Structural Insight into the Binding Mode of FXR and GPBAR1 Modulators

  • Francesco Saverio Di Leva
  • Daniele Di Marino
  • Vittorio Limongelli
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 256)


In this chapter we provide an exhaustive overview of the binding modes of bile acid (BA) and non-BA ligands to the nuclear farnesoid X receptor (FXR) and the G-protein bile acid receptor 1 (GPBAR1). These two receptors play a key role in many diseases related to lipid and glucose disorders, thus representing promising pharmacological targets. We pay particular attention to the chemical and structural features of the ligand-receptor interaction, providing guidelines to achieve ligands endowed with selective or dual activity towards the receptor and paving the way to future drug design studies.


Bile acids FXR GPBAR1 Homology modelling Molecular docking Molecular dynamics (MD) X-ray crystallography 


  1. Akwabi-Ameyaw A, Bass JY, Caldwell RD et al (2008) Conformationally constrained farnesoid X receptor (FXR) agonists: naphthoic acid-based analogs of GW 4064. Bioorg Med Chem Lett 18(15):4339–4343. CrossRefPubMedGoogle Scholar
  2. Akwabi-Ameyaw A, Bass JY, Caldwell RD et al (2009) FXR agonist activity of conformationally constrained analogs of GW 4064. Bioorg Med Chem Lett 19(16):4733–4739. CrossRefPubMedGoogle Scholar
  3. Akwabi-Ameyaw A, Caravella JA, Chen L et al (2011) Conformationally constrained farnesoid X receptor (FXR) agonists: alternative replacements of the stilbene. Bioorg Med Chem Lett 21(20):6154–6160. CrossRefPubMedGoogle Scholar
  4. Bass JY, Caldwell RD, Caravella JA et al (2009) Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064. Bioorg Med Chem Lett 19(11):2969–2973. CrossRefPubMedGoogle Scholar
  5. Bass JY, Caravella JA, Chen L et al (2011) Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene. Bioorg Med Chem Lett 21(4):1206–1213. CrossRefPubMedGoogle Scholar
  6. Bijsmans ITGW, Guercini C, Ramos Pittol JM et al (2015) The glucocorticoid mometasone furoate is a novel FXR ligand that decreases inflammatory but not metabolic gene expression. Sci Rep 5:14086. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brzozowski AM, Pike ACW, Dauter Z et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652):753–758. CrossRefPubMedGoogle Scholar
  8. Burris TP (2004) The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol Pharmacol 67(3):948–954. CrossRefPubMedGoogle Scholar
  9. Carino A, Cipriani S, Marchianò S et al (2017) BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Sci Rep 7:42801. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carino A, Biagioli M, Marchianò S et al (2018) Disruption of TFGβ-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacol Res 131:17–31. CrossRefPubMedGoogle Scholar
  11. Copeland RA (2016) The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15(2):87–95CrossRefGoogle Scholar
  12. Cui J, Huang L, Zhao A et al (2003) Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem 278(12):10214–10220. CrossRefPubMedGoogle Scholar
  13. D’Amore C, Di Leva FS, Sepe V et al (2014) Design, synthesis, and biological evaluation of potent dual agonists of nuclear and membrane bile acid receptors. J Med Chem 57(3):937–954. CrossRefPubMedGoogle Scholar
  14. Di Leva FS, Festa C, D’Amore C et al (2013) Binding mechanism of the farnesoid X receptor marine antagonist suvanine reveals a strategy to forestall drug modulation on nuclear receptors. Design, synthesis, and biological evaluation of novel ligands. J Med Chem 56(11):4701–4717. CrossRefPubMedGoogle Scholar
  15. Di Leva FS, Festa C, Renga B et al (2015) Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism. Sci Rep 5:16605. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Di Leva FS, Festa C, Carino A et al (2019) Discovery of ((1, 2, 4-oxadiazol-5-yl)pyrrolidin-3-yl)ureidyl derivatives as selective nonsteroidal agonists of the G-protein coupled bile acid receptor-1. Sci Rep 9(1):2504. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Downes M, Verdecia MA, Roecker AJ et al (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11(4):1079–1092. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Duboc H, Taché Y, Hofmann AF (2014) The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 46:302–312. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Festa C, Renga B, D’Amore C et al (2014) Exploitation of cholane scaffold for the discovery of potent and selective farnesoid X receptor (FXR) and G-protein coupled bile acid receptor 1 (GP-BAR1) ligands. J Med Chem 57(20):8477–8495. CrossRefPubMedGoogle Scholar
  20. Festa C, De Marino S, Carino A et al (2017) Targeting bile acid receptors: discovery of a potent and selective farnesoid X receptor agonist as a new lead in the pharmacological approach to liver diseases. Front Pharmacol 8:162. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Festa C, Finamore C, Marchianò S et al (2019) Investigation around the oxadiazole core in the discovery of a new chemotype of potent and selective FXR antagonists. ACS Med Chem Lett 10(4):504–510. CrossRefPubMedGoogle Scholar
  22. Fiorucci S, Distrutti E (2015) Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med 21(11):702–714. CrossRefPubMedGoogle Scholar
  23. Flatt B, Martin R, Wang TL et al (2009) Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J Med Chem 52(4):904–907. CrossRefPubMedGoogle Scholar
  24. Gertzen CGW, Spomer L, Smits SHJ et al (2015) Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem 104:57–72. CrossRefPubMedGoogle Scholar
  25. Gilson MK, Zhou H-X (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42. CrossRefGoogle Scholar
  26. Gioiello A, MacChiarulo A, Carotti A et al (2011) Extending SAR of bile acids as FXR ligands: discovery of 23-N-(carbocinnamyloxy)-3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-amine. Bioorg Med Chem 19(8):2650–2658. CrossRefPubMedGoogle Scholar
  27. Gioiello A, Rosatelli E, Nuti R et al (2012) Patented TGR5 modulators: a review (2006–present). Expert Opin Ther Pat 22(12):1399–1414. CrossRefPubMedGoogle Scholar
  28. Greife A, Felekyan S, Ma Q et al (2016) Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study. Sci Rep 6:36792. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Guo C, Chen WD, Wang YD (2016) TGR5, not only a metabolic regulator. Front Physiol 7:646PubMedPubMedCentralGoogle Scholar
  30. Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51(2):226–246. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jin L, Feng X, Rong H et al (2013) The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Nat Commun 4:1937. CrossRefPubMedGoogle Scholar
  32. Kawamata Y, Fujii R, Hosoya M et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440. CrossRefPubMedGoogle Scholar
  33. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47(3):558–565. CrossRefGoogle Scholar
  34. Li Y, Cheng KC, Niu CS et al (2017) Investigation of triamterene as an inhibitor of the TGR5 receptor: identification in cells and animals. Drug Des Devel Ther 11:1127–1134. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Limongelli V, Bonomi M, Parrinello M (2013) Funnel metadynamics as accurate binding free-energy method. Proc Natl Acad Sci 110(16):6358–6363. CrossRefPubMedGoogle Scholar
  36. Lu Y, Zheng W, Lin S et al (2018) Identification of an oleanane-type triterpene hedragonic acid as a novel farnesoid X receptor ligand with liver protective effects and anti-inflammatory activity. Mol Pharmacol 93(2):63–72. CrossRefPubMedGoogle Scholar
  37. Lundquist JT IV, Harnish DC, Kim CY et al (2010) Improvement of physiochemical properties of the tetrahydroazepinoindole series of farnesoid X receptor (FXR) agonists: beneficial modulation of lipids in primates. J Med Chem 53(4):1774–1787. CrossRefPubMedGoogle Scholar
  38. Macchiarulo A, Gioiello A, Thomas C et al (2013) Probing the binding site of bile acids in TGR5. ACS Med Chem Lett 4(12):1158–1162. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Makishima M, Okamoto AY, Repa JJ et al (1999) Identification of a nuclear receptor for bile acids. Science 284(5418):1362–1365. CrossRefGoogle Scholar
  40. Maloney PR, Parks DJ, Haffner CD et al (2000) Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem 43(16):2971–2974CrossRefGoogle Scholar
  41. Massafra V, Pellicciari R, Gioiello A, van Mil SWC (2018) Progress and challenges of selective farnesoid X receptor modulation. Pharmacol Ther 191:162–177CrossRefGoogle Scholar
  42. Meyer U, Costantino G, Macchiarulo A, Pellicciari R (2005) Is antagonism of E/Z-guggulsterone at the farnesoid X receptor mediated by a noncanonical binding site? A molecular modeling study. J Med Chem 48:6948–6955. CrossRefPubMedGoogle Scholar
  43. Mi LZ, Devarakonda S, Harp JM et al (2003) Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell 11(4):1093–1100. CrossRefPubMedGoogle Scholar
  44. Mustafi D, Palczewski K (2009) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75(1):1–12. CrossRefPubMedGoogle Scholar
  45. Parks DJ, Blanchard SG, Bledsoe RK et al (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418):1365–1368. CrossRefPubMedGoogle Scholar
  46. Pellicciari R, Fiorucci S, Camaioni E et al (2002) 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45(17):3569–3572. CrossRefPubMedGoogle Scholar
  47. Pellicciari R, Gioiello A, Macchiarulo A et al (2009) Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem 52(24):7958–7961. CrossRefPubMedGoogle Scholar
  48. Pellicciari R, Passeri D, De Franco F et al (2016) Discovery of 3α,7α,11β-trihydroxy-6α-ethyl-5β-cholan-24-oic acid (TC-100), a novel bile acid as potent and highly selective FXR agonist for enterohepatic disorders. J Med Chem 59(19):9201–9214. CrossRefPubMedGoogle Scholar
  49. Richter HGF, Benson GM, Blum D et al (2011) Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes. Bioorg Med Chem Lett 21(1):191–194. CrossRefPubMedGoogle Scholar
  50. Rizzo G, Passeri D, De Franco F et al (2010) Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol 78(4):617–630. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sasaki T, Mita M, Ikari N et al (2017) Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model. PLoS One 12(6):e0179226. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Schneider G (2018) Automating drug discovery. Nat Rev Drug Discov 17(2):97–113CrossRefGoogle Scholar
  53. Schoch GA, D’Arcy B, Stihle M et al (2010) Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations. J Mol Biol 395(3):568–577. CrossRefPubMedGoogle Scholar
  54. Sepe V, Renga B, Festa C et al (2014) Modification on ursodeoxycholic acid (UDCA) scaffold. Discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1). J Med Chem 57(18):7687–7701. CrossRefPubMedGoogle Scholar
  55. Sepe V, Distrutti E, Limongelli V et al (2015) Steroidal scaffolds as FXR and GPBAR1 ligands: from chemistry to therapeutical application. Future Med Chem 7(9):1109–1135CrossRefGoogle Scholar
  56. Sepe V, Festa C, Renga B et al (2016a) Insights on FXR selective modulation. Speculation on bile acid chemical space in the discovery of potent and selective agonists. Sci Rep 6:19008. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sepe V, Renga B, Festa C et al (2016b) Investigation on bile acid receptor regulators. Discovery of cholanoic acid derivatives with dual G-protein coupled bile acid receptor 1 (GPBAR1) antagonistic and farnesoid X receptor (FXR) modulatory activity. Steroids 105:59–67. CrossRefPubMedGoogle Scholar
  58. Sepe V, Marchianò S, Finamore C et al (2018) Novel isoxazole derivatives with potent fxr agonistic activity prevent acetaminophen-induced liver injury. ACS Med Chem Lett 10(4):407–412. CrossRefPubMedGoogle Scholar
  59. Shiau AK, Barstad D, Radek JT et al (2002) Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism. Nat Struct Biol 9(5):359–364. CrossRefPubMedGoogle Scholar
  60. Sindhu T, Srinivasan P (2015a) Exploring the binding properties of agonists interacting with human TGR5 using structural modeling, molecular docking and dynamics simulations. RSC Adv 5(19):14202–14213. CrossRefGoogle Scholar
  61. Sindhu T, Srinivasan P (2015b) Identification of potential dual agonists of FXR and TGR5 using e-pharmacophore based virtual screening. Mol Biosyst 11(5):1305–1318. CrossRefPubMedGoogle Scholar
  62. Soisson SM, Parthasarathy G, Adams AD et al (2008) Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation. Proc Natl Acad Sci U S A 105(14):5337–5342. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Spomer L, Gertzen CGW, Schmitz B et al (2014) A membrane-proximal, C-terminal α-helix is required for plasma membrane localization and function of the G protein-coupled receptor (GPCR) TGR5. J Biol Chem 289(6):3689–3702. CrossRefPubMedGoogle Scholar
  64. Teno N, Yamashita Y, Iguchi Y et al (2018) Nonacidic chemotype possessing N-acylated piperidine moiety as potent farnesoid X receptor (FXR) antagonists. ACS Med Chem Lett 9(2):78–83. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tiwari A, Maiti P (2009) TGR5: an emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discov Today 14(9–10):523–530CrossRefGoogle Scholar
  66. Urizar NL, Liverman AB, Dodds DT et al (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296(5573):1703–1706. CrossRefPubMedGoogle Scholar
  67. Williams S, Bledsoe RK, Collins JL et al (2003) X-ray crystal structure of the liver X receptor β ligand binding domain: regulation by a histidine-tryptophan switch. J Biol Chem 278(29):27138–27143. CrossRefGoogle Scholar
  68. Xu X, Xu X, Liu P et al (2015) Structural basis for small molecule NDB (N-benzyl-N-(3-(tertbutyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) Benzamide) as a selective antagonist of farnesoid X receptor α (FXRα) in stabilizing the homodimerization of the receptor. J Biol Chem 290(32):19888–19899. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yu DD, Sousa KM, Mattern DL et al (2015) Stereoselective synthesis, biological evaluation, and modeling of novel bile acid-derived G-protein coupled bile acid receptor 1 (GP-BAR1, TGR5) agonists. Bioorg Med Chem 23(7):1613–1628. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Saverio Di Leva
    • 1
  • Daniele Di Marino
    • 2
    • 3
  • Vittorio Limongelli
    • 1
    • 2
  1. 1.Department of PharmacyUniversity of Naples “Federico II”NaplesItaly
  2. 2.Faculty of Biomedical SciencesInstitute of Computational Science, Center for Computational Medicine in Cardiology, Università della Svizzera italiana (USI)LuganoSwitzerland
  3. 3.Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly

Personalised recommendations