Advertisement

pp 1-23 | Cite as

The Structure and Classification of Botulinum Toxins

  • Min DongEmail author
  • Pål StenmarkEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

Botulinum neurotoxins (BoNTs) are a family of bacterial protein toxins produced by various Clostridium species. They are traditionally classified into seven major serotypes (BoNT/A-G). Recent progress in sequencing microbial genomes has led to an ever-growing number of subtypes, chimeric toxins, BoNT-like toxins, and remotely related BoNT homologs, constituting an expanding BoNT superfamily. Recent structural studies of BoNTs, BoNT progenitor toxin complexes, tetanus neurotoxin (TeNT), toxin-receptor complexes, and toxin-substrate complexes have provided mechanistic understandings of toxin functions and the molecular basis for their variations. The growing BoNT superfamily of toxins present a natural repertoire that can be explored to develop novel therapeutic toxins, and the structural understanding of their variations provides a knowledge basis for engineering toxins to improve therapeutic efficacy and expand their clinical applications.

Keywords

Bacterial toxins BoNT BoNT-like toxins Botox Botulinum neurotoxin Botulinum toxin Tetanus neurotoxin X-ray crystal structure 

Notes

Acknowledgments

We thank Jonathan Davies for preparing all figures and for valuable discussions during the preparation of this chapter. This work was supported by the Swedish Research Council and the Swedish Cancer Society to P.S. and by grants from NIH (R01NS080833, R01AI132387, R01AI139087, and R21NS106159), Intelligence Advanced Research Projects Activity (IARPA, grant number W911NF-17-2-0089), and the Investigator in the Pathogenesis of Infectious Disease award from the Burroughs Wellcome Fund to M.D.

References

  1. Agarwal R, Schmidt JJ, Stafford RG, Swaminathan S (2009) Mode of VAMP substrate recognition and inhibition of Clostridium botulinum neurotoxin F. Nat Struct Mol Biol 16(7):789–794Google Scholar
  2. Amatsu S, Sugawara Y, Matsumura T, Kitadokoro K, Fujinaga Y (2013) Crystal structure of Clostridium botulinum whole hemagglutinin reveals a huge triskelion-shaped molecular complex. J Biol Chem 288(49):35617–35625Google Scholar
  3. Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28(14):3689–3696Google Scholar
  4. Arndt JW, Yu W, Bi F, Stevens RC (2005) Crystal structure of botulinum neurotoxin type G light chain: serotype divergence in substrate recognition. Biochemistry 44(28):9574–9580Google Scholar
  5. Arndt JW, Chai Q, Christian T, Stevens RC (2006) Structure of botulinum neurotoxin type D light chain at 1.65 Å resolution: repercussions for VAMP-2 substrate specificity. Biochemistry 45(10):3255–3262Google Scholar
  6. Barash JR, Arnon SS (2014) A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209(2):183–191Google Scholar
  7. Benoit RM, Frey D, Hilbert M, Kevenaar JT, Wieser MM, Stirnimann CU, McMillan D, Ceska T, Lebon F, Jaussi R, Steinmetz MO, Schertler GF, Hoogenraad CC, Capitani G, Kammerer RA (2014) Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature 505(7481):108–111Google Scholar
  8. Benoit RM, Scharer MA, Wieser MM, Li X, Frey D, Kammerer RA (2017) Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C. Sci Rep 7:43588Google Scholar
  9. Benson MA, Fu Z, Kim JJ, Baldwin MR (2011) Unique ganglioside recognition strategies for clostridial neurotoxins. J Biol Chem 286(39):34015–34022Google Scholar
  10. Berntsson RP, Peng L, Dong M, Stenmark P (2013) Structure of dual receptor binding to botulinum neurotoxin B. Nat Commun 4:2058Google Scholar
  11. Bomba-Warczak E, Vevea JD, Brittain JM, Figueroa-Bernier A, Tepp WH, Johnson EA, Yeh FL, Chapman ER (2016) Interneuronal transfer and distal action of tetanus toxin and botulinum neurotoxins A and D in central neurons. Cell Rep 16(7):1974–1987Google Scholar
  12. Breidenbach MA, Brunger AT (2004) Substrate recognition strategy for botulinum neurotoxin serotype A. Nature 432(7019):925–929Google Scholar
  13. Brunt J, Carter AT, Stringer SC, Peck MW (2018) Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett 592(3):310–317Google Scholar
  14. Burke GS (1919a) Notes on Bacillus botulinus. J Bacteriol 4(5):555–570Google Scholar
  15. Burke GS (1919b) The occurrence of Bacillus botulinus in nature. J Bacteriol 4(5):541–553Google Scholar
  16. Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444(7122):1096–1100Google Scholar
  17. Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR (2010) Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 137(20):3489–3499Google Scholar
  18. Contreras E, Masuyer G, Qureshi N, Chawla S, Dhillon HS, Lee HL, Chen J, Stenmark P, Gill SS (2019) A neurotoxin that specifically targets Anopheles mosquitoes. Nat Commun 10(1):2869Google Scholar
  19. Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162(7):1293–1303Google Scholar
  20. Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312(5773):592–596Google Scholar
  21. Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19(12):5226–5237Google Scholar
  22. Dong M, Masuyer G, Stenmark P (2019) Botulinum and tetanus neurotoxins. Annu Rev Biochem 88:811–837Google Scholar
  23. Dover N, Barash JR, Hill KK, Xie G, Arnon SS (2014) Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 209(2):192–202Google Scholar
  24. Eleopra R, Tugnoli V, Rossetto O, Montecucco C, De Grandis D (1997) Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224(2):91–94Google Scholar
  25. Eleopra R, Tugnoli V, Rossetto O, De Grandis D, Montecucco C (1998) Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neurosci Lett 256(3):135–138Google Scholar
  26. Eleopra R, Tugnoli V, Quatrale R, Rossetto O, Montecucco C, Dressler D (2006) Clinical use of non-A botulinum toxins: botulinum toxin type C and botulinum toxin type F. Neurotox Res 9(2–3):127–131Google Scholar
  27. Elliott M, Favre-Guilmard C, Liu SM, Maignel J, Masuyer G, Beard M, Boone C, Carre D, Kalinichev M, Lezmi S, Mir I, Nicoleau C, Palan S, Perier C, Raban E, Zhang S, Dong M, Stenmark P, Krupp J (2019) Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models. Sci Adv 5(1):eaau7196Google Scholar
  28. Eswaramoorthy S, Sun J, Li H, Singh BR, Swaminathan S (2015) Molecular Assembly of Clostridium botulinum progenitor M complex of type E. Sci Rep 5:17795Google Scholar
  29. Fischer A, Sambashivan S, Brunger AT, Montal M (2012) Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel. J Biol Chem 287(3):1657–1661Google Scholar
  30. Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278(2):1363–1371Google Scholar
  31. Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276(34):32274–32281Google Scholar
  32. Gimenez DF, Ciccarelli AS (1970) Another type of Clostridium botulinum. Zentralbl Bakteriol Orig 215(2):221–224Google Scholar
  33. Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335(6071):977–981Google Scholar
  34. Gustafsson R, Berntsson RP, Martinez-Carranza M, El Tekle G, Odegrip R, Johnson EA, Stenmark P (2017) Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. FEBS Lett 591(22):3781–3792Google Scholar
  35. Gustafsson R, Zhang S, Masuyer G, Dong M, Stenmark P (2018) Crystal structure of botulinum neurotoxin A2 in complex with the human protein receptor SV2C reveals plasticity in receptor binding. Toxins 10(4):E153Google Scholar
  36. Hamark C, Berntsson RP, Masuyer G, Henriksson LM, Gustafsson R, Stenmark P, Widmalm G (2017) Glycans confer specificity to the recognition of ganglioside receptors by botulinum neurotoxin A. J Am Chem Soc 139(1):218–230Google Scholar
  37. Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189(3):818–832Google Scholar
  38. Jahn R, Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643Google Scholar
  39. Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444(7122):1092–1095Google Scholar
  40. Jin R, Sikorra S, Stegmann CM, Pich A, Binz T, Brunger AT (2007) Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity. Biochemistry 46(37):10685–10693Google Scholar
  41. Johnson EA (1999) Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Annu Rev Microbiol 53:551–575Google Scholar
  42. Kalb SR, Baudys J, Webb RP, Wright P, Smith TJ, Smith LA, Fernandez R, Raphael BH, Maslanka SE, Pirkle JL, Barr JR (2012) Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Lett 586(2):109–115Google Scholar
  43. Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456(1):137–142Google Scholar
  44. Kosenina S, Masuyer G, Zhang S, Dong M, Stenmark P (2019) Crystal structure of the catalytic domain of the Weissella oryzae botulinum-like toxin. FEBS Lett 593(12):1403–1410Google Scholar
  45. Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386(1):233–245Google Scholar
  46. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5(10):898–902Google Scholar
  47. Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G (2003) The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 11(9):431–437Google Scholar
  48. Lam KH, Guo Z, Krez N, Matsui T, Perry K, Weisemann J, Rummel A, Bowen ME, Jin R (2018a) A viral-fusion-peptide-like molecular switch drives membrane insertion of botulinum neurotoxin A1. Nat Commun 9(1):5367Google Scholar
  49. Lam KH, Qi R, Liu S, Kroh A, Yao G, Perry K, Rummel A, Jin R (2018b) The hypothetical protein P47 of Clostridium botulinum E1 strain Beluga has a structural topology similar to bactericidal/permeability-increasing protein. Toxicon 147:19–26Google Scholar
  50. Lamanna C, Mc EO, Eklund HW (1946) The purification and crystallization of Clostridium botulinum type A toxin. Science 103(2681):613Google Scholar
  51. Lebeda FJ, Olson MA (1995) Structural predictions of the channel-forming region of botulinum neurotoxin heavy chain. Toxicon 33(4):559–567Google Scholar
  52. Lee K, Gu S, Jin L, Le TT, Cheng LW, Strotmeier J, Kruel AM, Yao G, Perry K, Rummel A, Jin R (2013) Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 9(10):e1003690Google Scholar
  53. Lee K, Zhong X, Gu S, Kruel AM, Dorner MB, Perry K, Rummel A, Dong M, Jin R (2014) Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 344(6190):1405–1410Google Scholar
  54. Leuchs J (1910) Beitraege zur kenntnis des toxins und antitoxins des Bacillus botulinus. Z Hyg Infekt 76:55–84Google Scholar
  55. Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580(8):2011–2014Google Scholar
  56. Mahrhold S, Strotmeier J, Garcia-Rodriguez C, Lou J, Marks JD, Rummel A, Binz T (2013) Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. Biochem J 453(1):37–47Google Scholar
  57. Mahrhold S, Bergstrom T, Stern D, Dorner BG, Astot C, Rummel A (2016) Only the complex N559-glycan in the synaptic vesicle glycoprotein 2C mediates high affinity binding to botulinum neurotoxin serotype A1. Biochem J 473(17):2645–2654Google Scholar
  58. Mansfield MJ, Adams JB, Doxey AC (2015) Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett 589(3):342–348Google Scholar
  59. Mansfield MJ, Wentz TG, Zhang S, Lee EJ, Dong M, Sharma SK, Doxey AC (2019) Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins. Sci Rep 9(1):1634Google Scholar
  60. Maslanka SE, Luquez C, Dykes JK, Tepp WH, Pier CL, Pellett S, Raphael BH, Kalb SR, Barr JR, Rao A, Johnson EA (2016) A novel botulinum neurotoxin, previously reported as serotype H, has a hybrid-like structure with regions of similarity to the structures of serotypes A and F and is neutralized with serotype A antitoxin. J Infect Dis 213(3):379–385Google Scholar
  61. Masuyer G, Conrad J, Stenmark P (2017) The structure of the tetanus toxin reveals pH-mediated domain dynamics. EMBO Rep 18(8):1306–1317Google Scholar
  62. Masuyer G, Zhang S, Barkho S, Shen Y, Henriksson L, Kosenina S, Dong M, Stenmark P (2018) Structural characterisation of the catalytic domain of botulinum neurotoxin X – high activity and unique substrate specificity. Sci Rep 8(1):4518Google Scholar
  63. Matsumura T, Sugawara Y, Yutani M, Amatsu S, Yagita H, Kohda T, Fukuoka S, Nakamura Y, Fukuda S, Hase K, Ohno H, Fujinaga Y (2015) Botulinum toxin A complex exploits intestinal M cells to enter the host and exert neurotoxicity. Nat Commun 6:6255Google Scholar
  64. Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29(15):4981–4992Google Scholar
  65. Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617Google Scholar
  66. Montal MS, Blewitt R, Tomich JM, Montal M (1992) Identification of an ion channel-forming motif in the primary structure of tetanus and botulinum neurotoxins. FEBS Lett 313(1):12–18Google Scholar
  67. Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trens Biochem Sci 11(8):314–317Google Scholar
  68. Moriishi K, Koura M, Abe N, Fujii N, Fujinaga Y, Inoue K, Ogumad K (1996a) Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim Biophys Acta 1307(2):123–126Google Scholar
  69. Moriishi K, Koura M, Fujii N, Fujinaga Y, Inoue K, Syuto B, Oguma K (1996b) Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl Environ Microbiol 62(2):662–667Google Scholar
  70. Moritz MS, Tepp WH, Bradshaw M, Johnson EA, Pellett S (2018) Isolation and characterization of the novel Botulinum neurotoxin A subtype 6. mSphere 3(5):e00466Google Scholar
  71. Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269(14):10498–10503Google Scholar
  72. Pang ZP, Melicoff E, Padgett D, Liu Y, Teich AF, Dickey BF, Lin W, Adachi R, Sudhof TC (2006) Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses. J Neurosci 26(52):13493–13504Google Scholar
  73. Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindstrom M, Lista F, Luquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC (2017) Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 9(1):38Google Scholar
  74. Pellett S, Tepp WH, Whitemarsh RC, Bradshaw M, Johnson EA (2015) In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon 107(Pt A):37–42Google Scholar
  75. Pellett S, Bradshaw M, Tepp WH, Pier CL, Whitemarsh RCM, Chen C, Barbieri JT, Johnson EA (2018) The light chain defines the duration of action of botulinum toxin serotype A subtypes. MBio 9(2). pii: e00089-18Google Scholar
  76. Peng L, Berntsson RP, Tepp WH, Pitkin RM, Johnson EA, Stenmark P, Dong M (2012) Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins. J Cell Sci 125(Pt 13):3233–3242Google Scholar
  77. Pfenninger W (1924) Toxico, immunologic and serologic relationship of B. botulinus, type C and B. parabotulinus. J Infect Dis 35:347–352Google Scholar
  78. Pier CL, Chen C, Tepp WH, Lin G, Janda KD, Barbieri JT, Pellett S, Johnson EA (2011) Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett 585(1):199–206Google Scholar
  79. Pirazzini M, Rossetto O, Eleopra R, Montecucco C (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev 69(2):200–235Google Scholar
  80. Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M (2011) Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci 31(44):15650–15659Google Scholar
  81. Restani L, Giribaldi F, Manich M, Bercsenyi K, Menendez G, Rossetto O, Caleo M, Schiavo G (2012) Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 8(12):e1003087Google Scholar
  82. Rossetto O, Pirazzini M, Montecucco C (2014) Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12(8):535–549Google Scholar
  83. Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326(3):835–847Google Scholar
  84. Rummel A, Mahrhold S, Bigalke H, Binz T (2004) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51(3):631–643Google Scholar
  85. Schantz EJ, Johnson EA (1992) Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol Rev 56(1):80–99Google Scholar
  86. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C (1992a) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359(6398):832–835Google Scholar
  87. Schiavo G, Poulain B, Rossetto O, Benfenati F, Tauc L, Montecucco C (1992b) Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J 11(10):3577–3583Google Scholar
  88. Simpson LL, Rapport MM (1971) Ganglioside inactivation of botulinum toxin. J Neurochem 18(7):1341–1343Google Scholar
  89. Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4(8):e1000129Google Scholar
  90. Strotmeier J, Willjes G, Binz T, Rummel A (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586(4):310–313Google Scholar
  91. Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477Google Scholar
  92. Sugawara Y, Matsumura T, Takegahara Y, Jin Y, Tsukasaki Y, Takeichi M, Fujinaga Y (2010) Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J Cell Biol 189(4):691–700Google Scholar
  93. Surana S, Tosolini AP, Meyer IFG, Fellows AD, Novoselov SS, Schiavo G (2018) The travel diaries of tetanus and botulinum neurotoxins. Toxicon 147:58–67Google Scholar
  94. Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7(8):693–699Google Scholar
  95. Tao L, Peng L, Berntsson RP, Liu SM, Park S, Yu F, Boone C, Palan S, Beard M, Chabrier PE, Stenmark P, Krupp J, Dong M (2017) Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat Commun 8:53Google Scholar
  96. Torii Y, Kiyota N, Sugimoto N, Mori Y, Goto Y, Harakawa T, Nakahira S, Kaji R, Kozaki S, Ginnaga A (2011) Comparison of effects of botulinum toxin subtype A1 and A2 using twitch tension assay and rat grip strength test. Toxicon 57(1):93–99Google Scholar
  97. Tsai YC, Kotiya A, Kiris E, Yang M, Bavari S, Tessarollo L, Oyler GA, Weissman AM (2017) Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proc Natl Acad Sci U S A 114(26):E5158–E5166Google Scholar
  98. Vagin O, Tokhtaeva E, Garay PE, Souda P, Bassilian S, Whitelegge JP, Lewis R, Sachs G, Wheeler L, Aoki R, Fernandez-Salas E (2014) Recruitment of septin cytoskeletal proteins by botulinum toxin A protease determines its remarkable stability. J Cell Sci 127(Pt 15):3294–3308Google Scholar
  99. van Ermengem E (1897) Ueber Einem Neuen anaeroben Bacillus und seine Beziehungen zum Botulismus. Z Hyg Infekt 26:1–56Google Scholar
  100. Whitemarsh RC, Tepp WH, Bradshaw M, Lin G, Pier CL, Scherf JM, Johnson EA, Pellett S (2013) Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect Immun 81(10):3894–3902Google Scholar
  101. Whitemarsh RC, Tepp WH, Johnson EA, Pellett S (2014) Persistence of botulinum neurotoxin a subtypes 1-5 in primary rat spinal cord cells. PLoS One 9(2):e90252Google Scholar
  102. Yao G, Zhang S, Mahrhold S, Lam KH, Stern D, Bagramyan K, Perry K, Kalkum M, Rummel A, Dong M, Jin R (2016) N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat Struct Mol Biol 23(7):656–662Google Scholar
  103. Zhang S, Masuyer G, Zhang J, Shen Y, Lundin D, Henriksson L, Miyashita SI, Martinez-Carranza M, Dong M, Stenmark P (2017) Identification and characterization of a novel botulinum neurotoxin. Nat Commun 8:14130Google Scholar
  104. Zhang S, Lebreton F, Mansfield MJ, Miyashita SI, Zhang J, Schwartzman JA, Tao L, Masuyer G, Martinez-Carranza M, Stenmark P, Gilmore MS, Doxey AC, Dong M (2018) Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 23(2):169–176 e166Google Scholar
  105. Zornetta I, Azarnia Tehran D, Arrigoni G, Anniballi F, Bano L, Leka O, Zanotti G, Binz T, Montecucco C (2016) The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci Rep 6:30257Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of UrologyBoston Children’s HospitalBostonUSA
  2. 2.Department of MicrobiologyHarvard Medical SchoolBostonUSA
  3. 3.Department of SurgeryHarvard Medical SchoolBostonUSA
  4. 4.Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
  5. 5.Department of Experimental Medical ScienceLund UniversityLundSweden

Personalised recommendations