Skip to main content

Advanced Musculoskeletal Magnetic Resonance Imaging at Ultra-high Field (7 T)

  • Chapter
  • First Online:
High-Field MR Imaging

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The major advantage of high-field and ultra-high field MR is the shift from morphological to biochemical and metabolic imaging techniques which normally suffer from low sensitivity at standard field strength (1.5 T). The high signal-to-noise ratio of the higher field systems provides biochemical and metabolic imaging in reasonable scan times, which promotes their widespread clinical application. This development enables the diagnosis of diseases such as osteoarthritis, degenerative disc disease, and muscle disease at their earliest stages, before morphological changes occur. Thus, the imaging pre-requisites are available for the evaluation and follow-up of new disease-modifying drugs and the trend toward more personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MR:

Magnetic resonance

SNR:

Signal-to-noise ratio

SAR:

Specific absorption rate

TSE:

Turbo Spin Echo

HASTE:

Half-Fourier acquisition single-shot turbo spin echo

TrueFISP:

True Fast Imaging with Steady-state Free Precession

RF:

Radiofrequency

MRI:

Magnetic resonance imaging

μMRI:

Microscopy magnetic resonance imaging

OA:

Osteoarthiritis

UTE:

Ultrashort echo time

NYUMC:

New York University Langone Medical Center

TFCC:

Triangular fibrocartilage complex

PG:

Proteoglycan

GAG:

Glycosaminoglycans

FCD:

Fixed charge density

TQF:

Triple-quantum filtered

TPI:

Twisted projection imaging

SQ:

Single-quantum

dGEMRIC:

Delayed gadolinium enhanced MRI of cartilage

MACT:

Matrix-associated autologous transplantation

3D GRE:

Three dimensional gradient echo

IR:

Inversion recovery

IVD:

Intervertebral discs

AF:

Annulus fibrosus

NP:

Nucleus pulposus

B0:

Main magnetic field

TR:

Repetition time

SE T2 :

Spin-echo T2 relaxation time constant

31P-MRS:

Phosporus MR spectroscopy

1H-MRS:

Hydrogen MR spectroscopy

CSA:

Chemical shift anisotropy

ATP:

Adenosine triphosphate

PME:

Phosphomonoesters

PDE:

Phosphodiester

CSDE:

Chemical shift displacement error

3D-CSI:

Three dimensional Chemical Shift Imaging

PCr:

Phosphocreatine

ADP:

Adenosine diphosphate

PC:

Phosphocholine

PE:

Phosphoethanolamine

Pi:

Inorganic phosphate

GPC:

Glycophosphocholine

Spsp:

Spectral-spatial

FATSAT:

Fat saturation

MTC:

Magnetization transfer contrast

CW:

Continuous wave

SSFP:

Steady-state free precession

DESS:

Double-echo steady state

References

  • Alhadlaq HA et al (2004) Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Ann Rheum Dis 63(6):709–717

    Article  PubMed  CAS  Google Scholar 

  • Anderson ML et al (2008) Diagnostic comparison of 1.5 Tesla and 3.0 Tesla preoperative MRI of the wrist in patients with ulnar-sided wrist pain. J Hand Surg Am 33(7):1153–1159

    Article  PubMed  Google Scholar 

  • Argov Z, DeStefano N, Arnold DL (1996) ADP recovery after a brief ischemic exercise in normal and diseased human muscle - A P-31 MRS study. NMR Biomed 9(4):165–172

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S et al (2006) Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla. Magn Reson Med 56(5):1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S et al (2008) Rapid in vivo musculoskeletal MR with parallel imaging at 7T. Magn Reson Med 59(3):655–660

    Article  PubMed  Google Scholar 

  • Behr B et al (2009) MR imaging of the human hand and wrist at 7 T. Skeletal Radiol 38(9):911–917

    Article  PubMed  Google Scholar 

  • Bieri O, Scheffler K (2006) On the origin of apparent low tissue signals in balanced SSFD. Magn Reson Med 56(5):1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Bieri O et al (2008a) Optimized spectrally selective steady-state free precession sequences for cartilage imaging at ultra-high fields. Magn Reson Mater Phys Biol Med 21(1–2):87–94

    CAS  Google Scholar 

  • Bieri O et al (2008b) Steady state free precession magnetization transfer imaging. Magn Reson Med 60(5):1261–1266

    Article  Google Scholar 

  • Boesch C (2007) Musculoskeletal spectroscopy. J Magn Reson Imaging 25(2):321–338

    Article  PubMed  Google Scholar 

  • Bogner W et al (2009) Assessment of P-31 relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn Reson Med 62(3):574–582

    Article  PubMed  CAS  Google Scholar 

  • Bogner W et al (2010) In vivo 31P-MRS at 7T by single voxel E-ISIS with GOIA selection pulses. In: ISMRM, Stockholm

    Google Scholar 

  • Bolog N, Nanz D, Weishaupt D (2006) Muskuloskeletal MR imaging at 3.0 T: current status and future perspectives. Eur Radiol 16(6):1298–1307

    Article  PubMed  Google Scholar 

  • Borah B et al (2002) Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography. J Bone Miner Res 17(7):1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Borthakur A et al (1999) In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. J Magn Reson 141(2):286–290

    Article  PubMed  CAS  Google Scholar 

  • Borthakur A et al (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis and Cartilage 8(4):288–293

    Article  PubMed  CAS  Google Scholar 

  • Borthakur A et al (2002) Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224(2):598–602

    Article  PubMed  CAS  Google Scholar 

  • Borthakur A et al (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19(7):781–821

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA et al (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11(4):425–448

    Article  PubMed  CAS  Google Scholar 

  • Boulocher C et al (2007) Non-invasive in vivo quantification of the medial tibial cartilage thickness progression in an osteoarthritis rabbit model with quantitative 3D high resolution micro-MRI. Osteoarthritis Cartilage 15(12):1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    PubMed  CAS  Google Scholar 

  • Burstein D, Gray ML (2006) Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthritis and Cartilage 14(11):1087–1090

    Article  PubMed  CAS  Google Scholar 

  • Burstein D et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41

    Article  PubMed  CAS  Google Scholar 

  • Chang G, Regatte RR, Schweitzer ME (2009) Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography. Osteoporos Int 20(5):779–785

    Article  PubMed  CAS  Google Scholar 

  • Chmelik M et al (2010) Faster T1 relaxation times allow additional SNR-per-unit-time optimization in 31P MRSI at 7T. In: ISMRM, Stockholm

    Google Scholar 

  • Chen CN et al (1986) The field dependence of NMR imaging. I. Laboratory assessment of signal-to-noise ratio and power deposition. Magn Reson Med 3(5):722–729

    Article  PubMed  CAS  Google Scholar 

  • Choy J, Ling W, Jerschow A (2006) Selective detection of ordered sodium signals via the central transition. J Magn Reson 180(1):105–109

    Article  PubMed  CAS  Google Scholar 

  • Christoforidis GA et al (2002) Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AJNR Am J Neuroradiol 23(9):1553–1556

    PubMed  Google Scholar 

  • Cottin Y et al (2000) Muscle metabolism assessed by phosphorus-31 nuclear magnetic resonance spectroscopy after myocardial infarction in rehabilitated patients: a 1-year follow-up. Plos Medicine 20(1):44-49

    CAS  Google Scholar 

  • David-Vaudey E et al (2004) T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 22(5):673–682

    Article  PubMed  Google Scholar 

  • de Certaines JD et al (1993) In vivo 31P MRS of experimental tumours. NMR Biomed 6(6):345–365

    Article  PubMed  Google Scholar 

  • Devre RM, Maerschalk C, Delporte C (1990) Spin-lattice relaxation-times and nuclear Overhauser enhancement effect for P-31 metabolites in model solutions at 2 frequencies - implications for in vivo spectroscopy. Magn Reson Imaging 8:691–698

    Article  Google Scholar 

  • Ding M et al (2002) Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res 20(3):615–621

    Article  PubMed  Google Scholar 

  • Dousset V et al (1992) Experimental allergic encephalomyelitis and multiple-sclerosis - lesion characterization with magnetization transfer imaging. Radiology. 182(2):483-491

    PubMed  CAS  Google Scholar 

  • Du J, Takahashi AM, Chung CB (2009) Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging 29(2):412–421

    Article  PubMed  Google Scholar 

  • Duboc D et al (1987) Phosphorus NMR-spectroscopy study of muscular enzyme deficiencies involving glycogenolysis and glycolysis. Neurology 37(4):663–671

    PubMed  CAS  Google Scholar 

  • Dunn TC et al (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232(2):592–598

    Article  PubMed  Google Scholar 

  • Eckstein F et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the osteoarthritis initiative. Ann Rheumatic Dis 65(4):433–441

    Article  PubMed  CAS  Google Scholar 

  • Evelhoch JL et al (1985) 31P spin-lattice relaxation times and resonance linewidths of rat tissue in vivo: dependence upon the static magnetic field strength. Magn Reson Med 2(4):410–417

    Article  PubMed  CAS  Google Scholar 

  • Farooki S et al (2002) In vivo high-resolution MR imaging of the carpal tunnel at 8.0 tesla. Skeletal Radiol 31(8):445–450

    Article  PubMed  Google Scholar 

  • Friedrich KM et al (2009) In vivo 7.0-tesla magnetic resonance imaging of the wrist and hand: technical aspects and applications. Semin Musculoskelet Radiol 13(1):74–84

    Article  PubMed  Google Scholar 

  • Gloor M, Scheffler K, Bieri O (2008) Quantitative magnetization transfer imaging using balanced SSFP. Magn Reson Med 60(3):691–700

    Article  PubMed  CAS  Google Scholar 

  • Gold GE et al (1998) MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. AJR Am J Roentgenol 170(5):1223–1226

    PubMed  CAS  Google Scholar 

  • Gold GE et al (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183(2):343–351

    PubMed  Google Scholar 

  • Goldstein SA, Goulet R, McCubbrey D (1993) Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 53 Suppl 1:S127–132; discussion S132–133

    Article  PubMed  Google Scholar 

  • Goodwin DW, Wadghiri YZ, Dunn JF (1998) Micro-imaging of articular cartilage: T2, proton density, and the magic angle effect. Acad Radiol 5(11):790–798

    Article  PubMed  CAS  Google Scholar 

  • Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174(2):405–409

    PubMed  CAS  Google Scholar 

  • Gray ML et al (1995) Magnetization-transfer in cartilage and its constituent macromolecules. Magn Reson Med 34(3):319–325

    Article  PubMed  CAS  Google Scholar 

  • Grushko G, Schneiderman R, Maroudas A (1989) Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res 19(2–4):149–176

    Article  PubMed  CAS  Google Scholar 

  • Hardy PA et al (1996) Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. JMRI-J Magn Reson Imaging 6(2):329–335

    Article  CAS  Google Scholar 

  • Hardy PA, Recht MP, Piraino DW (1998) Fat suppressed MRI of articular cartilage with a spatial-spectral excitation pulse. J Magn Reson Imaging 8(6):1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64

    Article  PubMed  CAS  Google Scholar 

  • Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46(1):6–12

    Article  PubMed  CAS  Google Scholar 

  • Hinton DP et al (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38(7):436–442

    PubMed  Google Scholar 

  • Hopkins JA, Wehrli FW (1997) Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37(4):494–500

    Article  PubMed  CAS  Google Scholar 

  • Hore PJ (1983) Solvent suppression in Fourier-transform nuclear magnetic-resonance. J Magn Reson 55(2):283–300

    CAS  Google Scholar 

  • Hoult DI, Chen CN, Sank VJ (1986) The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 3(5):730–746

    Article  PubMed  CAS  Google Scholar 

  • Hughes T et al (2007) T2-Star relaxation as a means to diffrentiatie cartilage repair tissue after microfracturing therapy. Intern Soc Magn Reson Med 15:183

    Google Scholar 

  • Jaccard G, Wimperis S, Bodenhausen G (1986) Multiple-quantum NMR-spectroscopy of S = 3/2 spins in isotropic-phase - a new probe for multiexponential relaxation. J Chem Phys 85(11):6282–6293

    Article  CAS  Google Scholar 

  • Kemp-Harper R et al (1997) Na-23 NMR methods for selective observation of sodium ions in ordered environments vol. 30:157 Prog Nucl Magn Reson Spectrosc 31:287

    Article  CAS  Google Scholar 

  • Kemp GJ, Meyerspeer M, Moser E (2007) Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P-31 MRS: a quantitative review. NMR Biomed 20(6):555–565

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg-Am Vol 85A(10):1987–1992

    Google Scholar 

  • Kleerekoper M et al (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37(6):594–597

    Article  PubMed  CAS  Google Scholar 

  • Ko SF et al (2008) 31P MR spectroscopic assessment of muscle in patients with myasthenia gravis before and after thymectomy: initial experience. Radiology 247(1):162–169

    Article  PubMed  Google Scholar 

  • Kraff O et al (2007) MRI of the knee at 7.0 Tesla. Rofo 179(12):1231–1235

    PubMed  CAS  Google Scholar 

  • Krssak M et al (2004) H-1 NMR relaxation times of skeletal muscle metabolites at 3 T. Magn Reson Mater Phys Biol Med 16(4):155–159

    CAS  Google Scholar 

  • Krug R et al (2007) In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla. Magn Reson Med 58(6):1294–1298

    Article  PubMed  Google Scholar 

  • Krug R et al (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging 27(4):854–859

    Article  PubMed  Google Scholar 

  • Krug R et al (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44(9):613–618

    Article  PubMed  Google Scholar 

  • Kuhl CK et al (1994) Mitochondrial encephalomyopathy - correlation of P-31 exercise MR spectroscopy with clinical findings. Radiology 192(1):223–230

    PubMed  CAS  Google Scholar 

  • Lattanzio PJ et al (2000) Macromolecule and water magnetization exchange modeling in articular cartilage. Magn Reson Med 44(6):840–851

    Article  PubMed  CAS  Google Scholar 

  • Lei H et al (2003) In vivo P-31 magnetic resonance spectroscopy of human brain at 7 T: an initial experience. Magn Reson Med 49(2):199–205

    Article  PubMed  CAS  Google Scholar 

  • Lenk S et al (2004) 3.0 T high-resolution MR imaging of carpal ligaments and TFCC. Rofo 176(5):664–667

    PubMed  CAS  Google Scholar 

  • Lesperance LM, Gray ML, Burstein D (1992) Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res 10(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Ling W, Jerschow A (2005) Selecting ordered environments in NMR of spin 3/2 nuclei via frequency-sweep pulses. J Magn Reson 176(2):234–238

    Article  PubMed  CAS  Google Scholar 

  • Ling W, Jerschow A (2006) Frequency-selective quadrupolar MRI contrast. Solid State Nucl Magn Reson 29(1–3):227–231

    Article  PubMed  CAS  Google Scholar 

  • Ling W et al (2006) Behavior of ordered sodium in enzymatically depleted cartilage tissue. Magn Reson Med (5):1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lodi R et al (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci 96(20):11492–11495

    Article  PubMed  CAS  Google Scholar 

  • Lodi R et al (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 49(5):590–596

    Article  PubMed  CAS  Google Scholar 

  • Lohmander LS (1994) Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. J Anat 184 (Pt 3):477–492

    PubMed  CAS  Google Scholar 

  • Mankin HJ (1971) Biochemical and metabolic aspects of osteoarthritis. Orthop Clin North Am 2(1):19–31

    PubMed  CAS  Google Scholar 

  • Maroudas A, Muir H, Wingham J (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 177(3):492–500

    PubMed  CAS  Google Scholar 

  • Matthews PM et al (1991) In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology 41(1):114–120

    PubMed  CAS  Google Scholar 

  • McKenzie CA et al (2006) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging 24(4):928–933

    Article  PubMed  Google Scholar 

  • Meyerspeer M et al (2009) Dynamic 31P MRS of exercising human muscle in a 7T whole body system, with STEAM and semi-LASER localisation. In: ISMRM, Honolulu

    Google Scholar 

  • Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193 (Pt 2):161–178

    Article  PubMed  CAS  Google Scholar 

  • Meyer CH et al (1990) Simultaneous spatial and spectral selective excitation. Magn Reson Med 15(2):287–304

    Article  PubMed  CAS  Google Scholar 

  • Meyerspeer M, Krssak M, Moser E (2003) Relaxation times of P-31-metabolites in human calf muscle at 3 T. Magn Reson Med 49(4):620–625

    Article  PubMed  CAS  Google Scholar 

  • Michaeli S et al (2002) Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med 47(4):629–633

    Article  PubMed  CAS  Google Scholar 

  • Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8(4):355–368

    Article  PubMed  Google Scholar 

  • Mosher TJ et al (2004) Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging 19(3):323–328

    Article  PubMed  Google Scholar 

  • Mosher TJ et al (2005) Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 234(1):245–249

    Article  PubMed  Google Scholar 

  • Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30(6):305–311

    Article  PubMed  CAS  Google Scholar 

  • Navon G et al (2001) Multiquantum filters and order in tissues. NMR Biomed 14(2):112–132

    Article  PubMed  CAS  Google Scholar 

  • Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5(5):303–324

    Article  PubMed  CAS  Google Scholar 

  • Pakin SK et al (2006) Ultra-high-field MRI of knee joint at 7.0T: preliminary experience. Acad Radiol 13(9):1135–1142

    Article  PubMed  Google Scholar 

  • Palmieri F et al (2006) Magnetization transfer analysis of cartilage repair tissue: a preliminary study. Skelet Radiol 35(12):903–908

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BL, Baekgaard N, Quistorff B (2009) Muscle mitochondrial function in patients with Type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery. Eur J Vasc Endovasc Surg 38(3):356–364

    Article  PubMed  CAS  Google Scholar 

  • Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiology & Behavior 94(2):252–258

    Article  PubMed  CAS  Google Scholar 

  • Poole AR et al (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res (391 Suppl):S26-33

    Google Scholar 

  • Praet SFE et al (2006) P-31 MR spectroscopy and in vitro markers of oxidative capacity in type 2 diabetes patients. Magn Reson Mater Phys Biol Med 19(6):321–331

    CAS  Google Scholar 

  • Prompers JJ et al (2006) Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed 19(7):927–953

    Article  PubMed  Google Scholar 

  • Rahmer J, Bornert P, Dries SP (2009) Assessment of anterior cruciate ligament reconstruction using 3D ultrashort echo-time MR imaging. J Magn Reson Imaging 29(2):443–448

    Article  PubMed  Google Scholar 

  • Reddy R, Insko EK, Leigh JS (1997). Triple quantum sodium imaging of articular cartilage. Magn Reson Med 38(2):279–284

    Article  PubMed  CAS  Google Scholar 

  • Reddy R et al (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39(5):697–701

    Article  PubMed  CAS  Google Scholar 

  • Regatte RR, Schweitzer ME (2007) Ultra-high-field MRI of the musculoskeletal system at 7.0T. J Magn Reson Imaging 25(2):262–269

    Article  PubMed  Google Scholar 

  • Rinck PA et al (1988) Field-cycling relaxometry: medical applications. Radiology 168(3):843–849

    PubMed  CAS  Google Scholar 

  • Robson MD et al (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27(6):825–846

    Article  PubMed  Google Scholar 

  • Rohrer M et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40(11):715–724

    Article  PubMed  Google Scholar 

  • Rosen BR, Wedeen VJ, Brady TJ (1984) Selective Saturation NMR imaging. J Comput Assist Tomogr 8(5):813–818

    Article  PubMed  CAS  Google Scholar 

  • Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28(5):385–397

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M et al (2005) B1 homogenization in abdominal imaging at 3T. In: Proc Int Soc Magn Reson Med 331

    Google Scholar 

  • Shapiro EM et al (2000) Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. J Magn Reson 142(1):24–31

    Article  PubMed  CAS  Google Scholar 

  • Shapiro EM et al (2002) 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 47(2):284–291

    Article  PubMed  Google Scholar 

  • Shinar H, Navon G (2006) Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure. NMR Biomed 19(7):877–893

    Article  PubMed  Google Scholar 

  • Shinar H, Eliav U, Navon G (1992) Single and multiple quantum NMR relaxation-times of sodium and potassium in red-blood-cells. Israel J Chem 32(2–3):299–304

    CAS  Google Scholar 

  • Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46(5):923–931

    Article  PubMed  CAS  Google Scholar 

  • Smith HE et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14(1):50–55

    Article  PubMed  Google Scholar 

  • Stahl R et al (2009) Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skeletal Radiol 38(8):771–783

    Article  PubMed  Google Scholar 

  • Stanisz GJ et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512

    Article  PubMed  Google Scholar 

  • Szendroedi J et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. Plos Medicine 4(5):858–867

    Article  CAS  Google Scholar 

  • Szendroedi J et al (2009) Impaired mitochondrial function and insulin resistance of skeletal muscle in mitochondrial diabetes. Diabetes Care 32(4):677–679

    Article  PubMed  CAS  Google Scholar 

  • Taivassalo T et al (1996) Combined aerobic training and dichloroacetate improve exercise capacity and indices of aerobic metabolism in muscle cytochrome oxidase deficiency. Neurology 47(2):529–534

    PubMed  CAS  Google Scholar 

  • Taylor DJ (2000) Clinical utility of muscle MR spectroscopy. Semin Musculoskelet Radiol 4(4):481–502

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Kemp GJ, Radda GK (1994) Bioenergetics of skeletal-muscle in mitochondrial myopathy. J Neurol Sci 127(2):198–206

    Article  PubMed  CAS  Google Scholar 

  • Thomasson D, Purdy D, Finn JP (1996) Phase-modulated binomial RF pulses for fast spectrally-selective musculoskeletal imaging. Magn Reson Med 35(4):563–568

    Article  PubMed  CAS  Google Scholar 

  • Tiderius CJ et al (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49(3):488–492

    Article  PubMed  Google Scholar 

  • Trattnig S et al (2007a) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson 26(4):974–982

    Article  Google Scholar 

  • Trattnig S et al (2007b) Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla - an in vivo cross-sectional study. Investig Radiol 42:442–448

    Article  Google Scholar 

  • Ugurbil K et al (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21(10):1263–1281

    Article  PubMed  Google Scholar 

  • Vaughan JT et al (2002) Detunable transverse electromagnetic (TEM) volume coil for high-field NMR. Magn Reson Med 47(5):990–1000

    Article  PubMed  CAS  Google Scholar 

  • Wachsmuth L, Juretschke HP, Raiss RX (1997) Can magnetization transfer magnetic resonance imaging follow proteoglycan depletion in articular cartilage? Magn Reson Mater Phys Biol Med 5(1):71–78

    CAS  Google Scholar 

  • Wald LL et al (1995) Phased array detectors and an automated intensity-correction algorithm for high-resolution MR imaging of the human brain. Magn Reson Med 34(3):433–439

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A et al (2006) Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: Preliminary results. Radiology 239(1):201–208

    Article  PubMed  Google Scholar 

  • Watrin-Pinzano A et al (2004) Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. Magn Reson Mater Phy 17(3–6):219–228

    Article  CAS  Google Scholar 

  • Welsch GH et al (2008a) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19(5):1253–1262

    Article  Google Scholar 

  • Welsch GH et al (2008b) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 43(9):619–626

    Article  Google Scholar 

  • Welsch GH et al (2008c) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology 247(1):154–161

    Article  Google Scholar 

  • Welsch GH et al (2008d) Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging 28(4):979–986

    Article  Google Scholar 

  • Welsch GH et al (2009a) Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): Full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 27(7):957–963

    Article  Google Scholar 

  • Welsch GH et al (2009b) Biochemical (T2, T2* and magnetization transfer contrast) MRI of knee cartilage - feasibility at ultra-high-field (7.0T) and comparison to high-field (3.0T). Magma 22(Suppl. 1) p.124

    Google Scholar 

  • Wheaton AJ et al (2004a) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging–feasibility study. Radiology 231(3):900–905

    Article  Google Scholar 

  • Wheaton AJ et al (2004b) Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis. Acad Radiol 11(1):21–28

    Article  Google Scholar 

  • White LM et al (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241(2):407–414

    Article  PubMed  Google Scholar 

  • Wietek B et al (2007) T2 and T2* mapping of the human femoral-tibial cartilage at 1.5 and 3 Tesla. Intern Soc Magn Reson Med 15:516

    Google Scholar 

  • Williams A et al (2007) Suitability of T(1Gd) as the dGEMRIC index at 1.5T and 3.0T. Magn Reson Med 58(4): 830–834

    Article  PubMed  Google Scholar 

  • Wolff SD, Balaban RS (1989) Magnetization transfer contrast (Mtc) and tissue water proton relaxation invivo. Magn Reson Med 10(1):135–144

    Article  PubMed  CAS  Google Scholar 

  • Wolff SD, Balaban RS (1994) Magnetization-transfer imaging—practical aspects and clinical-applications. Radiology 192(3):593–599

    PubMed  CAS  Google Scholar 

  • Wolff SD et al (1991) Magnetization transfer contrast—Mr-imaging of the Knee. Radiology 179(3):623–628

    PubMed  CAS  Google Scholar 

  • Wood ML, Hardy PA (1993) Proton relaxation enhancement. J Magn Reson Imaging 3(1):149–156

    Article  PubMed  CAS  Google Scholar 

  • Zur Y (2000) Design of improved spectral-spatial pulses for routine clinical use. Magn Reson Med 43(3):410–420

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Trattnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trattnig, S., Friedrich, K., Bogner, W., Scheffler, K., Bieri, O., Welsch, G.H. (2012). Advanced Musculoskeletal Magnetic Resonance Imaging at Ultra-high Field (7 T). In: Hennig, J., Speck, O. (eds) High-Field MR Imaging. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_99

Download citation

  • DOI: https://doi.org/10.1007/174_2010_99

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85087-8

  • Online ISBN: 978-3-540-85090-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics