Historical Development of Stereotactic Ablative Radiotherapy

  • Timothy D. Solberg
  • Robert L. Siddon
  • Brian Kavanagh
Part of the Medical Radiology book series (MEDRAD)


Stereotactic radiosurgery (SRS) has been an effective modality for the treatment of benign and malignant cranial disease for over 50 years. Just as SRS revolutionized the practice of neurosurgery, stereotactic ablative radiotherapy (SAbR) in extracranial sites is now challenging conventional wisdom with regard to the practice of radiation oncology. This clinical paradigm change has been enabled in large part through a century of technological development described in this chapter.


Trigeminal Neuralgia Gamma Knife Stereotactic Radiosurgery Treatment Planning System Stereotactic Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler JR (1993) Frameless radiosurgery. In: Goetsch SJ, DeSalles AA (eds) Stereotactic surgery and radiosurger. Medical Physics Publishing, Madison, pp 237–248Google Scholar
  2. Adler JR, Cox RS (1996) Preliminary experience with the CyberKnife: image-guided stereotactic radiosurgery. In: Kondziolka D (ed) Radiosurgery 1995. Karger, Basel, pp. 316–326Google Scholar
  3. Adler JR, Chang SD, Murphy MJ et al (1997) The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Func Neurosurg 69:124–128CrossRefGoogle Scholar
  4. Adler JR, Murphy MJ, Chang SD et al (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1299–1306PubMedGoogle Scholar
  5. Agazaryan N, Solberg TD (2003) Segmental and dynamic intensity-modulated radiation delivery techniques for micro-multileaf collimator. Med Phys 30:1758–1767PubMedCrossRefGoogle Scholar
  6. Agazaryan N, Solberg TD, DeMarco JJ (2003) Patient specific quality assurance for the delivery of intensity modulated radiotherapy. J Appl Clin Med Phys 4:40–50PubMedCrossRefGoogle Scholar
  7. Andrews DW, Bednarz G, Evans JJ, Downes MB (2006) A review of 3 current radiosurgery systems. Surg Neurol 66:559–564PubMedCrossRefGoogle Scholar
  8. Arellano AR, Solberg TD, Llacer J (2000) A clinically oriented inverse planning implementation. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy. Springer, Berlin, pp 532–544CrossRefGoogle Scholar
  9. Axelsonn P, Johnsson R, Stromqvist B (1996) Mechanics of the external fixation test of the lumbar spine: a roentgen stereophotogrammetric analysis. Spine 21:330–333CrossRefGoogle Scholar
  10. Barcia-Salorio JL, Hernandez G, Broseta J et al (1982) Radio surgical treatment of carotid cavernous fistula. Appl Neurophysiol 45:520–522PubMedGoogle Scholar
  11. Bayouth JE, Kaiser HS, Smith MC, Pennington EC et al (2007) Image-guided stereotactic radiosurgery using a specially designed high-dose-rate linac. Med Dosim 32:134–141PubMedCrossRefGoogle Scholar
  12. Betti OO, Derechinsky YE (1982) Irradiations stereotaxiques multifaisceaux. Neurochirurgie 28:55–56Google Scholar
  13. Betti OO, Derechinsky YE (1984) Hyposelective encephalic irradiation with linear accelerator. Acta Neurochir 33:385–390Google Scholar
  14. Bischoff K (1950) Der konvergenstrahler, eine Röntgenstrahlenquelle mit extrem hohen prozentualen Tiefendosen (convergence irradiation, an X-ray source with high depth dose). Strahlentherapie 81:365Google Scholar
  15. Bischoff K (1952) Modern apparatus for cineroentgenography. Fortschr Geb Rontgenstr 76(1):58–59PubMedGoogle Scholar
  16. Blomgren H, Lax I, Naslund I et al (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator: clinical experience of the first thirty-one patients. Acta Oncol 34:861–870PubMedCrossRefGoogle Scholar
  17. Boda-Heggemann J, Walter C, Rahn A, Wertz H et al (2006) Repositioning accuracy of two different mask systems—3D revisited: comparison using true 3D/3D matching with cone beam CT. Int J Radiat Oncol Biol Phys 66:1568–1575PubMedCrossRefGoogle Scholar
  18. Bova FJ, Buatti JM, Friedman WA et al (1997) The University of Florida frameless high-precision stereotactic radiotherapy system. Int J Radiat Oncol Biol Phys 38:875–882PubMedCrossRefGoogle Scholar
  19. Brown RA, Roberts TS, Osborn AG (1980) Stereotaxic frame and computer software for CT-directed neurosurgical localization. Invest Radiol 15:308–312PubMedCrossRefGoogle Scholar
  20. Cerviño L, Pawlicki T, Lawson J, Jiang S (2010) Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol 55:1863–1873PubMedCrossRefGoogle Scholar
  21. Chang SD, Main W, Martin DP et al (2003) An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52:140–146PubMedGoogle Scholar
  22. Chang J, Yenice KM, Narayana A, Gutin PH (2007) Accuracy and feasibility of cone-beam computed tomography for stereotactic radiosurgery setup. Med Phys 34:2077–2084PubMedCrossRefGoogle Scholar
  23. Chang Z, Wang Z, Wu QJ et al (2008) Dosimetric characteristics of novalis Tx system with high definition multileaf collimator. Med Phys 35:4460–4463PubMedCrossRefGoogle Scholar
  24. Chetty IC, Solberg TD, DeMarco JJ et al (2000) A phase-space model for simulating arbitrary intensity distributions for shaped radiosurgery beams using the Monte Carlo method. In Kondziolka D (ed) Radiosurgery 1999. S. Karger AG, Basel, pp 41–52Google Scholar
  25. Chinnaiyan P, Tomée W, Patel R, Chappell R et al (2003) 3D-ultrasound guided radiation therapy in the post-prostatectomy setting. Technol Cancer Res Treat 2:455–458PubMedGoogle Scholar
  26. Cho J, Kodym R, Seliounine S et al (2010) High dose per fraction irradiation of limited lung volumes using an image-guided highly focused irradiator: simulating stereotactic body radiotherapy regimens in an animal model. Int J Radiat Oncol Biol Phys 77:895–902PubMedCrossRefGoogle Scholar
  27. Clarke RH, Horsley VA (1906) On a method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br Med J 2:1799–1800Google Scholar
  28. Colombo F, Benedetti A, Pozza F et al (1985) External stereotactic irradiation by linear accelerator. Neurosurgery 16:154–160PubMedCrossRefGoogle Scholar
  29. Cosgrove VP, Jahn U, Pfaender M et al (1999) Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336PubMedCrossRefGoogle Scholar
  30. Coutard H (1932) Roentgen therapy of epitheliomas of the tonsillar region, hypopharynx and larynx from 1920 to 1926. Am J Roentgenol 28:313Google Scholar
  31. Coutard H (1937) The results and methods of treatment of cancer by radiation. Annals Surg 106:584–598CrossRefGoogle Scholar
  32. Coutard H (1940) Present conception of treatment of cancer of the larynx. Radiology 34:136–145Google Scholar
  33. Cox RS, Murphy MJ (1995) Positioning accuracy of the neurotron 1000. Radiother Oncol 32(suppl1):301Google Scholar
  34. Dahlin H (1970) Om optimering av straldosfordelningar vid cerebral stralkirurgi Internal Report (GWI-R 1/70). Gustaf Werner Institute, UppsalaGoogle Scholar
  35. Dahlin H (1971) Computerized calculation of dosage in external radiotherapy. Nord Med 85:1248–1255PubMedGoogle Scholar
  36. Dahlin H, Sarby B (1975) Destruction of small intracranial tumours with 60Co gamma radiation. Physical and technical considerations. Acta Radiol Ther Phys Biol 14:209–227PubMedGoogle Scholar
  37. Daniel J (1896) The X-rays. Science 67:562–563CrossRefGoogle Scholar
  38. Das IJ, Downes MB, Corn BW et al (1996) Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery-radiotherapy unit. Radiother Oncol 38:61–68PubMedCrossRefGoogle Scholar
  39. Deng H, Kennedy CW, Armour E et al (2007) The small-animal radiation research platform (SARRP): dosimetry of a focused lens system. Phys Med Biol 52:2729–2740PubMedCrossRefGoogle Scholar
  40. DeSalles AAF, Solberg TD, Mischel P et al (1996) Arteriovenous malformation animal model for radiosurgery: the rete mirabile. AJNR 17:1451–1458Google Scholar
  41. DeSalles AAF, Melega WP, Lacan GL et al (2001) Radiosurgery with a 3 mm collimator in the subthalamic nucleus and substantia Nigra of the Vervet Monkey. J Neurosurg 95:990–997CrossRefGoogle Scholar
  42. DesRosiers C, Mendonca MS, Tyree V et al (2003) Use of the Leksell gamma knife for localized small field lens irradiation in rodents. Technol Cancer Res Treat 2:449–454PubMedGoogle Scholar
  43. Duggan DM, Ding GX, Coffey CW 2nd, Kirby W et al (2007) Deep-inspiration breath-hold kilovoltage cone-beam CT for setup of stereotactic body radiation therapy for lung tumors: initial experience. Lung Cancer 56:77–88PubMedCrossRefGoogle Scholar
  44. Fodstad H, Hariz M, Ljunggren B (1991) History of Clarke’s stereotactic instrument. Stereotact Funct Neurosurg 57:130–140PubMedCrossRefGoogle Scholar
  45. Friedman WA, Bova FJ (1989) The university of Florida radiosurgery system. Surg Neurol 32:334–342PubMedCrossRefGoogle Scholar
  46. Fukuda A (2010) Pretreatment setup verification by cone beam CT in stereotactic radiosurgery: phantom study. J Appl Clin Med Phys 11:3162PubMedGoogle Scholar
  47. Fuller CD, Thomas CR, Schwartz S, Golden N et al (2006) Method comparison of ultrasound and kilovoltage X-ray fiducial marker imaging for prostate radiotherapy targeting. Phys Med Biol 51:4981–4993PubMedCrossRefGoogle Scholar
  48. Fuss M, Salter BJ, Cavanaugh SX, Fuss C et al (2004) Daily ultrasound-based image-guided targeting for radiotherapy of upper abdominal malignancies. Int J Radiat Oncol Biol Phys 59:1245–1256PubMedCrossRefGoogle Scholar
  49. Galerani AP, Grills I, Hugo G et al (2010) Dosimetric impact of online correction via cone-beam CT-based image guidance for stereotactic lung radiotherapy. Int J Radiat Oncol Biol Phys 78:1571–1578PubMedCrossRefGoogle Scholar
  50. Garland LH (1934) Carcinoma of the larynx. Calif West Med 41:289–295Google Scholar
  51. Ginzton EL, Mallory KB, Kaplan HS (1957) The Stanford medical linear accelerator: I. Design and development. Stanf Med Bull 15(3):123–140Google Scholar
  52. Goetsch SJ, Murphy BD, Schmidt R et al (1999) Physics of rotating gamma systems for stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 43:689–696PubMedCrossRefGoogle Scholar
  53. Goss BW, Frighetto L, DeSalles AA et al (2003) Linear accelerator radiosurgery using 90 gray for essential trigeminal neuralgia: results and dose volume histogram analysis. Neurosurgery 53:823–828PubMedCrossRefGoogle Scholar
  54. Graves EE, Hu Z, Chatterjee R et al (2007) Design and evaluation of a variable aperture collimator for conformal radiotherapy of small animals using a microCT scanner. Med Phys 34:4359–4367PubMedCrossRefGoogle Scholar
  55. Grubbé EM (1933) Priority in the therapeutic use of X-rays. Radiology 21:156–162Google Scholar
  56. Guckenberger M, Baier K, Guenther I, Richter A et al (2007a) Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 69:294–301PubMedCrossRefGoogle Scholar
  57. Guckenberger M, Meyer J, Wilbert J, Richter A et al (2007b) Intra-fractional uncertainties in cone-beam CT based image-guided radiotherapy (IGRT) of pulmonary tumors. Radiother Oncol 83:57–64PubMedCrossRefGoogle Scholar
  58. Guthrie BL, Adler JR (1991a) Computer-assisted pre-operative planning, interactive surgery, and frameless stereotaxy. In: Selman W (ed) Clinical neurosurgery, vol 38. Williams & Wilkins, Baltimore, pp 112–131Google Scholar
  59. Guthrie BL, Adler JR (1991b) Frameless stereotaxy: computer interactive neurosurgery. Neurol Surg 1:1–22Google Scholar
  60. Hacker FL, Kooy HM, Bellerive MR et al (1997) Beam shaping for conformal fractionated stereotactic radiotherapy: a modeling study. Int J Radiat Oncol Biol Phys 38:1113–1121PubMedCrossRefGoogle Scholar
  61. Hamilton AJ, Lulu BA (1995) A prototype device for linear accelerator-based extracranial radiosurgery. Acta Neurochir 63:40–43Google Scholar
  62. Hamilton AJ, Lulu BA, Fosmire H, Stea B et al (1995) Preliminary clinical experience with linear accelerator-based spinal stereotactic radiosurgery. Neurosurgery 36:311–319PubMedCrossRefGoogle Scholar
  63. Hamilton AJ, Lulu BA, Fosmire H, Gossett L (1996) LINAC-based spinal stereotactic radiosurgery. Stereotact Funct Neurosurg 66:1–9PubMedCrossRefGoogle Scholar
  64. Hansen AT, Petersen JB, Høyer M (2006) Internal movement, set-up accuracy and margins for stereotactic body radiotherapy using a stereotactic body frame. Acta Oncol 45:948–952PubMedCrossRefGoogle Scholar
  65. Hartmann GH, Schlegel W, Strum V et al (1985) Cerebral radiation surgery using moving field irradiation at a linear accelerator facility. Int J Radiat Oncol Biol Phys 11:1185–1192PubMedCrossRefGoogle Scholar
  66. Henschke U (1938) Über rotations bestrahlung (on rotation irradiation). Fortschr Geb Rontgenstr 58:456Google Scholar
  67. Herfarth KK, Debus J, Lohr F et al (2000) Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. Int J Radiat Oncol Biol Phys 46:329–335PubMedCrossRefGoogle Scholar
  68. Horsley V, Clarke RH (1908) The structure and functions of the cerebellum examined by a new method. Brain 31:45–125CrossRefGoogle Scholar
  69. Hrbacek J, Lang S, Klöck S (2011) Commissioning of photon beams of a flattening filter-free linear accelerator and the accuracy of beam modeling using an anisotropic analytical algorithm. Int J Radiat Oncol Biol Phys 80:1228–1237PubMedCrossRefGoogle Scholar
  70. Hugo G, Agazaryan N, Solberg TD (2002) The effects of tumor motion on planning and delivery of respiratory gated IMRT. Med Phys 30:1052–1066CrossRefGoogle Scholar
  71. Jahan R, Solberg TD, Lee D et al (2006) Stereotactic radiosurgery of the rete mirabile in swine: a longitudinal study of histopathological changes. Neurosurgery 58:551–558PubMedGoogle Scholar
  72. Jahan R, Solberg TD, Lee D et al (2007) Arteriovenous malformation model for stereotactic radiosurgery research. Neurosurgery 61:152–159PubMedCrossRefGoogle Scholar
  73. Jensen RL, Stone JL, Hayne RA (1996) Introduction of the human Horsley-Clarke stereotactic frame. Neurosurg 38:563–567Google Scholar
  74. Johnson LS, Milliken BD, Hadley SW, Pelizzari CA et al (1999) Initial clinical experience with a video-based patient positioning system. Int J Radiat Oncol Biol Phys 45:205–213PubMedCrossRefGoogle Scholar
  75. Johnsson R, Strömqvist B, Axelsson P, Selvik G (1992) Influence of spinal immobilization on consolidation of posterolateral lumbosacral fusion. A roentgen stereophotogrammetric and radiographic analysis. Spine 17:16–21PubMedCrossRefGoogle Scholar
  76. Jones H, Illes J, Northway W (1995) A history of the department of radiology at Stanford university. AJR 164:753–760PubMedGoogle Scholar
  77. Kamino Y, Takayama K, Kokubo M, Narita Y et al (2006) Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys 66:271–278PubMedCrossRefGoogle Scholar
  78. Kamino Y, Miura S, Kokubo M et al (2007a) Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Med Phys 34:1797–1808PubMedCrossRefGoogle Scholar
  79. Kamino Y, Tsukuda K, Kokubo M, Miura S et al (2007b) Development of a new concept automatic frequency controller for an ultrasmall C-band linear accelerator guide. Med Phys 34:3243–3248PubMedCrossRefGoogle Scholar
  80. Kato A, Yoshimine T, Hayakawa T et al (1991) A frameless, armless navigational system for computer-assisted surgery. J Neurosurg 74:845–849PubMedCrossRefGoogle Scholar
  81. Kim J, Jin JY, Walls N et al (2011) Image-guided localization accuracy of stereoscopic planar and volumetric imaging methods for stereotactic radiation surgery and stereotactic body radiation therapy: a phantom study. Int J Radiat Oncol Biol Phys 79:1588–1596PubMedCrossRefGoogle Scholar
  82. Kirschner M (1933) Die Punktionstechnik und die Elektrokoagulation es Ganglion Gasseri. Arch Klin Chir 176:581–620Google Scholar
  83. Kjellberg RN, Shintani A, Frantz AG, Kliman B (1968) Proton-beam therapy in acromegaly. N Eng J Med 279:689–695CrossRefGoogle Scholar
  84. Kohl U (1906) Stellvorrichtung für Röntgenröhren (device for X-ray tubes). DRP 192:571Google Scholar
  85. Kooy HM, Nedzi LA, Loeffler JS et al (1991) Treatment planning for stereotactic radiosurgery of intra-cranial lesions. Int J Radiat Oncol Biol Phys 21:683–693PubMedCrossRefGoogle Scholar
  86. Kubo HD, Araki F (2002) Dosimetry and mechanical accuracy of the first rotating gamma system installed in North America. Med Phys 29:2497–2505PubMedCrossRefGoogle Scholar
  87. Larsson B (1996) The history of radiosurgery: the early years (1950–1970). In: Kondziolka D (ed) Radiosurgery 1995, vol 1. Karger, Basel, pp 1–10Google Scholar
  88. Larsson B, Leksell L, Rexed B et al (1958) The high energy proton beam as a neurosurgical tool. Nature 182:1222–1223PubMedCrossRefGoogle Scholar
  89. Larsson B, Leksell L, Rexed B (1963) The use of high-energy protons for cerebral surgery in man. Acta Chir Scand 125:1–5Google Scholar
  90. Larsson B, Lidén K, Sarby B (1974) Irradiation of small structures through the intact skull. Acta Radiol 13:512–534CrossRefGoogle Scholar
  91. Lawrence JH (1957) Proton irradiation of the pituitary. Cancer 10:795–798PubMedCrossRefGoogle Scholar
  92. Lawrence JH, Tobias CA, Born JL et al (1962) Heavy-particle irradiation in neoplastic and neurologic disease. J Neurosurg 19:717–722PubMedCrossRefGoogle Scholar
  93. Lax I, Blomgren H, Naslund I et al (1994) Stereotactic radiotherapy of malignancies in the abdomen: methodological aspects. Acta Oncol 33:677–683PubMedCrossRefGoogle Scholar
  94. Leavitt DD, Gibbs FA, Heilbrum MP et al (1991) Dynamic field shaping to optimize stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 21:1247–1255PubMedCrossRefGoogle Scholar
  95. Leksell L (1949) A stereotactic apparatus for intracerebral surgery. Acta Chir Scand 99:229–233Google Scholar
  96. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Chirug Scand 102:316–319Google Scholar
  97. Leksell L (1971) Stereotaxic radiosurgery in trigeminal neuralgia. Acta Chir Scand 137:311–314PubMedGoogle Scholar
  98. Leksell L, Jernberg B (1980) Stereotaxis and tomography: a technical note. Acta Neurochir 52:1–7CrossRefGoogle Scholar
  99. Leksell L, Larsson B, Anderson B et al (1960) Lesions in the depth of the brain produced by a beam of high energy protons. Acta Radiol 54:251–264PubMedCrossRefGoogle Scholar
  100. Leksell L, Lindquist C, Adler J et al (1987) A new fixation device for the Leksell stereotaxic system. J Neurosurg 66:626–629PubMedCrossRefGoogle Scholar
  101. Letourneau D, Keller H, Sharpe MB, Jaffray DA (2007) Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy. Med Phys 34:1842–1849PubMedCrossRefGoogle Scholar
  102. Levy RM (1998) Medical uses of linear accelerators. SLAC Report 526, pp 55–60Google Scholar
  103. Lidén K (1957) Physikalische Grundlagen für die Verwendung ionisierender Strahlung bei gezielter Hirnchirurgie. In: Olivecrona H, Tönnis W (eds) Handbuch der Neuochirurgie. Springer, Berlin, pp 199–211Google Scholar
  104. Lindgren-Turner J, Corsini L, Keane R, Smith N et al (2005) Position verification for intercranial stereotactic radiotherapy using 3D surface imaging. In: UK radiation oncology conference, April 11–13 (abstract)Google Scholar
  105. Lindquist C, Paddick I (2007) The Leksell gamma knife perfexion and comparisons with its predecessors. Neurosurg 61(suppl1):130–140CrossRefGoogle Scholar
  106. Llacer J (1997) Inverse radiation treatment planning using the dynamically penalized likelihood method. Med Phys 24:1751–1764PubMedCrossRefGoogle Scholar
  107. Llacer J, Solberg TD, Promberger C (2001) Comparative behavior of the dynamically penalized likelihood algorithm in inverse radiation therapy planning. Phys Med Biol 46:2637–2663PubMedCrossRefGoogle Scholar
  108. Loeffler JS, Alexander E III, Siddon RL et al (1989) Stereotactic radiosurgery for intracranial arteriovenous malformations using a standard linear accelerator: rationale and technique. Int J Radiat Oncol Biol Phys 17:1327–1335CrossRefGoogle Scholar
  109. Lohr F, Debus J, Frank C et al (1999) Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 45:521–527PubMedCrossRefGoogle Scholar
  110. Loo BW, Chang JY, Dawson LA et al (2011) Stereotactic ablative radiotherapy: what’s in a name? Pract Radiat Oncol 1:38–39CrossRefGoogle Scholar
  111. Lotan Y, Stanfield J, Cho LC, Sherwood JB et al (2006) Efficacy of high dose per fraction radiation for implanted human prostate cancer in a nude mouse model. J Urol 175:1932–1936PubMedCrossRefGoogle Scholar
  112. Lovelock DM, Hua C, Wang P et al (2005) Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging. Med Phys 32:2606–2614PubMedCrossRefGoogle Scholar
  113. Lovelock DM, Wang P, Kirov A et al (2010) An accurate mechanical quality assurance procedure for a new high performance linac. Med Phys 37:3363 (abstract)CrossRefGoogle Scholar
  114. Lunsford LD, Maitz A, Lindner G (1987) First United States 201 source cobalt-60 gamma unit for radiosurgery. Appl Neurophysiol 50:253–256PubMedGoogle Scholar
  115. Lutz W, Winston KR, Maleki N et al (1984) Stereotactic radiosurgery in the brain using a 6 MV linear accelerator. Int J Radiat Oncol Biol Phys 10(suppl 2):189CrossRefGoogle Scholar
  116. Lutz W, Winston KR, Maleki N (1986) A system for stereotactic radiosurgery with a linear accelerator and its performance evaluation. Int J Radiat Oncol Biol Phys 12(suppl. 1):100CrossRefGoogle Scholar
  117. Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381PubMedCrossRefGoogle Scholar
  118. Matinfar M, Gray O, Iordachita I et al (2007) Small animal radiation research platform: imaging, mechanics, control and calibration. Med Image Comput Comput Assist Interv 10:926–934PubMedGoogle Scholar
  119. Matinfar M, Ford E, Iordachita I et al (2009) Image-guided small animal radiation research platform: calibration of treatment beam alignment. Phys Med Biol 54:891–905PubMedCrossRefGoogle Scholar
  120. Matoni HH (1924) Dependence of the strength of the biological reaction on the intensity of the roentgen rays of equal doses. Strahlentherapie 2:375Google Scholar
  121. McGarry RC, Papiez L, Williams M et al (2005) Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiat Oncol Biol Phys 63:1010–1015PubMedCrossRefGoogle Scholar
  122. Medin PM, Solberg TD, DeSalles AAF et al (2002) Investigations of a minimally invasive method for treatment of spinal malignancies with linac stereotactic radiation therapy: accuracy and animal studies. Int J Radiat Oncol Biol Phys 52:1111–1122PubMedCrossRefGoogle Scholar
  123. Medin PM, Foster RD, van der Kogel AJ et al (2011) Spinal cord tolerance to single-fraction partial-volume irradiation: a swine model. Int J Radiat Oncol Biol Phys 79:226–232PubMedCrossRefGoogle Scholar
  124. Meeks SL, Bova FJ, Buatti JM et al (2000) Clinical dosimetry considerations for a double-focused miniature multileaf collimator. In: Kondziolka D (ed) Radiosurgery 1999. Karger, Basel, pp 83–90Google Scholar
  125. Menke M, Hirschfeld F, Mack T (1994) Stereotactically guided fractionated radiotherapy: technical aspects. Int J Radiation Oncol Biol Phys 29:1147–1155CrossRefGoogle Scholar
  126. Murphy MJ (1997) An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxis radiosurgery. Med Phys 24:857–866PubMedCrossRefGoogle Scholar
  127. Murphy MJ, Adler JR Jr, Bodduluri M et al (2000) Image-guided radiosurgery for the spine and pancreas. Comput Aided Surg 5:278–288PubMedCrossRefGoogle Scholar
  128. Mussen AT (1922) A cytoarchitectural atlas of the brain stem of the Macaccus rhesus. J Psychsol Neurol 29:451–518Google Scholar
  129. Nagata Y, Negoro Y, Aoki T et al (2002) Clinical outcomes of 3D conformal hypofractionated single high-dose radiotherapy for one or two lung tumors using a stereotactic body frame. Int J Radiat Oncol Biol Phys 52:1041–1046PubMedCrossRefGoogle Scholar
  130. Nakagawa K, Aoki Y, Tago M, Ohtomo K (2003) Dynamic conical conformal radiotherapy using a C-arm-mounted accelerator: Dose distribution and clinical application. Int J Radiat Oncol Biol Phys 56:287–295PubMedCrossRefGoogle Scholar
  131. Naqvi S, Schinkel C, Jiang Z et al (2010) Dosimetric characterization of a new prototype varian linear accelerator. Med Phys 37:3252 (abstract)CrossRefGoogle Scholar
  132. Narabayashi H (1952) Stereotaxic instrument for operation on the human basal ganglia. Psychiatr Neurol Jpn 54:669–671Google Scholar
  133. Nedzi LA, Kooy HM, Alexander E III et al (1991) Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys 21:591–599PubMedCrossRefGoogle Scholar
  134. Nedzi LA, Kooy HM, Alexander E III et al (1993) Dynamic field shaping for stereotactic radiosurgery: a modeling study. Int J Radiat Oncol Biol Phys 25:859–869PubMedCrossRefGoogle Scholar
  135. Negoro Y, Nagata Y, Aoki T et al (2001) The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys 50:889–898PubMedCrossRefGoogle Scholar
  136. Olivier A, Peters TM, Bertrand G (1986) Stereotaxic systems and apparatus for use with MRI CT and DSA. Appl Neurophysiol 48:94–96Google Scholar
  137. Peignaux K, Truc G, Barillot I, Ammor A et al (2006) Clinical assessment of the use of the Sonarray system for daily prostate localization. Radiother Oncol 81:176–178PubMedCrossRefGoogle Scholar
  138. Peng JL, Kahler D, Li JG et al (2010) Characterization of a real-time surface image-guided stereotactic positioning system. Med Phys 37:5421–5433PubMedCrossRefGoogle Scholar
  139. Pike B, Podgorsak EB, Peters TM, Pla M (1987a) Dose distributions in dynamic stereotactic radiosurgery. Med Phys 14:780–789PubMedCrossRefGoogle Scholar
  140. Pike B, Peters TM, Podgorsak EB, Pla M (1987b) Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angiography and computed tomography. Appl Neuophysiol 50:33–38Google Scholar
  141. Podgorsak EB, Olivier A, Pla M et al (1987) Physical aspects of dynamic stereotactic radiosurgery. Appl Neurophysiol 50:263–268PubMedGoogle Scholar
  142. Podgorsak EB, Olivier A, Pla M et al (1988) Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 14:115–126PubMedCrossRefGoogle Scholar
  143. Regaud C (1922) Influence de la duree d’irradiation sur les effete determine’s dans le testicule par le radium. C R Soc Biol 86:787Google Scholar
  144. Regaud C (1929) Progress and limitation in the curative treatment of malignant neoplasms by radium. B J Radiol 2:461–476CrossRefGoogle Scholar
  145. Regaud C, Ferroux R (1927) Discordance des effets de rayons X, d’une part dans le testicule, par le peau, d’autre part dans la fractionnement de la dose. C R Soc Biol 97:431Google Scholar
  146. Rice RK, Hansen JL, Svensson GK, Siddon RL (1987) Measurements of dose distributions in small beams of 6 MV X-rays. Phys Med Biol 32:1087–1099PubMedCrossRefGoogle Scholar
  147. Riechert T, Mundinger F (1955) Beschreibung und Anwendung eines Zielgerates fur stereotaktische Hirnoperationen (II. Modell). Acta Neurochir Suppl 3:308–37Google Scholar
  148. Roberts DW, Strohbehn JW, Hatch JF et al (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 64:545–549Google Scholar
  149. Ryken TC, Meeks SL, Traynelis V, Haller J et al (2001) Ultrasonographic guidance for spinal extracranial radiosurgery: technique and application for metastatic spinal lesions. Neurosurg Focus 11:1–6CrossRefGoogle Scholar
  150. Saha D, Watkins L, Yin Y et al (2010) An orthotopic lung tumor model for image-guided micro irradiation in rats. Rad Res 174:62–71CrossRefGoogle Scholar
  151. Sarby B (1974) Cerebral radiation surgery with narrow gamma beams. Acta Radiolog 13:425–445CrossRefGoogle Scholar
  152. Saunders WM, Winston KR, Siddon RL (1988) Radiosurgery for arteriovenous malformations of the brain using a standard linear accelerator: rationale and technique. Int J Radiat Oncol Biol Phys 15:441–447PubMedCrossRefGoogle Scholar
  153. Schlegel W, Pastry O, Bortfeld T et al (1992) Computer systems and mechanical tools for stereotactically guided conformation therapy with linear accelerators. Int J Radiat Oncol Biol Phys 24:781–787PubMedCrossRefGoogle Scholar
  154. Schlegel W, Pastyr O, Bortfeld T et al (1993) Stereotactically guided fractionated radiotherapy: technical aspects. Radiother Oncol 29:197–204PubMedCrossRefGoogle Scholar
  155. Schonberg RG (1987) Field uses of a portable 4/6 MeV electron linear accelerator. Nucl Instr Meth Phys Res B 25:797–800CrossRefGoogle Scholar
  156. Selvik G (1990) Roentgen stereophotogrammetric analysis. Acta Radiol 31:113–126PubMedCrossRefGoogle Scholar
  157. Shimizu S, Shirato H, Ogura S et al (2001) Detection of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 51:304–310PubMedCrossRefGoogle Scholar
  158. Shirato H, Shimizu S, Tadashi S et al (1999) Real time tumour-tracking radiotherapy. Lancet 353:1331–1332PubMedCrossRefGoogle Scholar
  159. Shirato H, Shimizu S, Kitamura K et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442PubMedCrossRefGoogle Scholar
  160. Shiu AS, Kooy HM, Ewton JR et al (1997) Comparison of miniature multileaf collimation (MMLC) with circular collimation for stereotactic treatment. Int J Radiat Oncol Biol Phys 37:679–688PubMedCrossRefGoogle Scholar
  161. Shiu AS, Chang EL, Ye J et al (2003) Near simultaneous computed tomography stereotactic spinal radiotherapy: an emerging paradigm for achieving true stereotaxy. Int J Radiat Oncol Biol Phys 57:605–613PubMedCrossRefGoogle Scholar
  162. Siddon RL, Barth NH (1987) Stereotaxic localization of intracranial targets. Int J Radiat Oncol Biol Phys 13:1241–1246PubMedCrossRefGoogle Scholar
  163. Smith ZA, De Salles AA, Frighetto L et al (2003) Dedicated linear accelerator radiosurgery for the treatment of trigeminal neuralgia. J Neurosurg 99:511–516PubMedCrossRefGoogle Scholar
  164. Solberg TD, Medin PM, DeMarco JJ et al (1998) Technical considerations of linac radiosurgery for functional targets. J Radiosurg 1:115–127CrossRefGoogle Scholar
  165. Solberg TD, Fogg R, Selch MT et al (2000a) Conformal radiosurgery using a dedicated linac and micro multileaf collimator. In: Kondziolka D (ed) Radiosurgery 1999, Karger, Basel, pp 53–63Google Scholar
  166. Solberg TD, Paul TJ, Agazaryan N (2000b) Dosimetry of gated intensity modulated radiotherapy. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy. Springer, Berlin, pp 286–288CrossRefGoogle Scholar
  167. Solberg TD, Boedeker KL, Fogg R et al (2001) Dynamic arc radiosurgery field shaping: a comparison with static conformal and non-coplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1481–1491PubMedCrossRefGoogle Scholar
  168. Solberg TD, Baranowska-Kortylewicz J, Nearman J et al (2008) Correlation between tumor growth delay and expression of tumor and host VEGF, VEGFR2 and osteopontin in response to high dose per fraction radiotherapy. Int J Radiat Oncol Biol Phys 73:918–926CrossRefGoogle Scholar
  169. Song KH, Pidikiti R, Stojadinovic S et al (2010) An X-ray image guidance system for small animal stereotactic irradiation. Phys Med Biol 55:7345–7632PubMedCrossRefGoogle Scholar
  170. Speigel EA, Wycis HT, Marks M, Lee AJ (1947) Stereotaxic apparatus for operations on the human brain. Science 106:349–350CrossRefGoogle Scholar
  171. Stojadinovic S, Low DA, Vicic V et al (2006) Progress toward a microradiation therapy small animal conformal irradiator. Med Phys 33:3834–3845PubMedCrossRefGoogle Scholar
  172. Stojadinovic S, Low DA, Hope AJ et al (2007) MicroRT-Small animal conformal irradiator. Med Phys 34:4706–4716PubMedCrossRefGoogle Scholar
  173. Sun B, DeSalles AAF, Medin P et al (1998) Reduction of hippocampal-kindled seizure activity in rats by stereotactic radiosurgery. Exp Neurol 154:691–695PubMedCrossRefGoogle Scholar
  174. Svennson GK (1989) Quality assurance in stereotactic radiosurgery using a standard linear accelerator. Radiographics 9:169–182Google Scholar
  175. Takayama K, Mizowaki T, Kokubo M et al (2009) Initial validations for pursuing irradiation using a gimbals tracking system. Radiother Oncol 93:45–49PubMedCrossRefGoogle Scholar
  176. Talairach J, He′caen M, David M, Monnier M, Ajuriaguerra J (1949) Recherches sur la coagulation therapeutique des structures sous-corticales chez l’homme. Rev Neurol 81:4–24Google Scholar
  177. Talairach J, de Ajuriaguerra J, David M (1952) Etudes stereotaxiques des structures encephaliques profondes chez l’homme technique, interet physiologique et therapeutique. Presse Med 28:605–609Google Scholar
  178. Tamaki N, Ehara K, Fujita K (2000) C-arm multi-axis rotation stereotactic linac radiosurgery system. J Radiosurg 3:21–27CrossRefGoogle Scholar
  179. Tan KK, Grzeszczuk R, Levin DN et al (1993) A frameless approach to neurosurgical planning based on retrospective patient-image registration. J Neurosurg 79:296–303PubMedCrossRefGoogle Scholar
  180. Teschendorf W (1953) A simplified method of radiotherapy with a movable tube; rotational or pendular technic. Strahlentherapie 90:536–545PubMedGoogle Scholar
  181. Tobias CA, Roberts JE, Lawrence JH et al (1955) Irradiation hypophysectomy and related studies using 340-MeV protons and 190-MeV deuterons with high energy proton beams. In: Proceedings of the international conference on the peaceful uses of atomic energy, Geneva 1995Google Scholar
  182. Tsai JS, Buck BA, Svennson GK et al (1991) Quality assurance in stereotactic radiosurgery using a standard linear accelerator. Int J Radiat Oncol Biol Phys 21:737–748PubMedCrossRefGoogle Scholar
  183. Tyler AF (1918) Roentgenotherapy. CV Mosby, St. LouisGoogle Scholar
  184. UCLA Cancer Center Bulletin (1980) Stereotaxic cobalt unit being evaluated at UCLA. July 22Google Scholar
  185. Uematsu M, Fukui T, Shioda A, Tokumitsu H et al (1996) A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames. Int J Radiat Oncol Biol Phys 35:587–592PubMedCrossRefGoogle Scholar
  186. Uematsu M, Shioda A, Tahara K et al (1998) Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience. Cancer 82:1062–1070PubMedCrossRefGoogle Scholar
  187. Uematsu M, Shioda A, Suda A, Tahara K et al (2000) Intrafractional tumor position stability during computed tomography (CT)-guided frameless stereotactic radiation therapy for lung or liver cancers with a fusion of CT and linear accelerator (FOCAL) unit. Int J Radiat Oncol Biol Phys 48:443–448PubMedCrossRefGoogle Scholar
  188. Walsh L, Stanfield JL, Cho LC, Chang CH et al (2006) Efficacy of ablative high-dose-per-fraction radiation for implanted human renal cell cancer in a nude mouse model. Eur Urol 50:795–800PubMedCrossRefGoogle Scholar
  189. Wang LT, Solberg TD, Medin PM et al (2001) Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 31:101–111PubMedCrossRefGoogle Scholar
  190. Wang C, Shiu A, Lii M, Woo S, Chang EL (2007) Automatic target localization and verification for on-line image-guided stereotactic body radiotherapy of the spine. Technol Cancer Res Treat 6:187–196PubMedGoogle Scholar
  191. Wang J, Zhong R, Bai S et al (2010) Evaluation of positioning accuracy of four different immobilizations using cone-beam CT in radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 77:1274–1281PubMedCrossRefGoogle Scholar
  192. Wells TH, Todd EM (1998) The Todd-Wells apparatus. In: Gildenberg PL, Tasker RR (eds) Textbook of stereotactic and functional surgery. McGraw-Hill, New York, pp 95–99Google Scholar
  193. Wilson RR (1946) Radiological use of fast protons. Radiology 47:487–491PubMedGoogle Scholar
  194. Wong J, Armour E, Kazanzides P et al (2008) High resolution, small animal irradiation research platform with X-ray tomographic guidance capabilities. Int J Radiat Oncol Biol Phys 71:1591–1599PubMedCrossRefGoogle Scholar
  195. Worm ES, Hansen AT, Petersen JB et al (2010) Inter- and intrafractional localisation errors in cone-beam CT guided stereotactic radiation therapy of tumours in the liver and lung. Acta Oncol 49:1177–1183PubMedCrossRefGoogle Scholar
  196. Wulf J, Hädinger U, Oppitz U et al (2000) Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiother Oncol 57:225–236PubMedCrossRefGoogle Scholar
  197. Xia P, Geis P, Xing L et al (1999) Physical characteristics of a miniature multileaf collimator. Med Phys 26:65–70PubMedCrossRefGoogle Scholar
  198. Yan H, Yin FF, Kim JH (2003) A phantom study on the positioning accuracy of the Novalis Body system. Med Phys 30:3052–3060PubMedCrossRefGoogle Scholar
  199. Yenice KM, Lovelock DM, Hunt MA et al (2003) CT image-guided intensity modulated therapy for paraspinal tumors using stereotactic immobilization. Int J Radiat Oncol Biol Phys 55:583–593PubMedCrossRefGoogle Scholar
  200. Yu C, Taylor D et al (2004) An anthropomorphic phantom study of the accuracy of cyberknife spinal radiosurgery. Neurosurgery 55:1138–1146PubMedCrossRefGoogle Scholar
  201. Zhou H, Rodriguez M, van der Haak F et al (2010) Development of a micro-computed tomography-based image-guided conformal radiotherapy system for small animals. Int J Radiat Oncol Biol Phys 78:297–305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Timothy D. Solberg
    • 1
  • Robert L. Siddon
    • 2
  • Brian Kavanagh
    • 3
  1. 1.Department of Radiation Oncology, Division of Medical Physics and EngineeringUT Southwestern Medical CenterDallasUSA
  2. 2.National Naval Medical CenterBethesdaUSA
  3. 3.Department of Radiation OncologyUniversity of ColoradoAuroraUSA

Personalised recommendations