossRefGoogle Scholar
  16. Erinjeri JP, Clark TW (2010) Cryoablation: mechanism of action and devices. J Vasc Interv Radiol 21:S187–S191PubMedCrossRefGoogle Scholar
  17. Gedroyc WM (2012) MR-guided focused ultrasound treatment of uterine fibroids. In: Kahn T, Busse H (eds) Interventional magnetic resonance imaging, Springer-Verlag, BerlinGoogle Scholar
  18. Gillams A (2008) Tumour ablation: current role in the liver, kidney, lung and bone. Cancer Imag (8A):S1-5Google Scholar
  19. Goldberg SN (2011) Science to practice: which approaches to combination interventional oncologic therapy hold the greatest promise of obtaining maximal clinical benefit? Radiology 261:667–669PubMedCrossRefGoogle Scholar
  20. Goldberg SN, Grassi CJ, Cardella JF et al (2009) Image-guided tumor ablation: standardization of terminology and reporting criteria. J Vasc Interv Radiol 20:S377–S390PubMedCrossRefGoogle Scholar
  21. Hoffmann NE, Bischof JC (2002) The cryobiology of cryosurgical injury. Urology 60:40–49PubMedCrossRefGoogle Scholar
  22. Hong K, Georgiades C (2010) Radiofrequency ablation: mechanism of action and devices. J Vasc Interv Radiol 21:S179–S186PubMedCrossRefGoogle Scholar
  23. Hushek SG, Martin AJ, Steckner M et al (2008) MR systems for MRI-guided interventions. J Magn Reson Imaging 27:253–266PubMedCrossRefGoogle Scholar
  24. Hynynen K, Darkazanli A, Unger E, Schenck JF (1993) MRI-guided noninvasive ultrasound surgery. Med Phys 20:107–115PubMedCrossRefGoogle Scholar
  25. Jolesz FA, Bleier AR, Jakab P et al (1988) MR imaging of laser-tissue interactions. Radiology 168:249–253PubMedGoogle Scholar
  26. Jolesz FA, Hynynen K, McDannold N, Tempany C (2005) MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am 13:545–560PubMedCrossRefGoogle Scholar
  27. Jolesz FA, McDannold N (2008) Current status and future potential of MRI-guided focused ultrasound surgery. J Magn Reson Imaging 27:391–399PubMedCrossRefGoogle Scholar
  28. Kangasniemi M, Diederich CJ, Price RE et al (2002) Multiplanar MR temperature-sensitive imaging of cerebral thermal treatment using interstitial ultrasound applicators in a canine model. J Magn Reson Imaging 16:522–531PubMedCrossRefGoogle Scholar
  29. Kinsey AM, Diederich CJ, Rieke V et al (2008) Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: in vivo evaluation under MR guidance. Med Phys 35:2081–2093PubMedCrossRefGoogle Scholar
  30. Kinsey AM, Diederich CJ, Tyreus PD et al (2006) Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy. Med Phys 33:1352–1363PubMedCrossRefGoogle Scholar
  31. Kunkle DA, Uzzo RG (2008) Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer 113:2671–2680PubMedCrossRefGoogle Scholar
  32. Kurumi Y, Tani T, Naka S et al (2007) MR-guided microwave ablation for malignancies. Int J Clin Oncol 12:85–93PubMedCrossRefGoogle Scholar
  33. Kurup AN, Callstrom MR (2010) Ablation of skeletal metastases: current status. J Vasc Interv Radiol 21:S242–S250PubMedCrossRefGoogle Scholar
  34. Lafon C, Melodelima D, Salomir R, Chapelon JY (2007) Interstitial devices for minimally invasive thermal ablation by high-intensity ultrasound. Int J Hyperthermia 23:153–163PubMedCrossRefGoogle Scholar
  35. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr (2010) Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol 21:S192–S203PubMedCrossRefGoogle Scholar
  36. McDannold NJ, King RL, Jolesz FA, Hynynen KH (2000) Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 216:517–523PubMedGoogle Scholar
  37. Moche M, Trampel R, Kahn T, Busse H (2008) Navigation concepts for MR image-guided interventions. J Magn Reson Imaging 27:276–291PubMedCrossRefGoogle Scholar
  38. Morikawa S, Naka S, Murayama H et al. (2012) MRI-guided microwave ablation. In: Kahn T, Busse H (eds) Interventional magnetic resonance imaging. Springer-Verlag, BerlinGoogle Scholar
  39. Morrison PR, Silverman SG, Tuncali K, Tatli S (2008) MRI-guided cryotherapy. J Magn Reson Imaging 27:410–420PubMedCrossRefGoogle Scholar
  40. Nau WH, Diederich CJ, Burdette EC (2001) Evaluation of multielement catheter-cooled interstitial ultrasound applicators for high-temperature thermal therapy. Med Phys 28:1525–1534PubMedCrossRefGoogle Scholar
  41. Nau WH, Diederich CJ, Ross AB et al (2005) MRI-guided interstitial ultrasound thermal therapy of the prostate: a feasibility study in the canine model. Med Phys 32:733–743PubMedCrossRefGoogle Scholar
  42. Pearce J (2011) Mathematical models of laser-induced tissue thermal damage. Int J Hyperth 27:741–750CrossRefGoogle Scholar
  43. Pozar DM (2011) Microwave engineering. Wiley, HobokenGoogle Scholar
  44. Rempp H, Hoffmann R, Clasen S, Pereira PL (2012a) MRI-guided rf ablation in the liver. In: Kahn T, Busse H (eds) Interventional magnetic resonance imaging, Springer-Verlag, BerlinGoogle Scholar
  45. Rempp H, Hoffmann R, Roland J et al (2012b) Threshold-based prediction of the coagulation zone in sequential temperature mapping in MR-guided radiofrequency ablation of liver tumours. Eur Radiol 22:1091–1100PubMedCrossRefGoogle Scholar
  46. Rieke V (2012) MR thermometry. In: Kahn T, Busse H (eds) Interventional magnetic resonance imaging. Springer-Verlag, BerlinGoogle Scholar
  47. Rieke V, Butts Pauly K (2008) MR thermometry. J Magn Reson Imaging 27:376–390PubMedCrossRefGoogle Scholar
  48. Rosenberg C, Hosten N (2012) MRI-guided laser ablation in the liver. In: Kahn T, Busse H (eds) Interventional magnetic resonance imaging. Springer-Verlag, BerlinGoogle Scholar
  49. Rybak LD (2009) Fire and ice: thermal ablation of musculoskeletal tumors. Radiol Clin North Am 47:455–469PubMedCrossRefGoogle Scholar
  50. Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800PubMedCrossRefGoogle Scholar
  51. Shyn PB, Oliva MR, Shah SH et al (2012) MRI contrast enhancement of malignant liver tumours following successful cryoablation. Eur Radiol 22:398–403PubMedCrossRefGoogle Scholar
  52. Siddiqui K, Chopra R, Vedula S et al (2010) MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 76:1506–1511PubMedCrossRefGoogle Scholar
  53. Silverman SG, Tuncali K, Adams DF et al (2000) MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology 217:657–664PubMedGoogle Scholar
  54. Simon CJ, Dupuy DE, Mayo-Smith WW (2005) Microwave ablation: principles and applications. Radiographics 25:S69–S83PubMedCrossRefGoogle Scholar
  55. Solomon SB, Silverman SG (2010) Imaging in interventional oncology. Radiology 257:624–640PubMedCrossRefGoogle Scholar
  56. Stafford RJ, Price RE, Diederich CJ et al (2004) Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. J Magn Reson Imaging 20:706–714PubMedCrossRefGoogle Scholar
  57. Stafford RJ, Shetty A, Elliott AM et al (2010) Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol 184:1514–1520PubMedCrossRefGoogle Scholar
  58. Staruch R, Chopra R, Hynynen K (2012) Hyperthermia in bone generated with mr imaging-controlled focused ultrasound: control strategies and drug delivery. Radiology. doi: 10.1148/radiol.12111189 Google Scholar
  59. Tempany CM, McDannold NJ, Hynynen K, Jolesz FA (2011) Focused ultrasound surgery in oncology: overview and principles. Radiology 259:39–56PubMedCrossRefGoogle Scholar
  60. Vogl TJ, Straub R, Eichler K et al (2002) Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: experience with complications in 899 patients (2,520 lesions). Radiology 225:367–377PubMedCrossRefGoogle Scholar
  61. Wolf FJ, Grand DJ, Machan JT et al (2008) Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients. Radiology 247:871–879PubMedCrossRefGoogle Scholar
  62. Woodrum DA, Mynderse LA, Gorny KR et al (2011) 3.0T MR-guided laser ablation of a prostate cancer recurrence in the postsurgical prostate bed. J Vasc Interv Radiol 22:929–934PubMedCrossRefGoogle Scholar
  63. Yang D, Converse MC, Mahvi DM, Webster JG (2007) Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans Biomed Eng 54:150–155PubMedCrossRefGoogle Scholar
  64. Yarmolenko PS, Moon EJ, Landon C et al (2011) Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 27:320–343PubMedCrossRefGoogle Scholar
  65. Yutzy SR, Duerk JL (2008) Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging 27:267–275PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Imaging PhysicsThe University of Texas, MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Interventional RadiologyUniversity of Texas MD, Anderson Cancer CenterHoustonUSA

Personalised recommendations