Skip to main content

Organic Cation Transporters in Brain Histamine Clearance: Physiological and Psychiatric Implications

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 266))

Abstract

Histamine acts as a neurotransmitter in the central nervous system and is involved in numerous physiological functions. Recent studies have identified the causative role of decreased histaminergic systems in various neurological disorders. Thus, the brain histamine system has attracted attention as a therapeutic target to improve brain function. Neurotransmitter clearance is one of the most important processes for the regulation of neuronal activity and is an essential target for diverse drugs. Our previous study has shown the importance of histamine N-methyltransferase for the inactivation of brain histamine and the intracellular localization of this enzyme; the study indicated that the transport system for the movement of positively charged histamine from the extracellular to intracellular space is a prerequisite for histamine inactivation. Several studies on in vitro astrocytic histamine transport have indicated the contribution of organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT) in histamine uptake, although the importance of these transporters in in vivo histamine clearance remains unknown. Immunohistochemical analyses have revealed the expression of OCT3 and PMAT on neurons, emphasizing the importance of investigating neuronal histamine uptake. Further studies using knockout mice or fast-scan cyclic voltammetry will accelerate the research on histamine transporters. In this review article, we summarize histamine transport assays and describe the candidate transporters responsible for histamine transport in the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rufenacht V, Meili D et al (2014) Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Amphoux A, Vialou V, Drescher E, Brüss M, Mannoury La Cour C, Rochat C et al (2006) Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50:941–952

    Article  CAS  PubMed  Google Scholar 

  • Amphoux A, Millan MJ, Cordi A, Bonisch H, Vialou V, Mannoury la Cour C et al (2010) Inhibitory and facilitory actions of isocyanine derivatives at human and rat organic cation transporters 1, 2 and 3: a comparison to human alpha 1- and alpha 2-adrenoceptor subtypes. Eur J Pharmacol 634:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ashok AH, Mizuno Y, Volkow ND, Howes OD (2017) Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. JAMA Psychiat 74:511–519

    Article  Google Scholar 

  • Bacq A, Balasse L, Biala G, Guiard B, Gardier AM, Schinkel A et al (2012) Organic cation transporter 2 controls brain norepinephrine and serotonin clearance and antidepressant response. Mol Psychiatry 17:926–939

    Article  CAS  PubMed  Google Scholar 

  • Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT et al (2008) Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A 105:18976–18981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baganz N, Horton R, Martin K, Holmes A, Daws LC (2010) Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: organic cation transporter 3, the smoking gun. J Neurosci 30:15185–15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldan LC, Williams KA, Gallezot JD, Pogorelov V, Rapanelli M, Crowley M et al (2014) Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 81:77–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Barger G, Dale HH (1910) Chemical structure and sympathomimetic action of amines. J Physiol 41:19–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs MJ, Johnson ES (1980) Electrically-evoked release of [3H]-histamine from the Guinea-pig hypothalamus. Br J Pharmacol 70:555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black JW, Duncan WA, Durant CJ, Ganellin CR, Parsons EM (1972) Definition and antagonism of histamine H 2-receptors. Nature 236:385–390

    Article  CAS  PubMed  Google Scholar 

  • Bovet D, Staub AM (1937) Protective effect of phenolic ethers in the course of histaminic intoxication. Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales 124:547–549

    CAS  Google Scholar 

  • Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C et al (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352

    Article  CAS  PubMed  Google Scholar 

  • Cabut M, Haegerma O (1966) Uptake storage and release of histamine by rat peritoneal mast cells in vitro. Acta Physiol Scand 68:206

    Article  CAS  Google Scholar 

  • Courousse T, Bacq A, Belzung C, Guiard B, Balasse L, Louis F et al (2015) Brain organic cation transporter 2 controls response and vulnerability to stress and GSK3beta signaling. Mol Psychiatry 20:889–900

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J et al (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci U S A 106:8043–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlin A, Xia L, Kong W, Hevner R, Wang J (2007) Expression and immunolocalization of the plasma membrane monoamine transporter in the brain. Neuroscience 146:1193–1211

    Article  CAS  PubMed  Google Scholar 

  • Dale HH, Laidlaw PP (1910) The physiological action of beta-iminazolylethylamine. J Physiol 41:318–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daws LC (2009) Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 121:89–99

    Article  CAS  PubMed  Google Scholar 

  • Daws LC, Koek W, Mitchell NC (2013) Revisiting serotonin reuptake inhibitors and the therapeutic potential of "uptake-2" in psychiatric disorders. ACS Chem Neurosci 4:16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan H, Wang J (2010) Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther 335:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan H, Wang J (2013) Impaired monoamine and organic cation uptake in choroid plexus in mice with targeted disruption of the plasma membrane monoamine transporter (Slc29a4) gene. J Biol Chem 288:3535–3544

    Article  CAS  PubMed  Google Scholar 

  • Engel K, Zhou M, Wang J (2004) Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 279:50042–50049

    Article  CAS  PubMed  Google Scholar 

  • García-Martín E, Martínez C, Benito-León J, Calleja P, Díaz-Sánchez M, Pisa D et al (2010) Histamine-N-methyl transferase polymorphism and risk for multiple sclerosis. Eur J Neurol 17:335–338

    Article  PubMed  Google Scholar 

  • Gasser PJ, Lowry CA, Orchinik M (2006) Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J Neurosci 26:8758–8766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser PJ, Hurley MM, Chan J, Pickel VM (2017) Organic cation transporter 3 (OCT3) is localized to intracellular and surface membranes in select glial and neuronal cells within the basolateral amygdaloid complex of both rats and mice. Brain Struct Funct 222:1913–1928

    Article  CAS  PubMed  Google Scholar 

  • Gilman TL, George CM, Vitela M, Herrera-Rosales M, Basiouny MS, Koek W et al (2018) Constitutive plasma membrane monoamine transporter (PMAT, Slc29a4) deficiency subtly affects anxiety-like and coping behaviours. Eur J Neurosci 48:1706–1716

    Article  Google Scholar 

  • Gründemann D, Schechinger B, Rappold GA, Schomig E (1998) Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci 1:349–351

    Article  PubMed  Google Scholar 

  • Gründemann D, Liebich G, Kiefer N, Köster S, Schömig E (1999) Selective substrates for non-neuronal monoamine transporters. Mol Pharmacol 56:1–10

    Article  PubMed  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    Article  CAS  PubMed  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

    Article  CAS  PubMed  Google Scholar 

  • Harwell V, Fasinu PS (2020) Pitolisant and other histamine-3 receptor antagonists-an update on therapeutic potentials and clinical prospects. Medicines (Basel) 7:55

    Article  CAS  Google Scholar 

  • Hassell JE Jr, Collins VE, Li H, Rogers JT, Austin RC, Visceau C et al (2019) Local inhibition of uptake2 transporters augments stress-induced increases in serotonin in the rat central amygdala. Neurosci Lett 701:119–124

    Article  CAS  PubMed  Google Scholar 

  • Hiasa M, Miyaji T, Haruna Y, Takeuchi T, Harada Y, Moriyama S et al (2014) Identification of a mammalian vesicular polyamine transporter. Sci Rep 4:6836

    Article  PubMed  PubMed Central  Google Scholar 

  • Holleran KM, Rose JH, Fordahl SC, Benton KC, Rohr KE, Gasser PJ et al (2020) Organic cation transporter 3 and the dopamine transporter differentially regulate catecholamine uptake in the basolateral amygdala and nucleus accumbens. Eur J Neurosci 52:4546–4562

    Article  PubMed  Google Scholar 

  • Horton RE, Apple DM, Owens WA, Baganz NL, Cano S, Mitchell NC et al (2013) Decynium-22 enhances SSRI-induced antidepressant-like effects in mice: uncovering novel targets to treat depression. J Neurosci 33:10534–10543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huszti Z (1998) Carrier-mediated high affinity uptake system for histamine in astroglial and cerebral endothelial cells. J Neurosci Res 51:551–558

    Article  CAS  PubMed  Google Scholar 

  • Huszti Z, Magyar K, Kálmán M (1990a) Contribution of glial cells to histamine inactivation. Agents Actions 30:237–239

    Article  CAS  PubMed  Google Scholar 

  • Huszti Z, Rimanoczy A, Juhasz A, Magyar K (1990b) Uptake, metabolism, and release of [3H]-histamine by glial cells in primary cultures of chicken cerebral hemispheres. Glia 3:159–168

    Article  CAS  PubMed  Google Scholar 

  • Huszti Z, Imrik P, Madarász E (1994) [3H]histamine uptake and release by astrocytes from rat brain: effects of sodium deprivation, high potassium, and potassium channel blockers. Neurochem Res 19:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Huszti Z, Prast H, Tran MH, Fischer H, Philippu A (1998) Glial cells participate in histamine inactivation in vivo. Naunyn Schmiedeberg's Arch Pharmacol 357:49–53

    Article  CAS  Google Scholar 

  • Iida T, Yoshikawa T, Matsuzawa T, Naganuma F, Nakamura T, Miura Y et al (2015) Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion. Glia 63:1213–1225

    Article  PubMed  Google Scholar 

  • Jakobsen JC, Katakam KK, Schou A, Hellmuth SG, Stallknecht SE, Leth-Moller K et al (2017) Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and trial sequential analysis. BMC Psychiatry 17:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S et al (2009) CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 32:181–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Karpati A, Yoshikawa T, Nakamura T, Iida T, Matsuzawa T, Kitano H et al (2018) Histamine elicits glutamate release from cultured astrocytes. J Pharmacol Sci 137:122–128

    Article  CAS  PubMed  Google Scholar 

  • Karpati A, Yoshikawa T, Naganuma F, Matsuzawa T, Kitano H, Yamada Y et al (2019) Histamine H1 receptor on astrocytes and neurons controls distinct aspects of mouse behaviour. Sci Rep 9:16451

    Article  PubMed  PubMed Central  Google Scholar 

  • Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH et al (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971–15979

    Article  CAS  PubMed  Google Scholar 

  • Kitanaka J, Kitanaka N, Hall FS, Uhl GR, Takemura M (2016) Brain histamine N-methyltransferase as a possible target of treatment for methamphetamine overdose. Drug Target Insights 10:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Koepsell H (2004) Polyspecific organic cation transporters: their functions and interactions with drugs. Trends Pharmacol Sci 25:375–381

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H (2020) Organic cation transporters in health and disease. Pharmacol Rev 72:253–319

    Article  CAS  PubMed  Google Scholar 

  • Komori H, Nitta Y, Ueno H, Higuchi Y (2012) Structural study reveals that Ser-354 determines substrate specificity on human histidine decarboxylase. J Biol Chem 287:29175–29183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ et al (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640

    Article  CAS  PubMed  Google Scholar 

  • Lim HD, van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R (2005) Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther 314:1310–1321

    Article  CAS  PubMed  Google Scholar 

  • Lin CJ, Tai Y, Huang MT, Tsai YF, Hsu HJ, Tzen KY et al (2010) Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem 114:717–727

    Article  CAS  PubMed  Google Scholar 

  • Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Matthaeus F, Schloss P, Lau T (2015) Differential uptake mechanisms of fluorescent substrates into stem-cell-derived serotonergic neurons. ACS Chem Neurosci 6:1906–1912

    Article  CAS  PubMed  Google Scholar 

  • Mayer FP, Schmid D, Owens WA, Gould GG, Apuschkin M, Kudlacek O et al (2018) An unsuspected role for organic cation transporter 3 in the actions of amphetamine. Neuropsychopharmacology 43:2408–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura Y, Yoshikawa T, Naganuma F, Nakamura T, Iida T, Kárpáti A et al (2017) Characterization of murine polyspecific monoamine transporters. FEBS Open Bio 7:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki T, Yamatodani A, Okakura K, Takemura M, Inagaki N, Wada H (1991) In vivo release of neuronal histamine in the hypothalamus of rats measured by microdialysis. Naunyn Schmiedeberg's Arch Pharmacol 343:190–195

    Article  CAS  Google Scholar 

  • Moriyama Y, Hatano R, Moriyama S, Uehara S (2020) Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. Biochim Biophys Acta Biomembr 1862:183208

    Article  CAS  PubMed  Google Scholar 

  • Mulder AH, van Amsterdam RG, Wilbrink M, Schoffelmeer AN (1983) Depolarization-induced release of [(3)H]histamine by high potassium concentrations, electrical stimulation and veratrine from rat brain slices after incubation with the radiolabelled amine. Neurochem Int 5:291–297

    Article  CAS  PubMed  Google Scholar 

  • Naganuma F, Yoshikawa T, Nakamura T, Iida T, Harada R, Mohsen AS et al (2014) Predominant role of plasma membrane monoamine transporters in monoamine transport in 1321N1, a human astrocytoma-derived cell line. J Neurochem 129:591–601

    Article  CAS  PubMed  Google Scholar 

  • Naganuma F, Nakamura T, Yoshikawa T, Iida T, Miura Y, Kárpáti A et al (2017) Histamine N-methyltransferase regulates aggression and the sleep-wake cycle. Sci Rep 7:15899

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Ishimaru K, Shibata S, Nakao A (2017) Regulation of plasma histamine levels by the mast cell clock and its modulation by stress. Sci Rep 7:39934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata T, Matsui T, Kobayashi K, Kobayashi Y, Anzai N (2013) Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience 252:212–221

    Article  CAS  PubMed  Google Scholar 

  • Niaz N, Guvenc G, Altinbas B, Berk Toker M, Aydin B, Udum-Kucuksen D et al (2018) Intracerebroventricular injection of histamine induces the hypothalamic-pituitary-gonadal axis activation in male rats. Brain Res 1699:150–157

    Article  CAS  PubMed  Google Scholar 

  • Nishibori M, Tahara A, Sawada K, Sakiyama J, Nakaya N, Saeki K (2000) Neuronal and vascular localization of histamine N-methyltransferase in the bovine central nervous system. Eur J Neurosci 12:415–424

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K et al (2009) Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32:175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Nomura H, Mizuta H, Norimoto H, Masuda F, Miura Y, Kubo A et al (2019) Central histamine boosts perirhinal cortex activity and restores forgotten object memories. Biol Psychiatry 86:230–239

    Article  CAS  PubMed  Google Scholar 

  • Noskova V, Bottalico B, Olsson H, Ehinger A, Pilka R, Casslen B et al (2006) Histamine uptake by human endometrial cells expressing the organic cation transporter EMT and the vesicular monoamine transporter-2. Mol Hum Reprod 12:483–489

    Article  CAS  PubMed  Google Scholar 

  • Obara I, Telezhkin V, Alrashdi I, Chazot PL (2020) Histamine, histamine receptors, and neuropathic pain relief. Br J Pharmacol 177:580–599

    Article  CAS  PubMed  Google Scholar 

  • Okuda M, Saito H, Urakami Y, Takano M, Inui K (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    Article  CAS  PubMed  Google Scholar 

  • Osredkar D, Burnik-Papler T, Pecavar B, Kralj-Iglic V, Krzan M (2009) Kinetic and pharmacological properties of [(3)H]-histamine transport into cultured type 1 astrocytes from neonatal rats. Inflamm Res 58:94–102

    Article  CAS  PubMed  Google Scholar 

  • Palada V, Terzić J, Mazzulli J, Bwala G, Hagenah J, Peterlin B et al (2012) Histamine N-methyltransferase Thr105Ile polymorphism is associated with Parkinson's disease. Neurobiol Aging 33(836):e831–e833

    Google Scholar 

  • Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H et al (1998) Neuronal histamine deficit in Alzheimer's disease. Neuroscience 82:993–997

    Article  CAS  PubMed  Google Scholar 

  • Perdan-Pirkmajer K, Pirkmajer S, Černe K, Kržan M (2012) Molecular and kinetic characterization of histamine transport into adult rat cultured astrocytes. Neurochem Int 61:415–422

    Article  CAS  PubMed  Google Scholar 

  • Perdan-Pirkmajer K, Pirkmajer S, Raztresen A, Krzan M (2013) Regional characteristics of histamine uptake into neonatal rat astrocytes. Neurochem Res 38:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Rafałowska U, Waśkiewicz J, Albrecht J (1987) Is neurotransmitter histamine predominantly inactivated in astrocytes? Neurosci Lett 80:106–110

    Article  PubMed  Google Scholar 

  • Sadek B, Saad A, Sadeq A, Jalal F, Stark H (2016) Histamine H3 receptor as a potential target for cognitive symptoms in neuropsychiatric diseases. Behav Brain Res 312:415–430

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Anzai N, Kimura T, Miura D, Fukutomi T, Takeda M et al (2010) Functional analysis of human organic cation transporter OCT3 (SLC22A3) polymorphisms. J Pharmacol Sci 113:263–266

    Article  CAS  PubMed  Google Scholar 

  • Sakurai E, Sakurai E, Oreland L, Nishiyama S, Kato M, Watanabe T et al (2006) Evidence for the presence of histamine uptake into the synaptosomes of rat brain. Pharmacology 78:72–80

    Article  CAS  PubMed  Google Scholar 

  • Salem A, Rozov S, Al-Samadi A, Stegajev V, Listyarifah D, Kouri VP et al (2017) Histamine metabolism and transport are deranged in human keratinocytes in oral lichen planus. Br J Dermatol 176:1213–1223

    Article  CAS  PubMed  Google Scholar 

  • Samaranayake S, Abdalla A, Robke R, Wood KM, Zeqja A, Hashemi P (2015) In vivo histamine voltammetry in the mouse premammillary nucleus. Analyst 140:3759–3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samaranayake S, Abdalla A, Robke R, Nijhout HF, Reed MC, Best J et al (2016) A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus. J Neurochem 138:374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraiva C, Barata-Antunes S, Santos T, Ferreiro E, Cristovao AC, Serra-Almeida C et al (2019) Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci Rep 9:8384

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasahara I, Fujimura N, Nozawa Y, Furuhata Y, Sato H (2015) The effect of histidine on mental fatigue and cognitive performance in subjects with high fatigue and sleep disruption scores. Physiol Behav 147:238–244

    Article  CAS  PubMed  Google Scholar 

  • Schneider E, Machavoine F, Pléau JM, Bertron AF, Thurmond RL, Ohtsu H et al (2005) Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels. J Exp Med 202:387–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider EH, Neumann D, Seifert R (2014) Modulation of behavior by the histaminergic system: lessons from H(1)R-and H(2)R-deficient mice. Neurosci Biobehav Rev 42:252–266

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Bossers K, Unmehopa U, Bao AM, Swaab DF (2012) Alterations in the histaminergic system in Alzheimer's disease: a postmortem study. Neurobiol Aging 33:2585–2598

    Article  CAS  PubMed  Google Scholar 

  • Slamet Soetanto T, Liu S, Sahid MNA, Toyama K, Maeyama K, Mogi M (2019) Histamine uptake mediated by plasma membrane monoamine transporter and organic cation transporters in rat mast cell lines. Eur J Pharmacol 849:75–83

    Article  CAS  PubMed  Google Scholar 

  • Stegaev V, Nies AT, Porola P, Mieliauskaite D, Sanchez-Jimenez F, Urdiales JL et al (2013) Histamine transport and metabolism are deranged in salivary glands in Sjogren's syndrome. Rheumatology (Oxford) 52:1599–1608

    Article  CAS  Google Scholar 

  • Stevenson J, Sonuga-Barke E, McCann D, Grimshaw K, Parker KM, Rose-Zerilli MJ et al (2010) The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children's ADHD symptoms. Am J Psychiatry 167:1108–1115

    Article  PubMed  Google Scholar 

  • Subramanian N, Mulder AH (1977) Modulation by histamine of the efflux of radiolabeled catecholamines from rat brain slices. Eur J Pharmacol 43:143–152

    Article  CAS  PubMed  Google Scholar 

  • Syed YY (2016) Pitolisant: first global approval. Drugs 76:1313–1318

    Article  CAS  PubMed  Google Scholar 

  • Tamai I (2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm Drug Dispos 34:29–44

    Article  CAS  PubMed  Google Scholar 

  • Tuomisto J (1968) Uptake of histamine by rabbit blood platelets - its inhibition and changes in subcellular distribution. Ann Med Exp Biol Fenn 46:330

    CAS  PubMed  Google Scholar 

  • Tuomisto L, Tuomisto J, Walaszek EJ (1975) Uptake of histamine by rabbit hypothalamic slices. Med Biol 53:40–46

    CAS  PubMed  Google Scholar 

  • Vialou V, Balasse L, Dumas S, Giros B, Gautron S (2007) Neurochemical characterization of pathways expressing plasma membrane monoamine transporter in the rat brain. Neuroscience 144:616–622

    Article  CAS  PubMed  Google Scholar 

  • Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S (2008) Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem 106:1471–1482

    CAS  PubMed  Google Scholar 

  • Watanabe T, Taguchi Y, Hayashi H, Tanaka J, Shiosaka S, Tohyama M et al (1983) Evidence for the presence of a histaminergic neuron system in the rat brain: an immunohistochemical analysis. Neurosci Lett 39:249–254

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Yamatodani A, Maeyama K, Wada H (1990) Pharmacology of alpha-fluoromethylhistidine, a specific inhibitor of histidine decarboxylase. Trends Pharmacol Sci 11:363–367

    Article  CAS  PubMed  Google Scholar 

  • Windaus A, Vogt W (1907) Synthese des Imidazolyl-äthylamins. Ber Dtsch Chem Ges 40:3691–3695

    Article  Google Scholar 

  • Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J et al (1998) Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem 273:32776–32786

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Yoshikawa T, Naganuma F, Kikkawa T, Osumi N, Yanai K (2020) Chronic brain histamine depletion in adult mice induced depression-like behaviours and impaired sleep-wake cycle. Neuropharmacology 175:108179

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi K, Ogasawara M (2019) The role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy. Int J Mol Sci 20:1733

    Article  CAS  PubMed Central  Google Scholar 

  • Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113:1–15

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Naganuma F, Iida T, Nakamura T, Harada R, Mohsen AS et al (2013) Molecular mechanism of histamine clearance by primary human astrocytes. Glia 61:905–916

    Article  PubMed  Google Scholar 

  • Yoshikawa T, Nakamura T, Shibakusa T, Sugita M, Naganuma F, Iida T et al (2014) Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice. J Nutr 144:1637–1641

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Nakamura T, Yanai K (2021) Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 178:750–769

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Hata R, Ogasawara M, Cao F, Kameda K, Yamauchi K et al (2012) Targeted disruption of organic cation transporter 3 (Oct3) ameliorates ischemic brain damage through modulating histamine and regulatory T cells. J Cereb Blood Flow Metab 32:1897–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (C) JP 18 K06886 to TY from the Japan Society for The Promotion of Science (JSPS) and by Grant-in-Aid for Young Scientists JP19K16296 to FN from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Yoshikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naganuma, F., Yoshikawa, T. (2021). Organic Cation Transporters in Brain Histamine Clearance: Physiological and Psychiatric Implications. In: Daws, L.C. (eds) Organic Cation Transporters in the Central Nervous System. Handbook of Experimental Pharmacology, vol 266. Springer, Cham. https://doi.org/10.1007/164_2021_447

Download citation

Publish with us

Policies and ethics