Advertisement

pp 1-26 | Cite as

NOP-Related Mechanisms in Substance Use Disorders

  • Roberto CiccocioppoEmail author
  • Anna Maria Borruto
  • Ana Domi
  • Koji Teshima
  • Nazzareno Cannella
  • Friedbert Weiss
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

Nociceptin/orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995 and has been widely studied since. The role of the N/OFQ system in drug abuse has attracted researchers’ attention since its initial discovery. The first two scientific papers describing the effect of intracranial injection of N/OFQ appeared 20 years ago and reported efficacy of the peptide in attenuating alcohol intake, whereas heroin self-administration was insensitive. Since then more than 100 scientific articles investigating the role of the N/OFQ and N/OFQ receptor (NOP) system in drug abuse have been published. The present article provides an historical overview of the advances in the field with focus on three major elements. First, the most robust data supportive of the efficacy of NOP agonists in treating drug abuse come from studies in the field of alcohol research, followed by psychostimulant and opioid research. In contrast, activation of NOP appears to facilitate nicotine consumption. Second, emerging data challenge the assumption that activation of NOP is the most appropriate strategy to attenuate consumption of substances of abuse. This assumption is based first on the observation that animals carrying an overexpression of NOP system components are more prone to consume substances of abuse, whereas NOP knockout rats are less motivated to self-administer heroin, alcohol, and cocaine. Third, administration of NOP antagonists also reduces alcohol consumption. In addition, NOP blockade reduces nicotine self-administration. Hypothetical mechanisms explaining this apparent paradox are discussed. Finally, we focus on the possibility that co-activation of NOP and mu opioid (MOP) receptors is an alternative strategy, readily testable in the clinic, to reduce the consumption of psychostimulants, opiates, and, possibly, alcohol.

Keywords

Addiction Drug-seeking N/OFQ Nociceptin NOP Orphanin FQ Relapse 

Notes

Acknowledgments

This work was supported by the National Institutes of Health, grant RO1 AA014351, from the National Institute on Alcohol Abuse and Alcoholism.

References

  1. Aujla H, Cannarsa R, Romualdi P, Ciccocioppo R, Martin-Fardon R, Weiss F (2013) Modification of anxiety-like behaviors by nociceptin/orphanin FQ (N/OFQ) and time-dependent changes in N/OFQ-NOP gene expression following ethanol withdrawal. Addict Biol 18:467–479Google Scholar
  2. Ayanwuyi LO, Carvajal F, Lerma-Cabrera JM, Domi E, Bjork K, Ubaldi M, Heilig M, Roberto M, Ciccocioppo R, Cippitelli A (2013) Role of a genetic polymorphism in the corticotropin-releasing factor receptor 1 gene in alcohol drinking and seeking behaviors of marchigian sardinian alcohol-preferring rats. Front Psych 4:23Google Scholar
  3. Aziz AM, Brothers S, Sartor G, Holm L, Heilig M, Wahlestedt C, Thorsell A (2016) The nociceptin/orphanin FQ receptor agonist SR-8993 as a candidate therapeutic for alcohol use disorders: validation in rat models. Psychopharmacology 233:3553–3563Google Scholar
  4. Barrot M, Marinelli M, Abrous DN, Rouge-Pont F, Le Moal M, Piazza PV (1999) Functional heterogeneity in dopamine release and in the expression of Fos-like proteins within the rat striatal complex. Eur J Neurosci 11:1155–1166Google Scholar
  5. Bebawy D, Marquez P, Samboul S, Parikh D, Hamid A, Lutfy K (2010) Orphanin FQ/nociceptin not only blocks but also reverses behavioral adaptive changes induced by repeated cocaine in mice. Biol Psychiatry 68:223–230Google Scholar
  6. Bloms-Funke P, Gillen C, Schuettler AJ, Wnendt S (2000) Agonistic effects of the opioid buprenorphine on the nociceptin/OFQ receptor. Peptides 21:1141–1146Google Scholar
  7. Calo G, Lambert DG (2018) Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br J Anaesth 121:1105–1114Google Scholar
  8. Calo G, Guerrini R, Rizzi A, Salvadori S, Burmeister M, Kapusta DR, Lambert DG, Regoli D (2005) UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor. CNS Drug Rev 11:97–112Google Scholar
  9. Christoph A, Eerdekens MH, Kok M, Volkers G, Freynhagen R (2017) Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain 158:1813–1824Google Scholar
  10. Ciccocioppo R (2013) Genetically selected alcohol preferring rats to model human alcoholism. Curr Top Behav Neurosci 13:251–269Google Scholar
  11. Ciccocioppo R, Panocka I, Polidori C, Regoli D, Massi M (1999) Effect of nociceptin on alcohol intake in alcohol-preferring rats. Psychopharmacology (Berl) 141:220–224Google Scholar
  12. Ciccocioppo R, Angeletti S, Sanna PP, Weiss F, Massi M (2000) Effect of nociceptin/orphanin FQ on the rewarding properties of morphine. Eur J Pharmacol 404:153–159Google Scholar
  13. Ciccocioppo R, Martin-Fardon R, Weiss F, Massi M (2001) Nociceptin/orphanin FQ inhibits stress- and CRF-induced anorexia in rats. Neuroreport 12:1145–1149Google Scholar
  14. Ciccocioppo R, Biondini M, Antonelli L, Wichmann J, Jenck F, Massi M (2002a) Reversal of stress- and CRF-induced anorexia in rats by the synthetic nociceptin/orphanin FQ receptor agonist, Ro 64-6198. Psychopharmacology (Berl) 161:113–119Google Scholar
  15. Ciccocioppo R, Fedeli A, Massi M (2002b) Inhibition of CRF-induced anorexia by orphanin FQ/nociceptin: search for the site of action. Appetite 39:69Google Scholar
  16. Ciccocioppo R, Polidori C, Antonelli L, Salvadori S, Guerrini R, Massi M (2002c) Pharmacological characterization of the nociceptin receptor which mediates reduction of alcohol drinking in rats. Peptides 23:117–125Google Scholar
  17. Ciccocioppo R, Economidou D, Fedeli A, Massi M (2003a) The nociceptin/orphanin FQ/NOP receptor system as a target for treatment of alcohol abuse: a review of recent work in alcohol-preferring rats. Physiol Behav 79:121–128Google Scholar
  18. Ciccocioppo R, Fedeli A, Economidou D, Policani F, Weiss F, Massi M (2003b) The bed nucleus is a neuroanatomical substrate for the anorectic effect of corticotropin-releasing factor and for its reversal by nociceptin/orphanin FQ. J Neurosci 23:9445–9451Google Scholar
  19. Ciccocioppo R, Cippitelli A, Economidou D, Fedeli A, Massi M (2004a) Nociceptin/orphanin FQ acts as a functional antagonist of corticotropin-releasing factor to inhibit its anorectic effect. Physiol Behav 82:63–68Google Scholar
  20. Ciccocioppo R, Economidou D, Fedeli A, Angeletti S, Weiss F, Heilig M, Massi M (2004b) Attenuation of ethanol self-administration and of conditioned reinstatement of alcohol-seeking behaviour by the antiopioid peptide nociceptin/orphanin FQ in alcohol-preferring rats. Psychopharmacology 172:170–178Google Scholar
  21. Ciccocioppo R, Economidou D, Cippitelli A, Cucculelli M, Ubaldi M, Soverchia L, Lourdusamy A, Massi M (2006) Genetically selected Marchigian Sardinian alcohol-preferring (msP) rats: an animal model to study the neurobiology of alcoholism. Addict Biol 11:339–355Google Scholar
  22. Ciccocioppo R, Economidou D, Rimondini R, Sommer W, Massi M, Heilig M (2007) Buprenorphine reduces alcohol drinking through activation of the nociceptin/orphanin FQ-NOP receptor system. Biol Psychiatry 61:4–12Google Scholar
  23. Ciccocioppo R, Gehlert DR, Ryabinin A, Kaur S, Cippitelli A, Thorsell A, Le AD, Hipskind PA, Hamdouchi C, Lu J, Hembre EJ, Cramer J, Song M, McKinzie D, Morin M, Economidou D, Stopponi S, Cannella N, Braconi S, Kallupi M, de Guglielmo G, Massi M, George DT, Gilman J, Hersh J, Tauscher JT, Hunt SP, Hommer D, Heilig M (2009) Stress-related neuropeptides and alcoholism: CRH, NPY, and beyond. Alcohol 43:491–498Google Scholar
  24. Ciccocioppo R, de Guglielmo G, Hansson AC, Ubaldi M, Kallupi M, Cruz MT, Oleata CS, Heilig M, Roberto M (2014a) Restraint stress alters nociceptin/orphanin FQ and CRF systems in the rat central amygdala: significance for anxiety-like behaviors. J Neurosci 34:363–372Google Scholar
  25. Ciccocioppo R, Stopponi S, Economidou D, Kuriyama M, Kinoshita H, Heilig M, Roberto M, Weiss F, Teshima K (2014b) Chronic treatment with novel brain-penetrating selective NOP receptor agonist MT-7716 reduces alcohol drinking and seeking in the rat. Neuropsychopharmacology 39:2601–2610Google Scholar
  26. Cifani C, Guerrini R, Massi M, Polidori C (2006) Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats. Peptides 27:2803–2810Google Scholar
  27. Cippitelli A, Ayanwuyi LO, Barbier E, Domi E, Lerma-Cabrera JM, Carvajal F, Scuppa G, Li H, Ubaldi M, Heilig M, Roberto M, Ciccocioppo R (2015) Polymorphism in the corticotropin-releasing factor receptor 1 (CRF1-R) gene plays a role in shaping the high anxious phenotype of Marchigian Sardinian alcohol-preferring (msP) rats. Psychopharmacology (Berl) 232:1083–1093Google Scholar
  28. Cippitelli A, Schoch J, Debevec G, Brunori G, Zaveri NT, Toll L (2016) A key role for the N/OFQ-NOP receptor system in modulating nicotine taking in a model of nicotine and alcohol co-administration. Sci Rep 6:26594Google Scholar
  29. Contet C, Kieffer BL, Befort K (2004) Mu opioid receptor: a gateway to drug addiction. Curr Opin Neurobiol 14:370–378Google Scholar
  30. Corrigal WA, Coen KM (1991) Opiate antagonists reduce cocaine but not nicotine self-administration. Psychopharmacology 104:167–170Google Scholar
  31. Costin BN, Miles MF (2014) Molecular and neurologic responses to chronic alcohol use. Handb Clin Neurol 125:157–171Google Scholar
  32. Cox BM, Christie MJ, Devi L, Toll L, Traynor JR (2015) Challenges for opioid receptor nomenclature: IUPHAR review 9. Br J Pharmacol 172:317–323Google Scholar
  33. Cruz MT, Herman MA, Kallupi M, Roberto M (2012) Nociceptin/orphanin FQ blockade of corticotropin-releasing factor-induced gamma-aminobutyric acid release in central amygdala is enhanced after chronic ethanol exposure. Biol Psychiatry 71:666–676Google Scholar
  34. Dahan A, Boom M, Sarton E, Hay J, Groeneveld GJ, Neukirchen M, Bothmer J, Aarts L, Olofsen E (2017) Respiratory effects of the nociceptin/orphanin FQ peptide and opioid receptor agonist, cebranopadol, in healthy human volunteers. Anesthesiology 126:697–707Google Scholar
  35. Darland T, Heinricher MM, Grandy DK (1998) Orphanin FQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci 21:215–221Google Scholar
  36. de Guglielmo G, Martin-Fardon R, Teshima K, Ciccocioppo R, Weiss F (2015) MT-7716, a potent NOP receptor agonist, preferentially reduces ethanol seeking and reinforcement in post-dependent rats. Addict Biol 20:643–651Google Scholar
  37. de Guglielmo G, Matzeu A, Kononoff J, Mattioni J, Martin-Fardon R, George O (2017) Cebranopadol blocks the escalation of cocaine intake and conditioned reinstatement of cocaine seeking in rats. J Pharmacol Exp Ther 362:378–384Google Scholar
  38. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278Google Scholar
  39. Di Giannuario A, Pieretti S (2000) Nociceptin differentially affects morphine-induced dopamine release from the nucleus accumbens and nucleus caudate in rats. Peptides 21:1125–1130Google Scholar
  40. Ding H, Czoty PW, Kiguchi N, Cami-Kobeci G, Sukhtankar DD, Nader MA, Husbands SM, Ko MC (2016) A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proc Natl Acad Sci U S A 113:E5511–E5518Google Scholar
  41. Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, Czoty PW, Kishioka S, Zaveri NT, Ko MC (2018) A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 10:eaar3483Google Scholar
  42. Economidou D, Fedeli A, Fardon RM, Weiss F, Massi M, Ciccocioppo R (2006) Effect of novel nociceptin/orphanin FQ-NOP receptor ligands on ethanol drinking in alcohol-preferring msP rats. Peptides 27:3299–3306Google Scholar
  43. Economidou D, Hansson AC, Weiss F, Terasmaa A, Sommer WH, Cippitelli A, Fedeli A, Martin-Fardon R, Massi M, Ciccocioppo R, Heilig M (2008) Dysregulation of nociceptin/orphanin FQ activity in the amygdala is linked to excessive alcohol drinking in the rat. Biol Psychiatry 64:211–218Google Scholar
  44. Economidou D, Cippitelli A, Stopponi S, Braconi S, Clementi S, Ubaldi M, Martin-Fardon R, Weiss F, Massi M, Ciccocioppo R (2011) Activation of brain NOP receptors attenuates acute and protracted alcohol withdrawal symptoms in the rat. Alcohol Clin Exp Res 35:747–755Google Scholar
  45. Egervari G, Ciccocioppo R, Jentsch JD, Hurd YL (2018) Shaping vulnerability to addiction – the contribution of behavior, neural circuits and molecular mechanisms. Neurosci Biobehav Rev 85:117–125Google Scholar
  46. Fioravanti B, Vanderah TW (2008) The ORL-1 receptor system: are there opportunities for antagonists in pain therapy? Curr Top Med Chem 8:1442–1451Google Scholar
  47. Gehlert DR, Gackenheimer SL, Shaw JL (2006) Distribution of nociceptin and Ro64-6198 activated [35S]-GTPgammaS binding in the rat brain. Neuropeptides 40:95–105Google Scholar
  48. Gehlert DR, Cippitelli A, Thorsell A, Le AD, Hipskind PA, Hamdouchi C, Lu J, Hembre EJ, Cramer J, Song M, McKinzie D, Morin M, Ciccocioppo R, Heilig M (2007) 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl- imidazo[1,2-b]pyridazine: a novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J Neurosci 27:2718–2726Google Scholar
  49. Gohler K, Sokolowska M, Schoedel KA, Nemeth R, Kleideiter E, Szeto I, Eerdekens MH (2019) Assessment of the abuse potential of cebranopadol in nondependent recreational opioid users: a phase 1 randomized controlled study. J Clin Psychopharmacol 39:46–56Google Scholar
  50. Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6:521–532Google Scholar
  51. Gowing LR, Ali RL, Allsop S, Marsden J, Turf EE, West R, Witton J (2015) Global statistics on addictive behaviours: 2014 status report. Addiction 110:904–919Google Scholar
  52. Griebel G, Perrault G, Sanger DJ (1999) Orphanin FQ, a novel neuropeptide with anti-stress-like activity. Brain Res 836:221–224Google Scholar
  53. Grisel JE, Mogil JS, Belknap JK, Grandy DK (1996) Orphanin FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. Neuroreport 7:2125–2129Google Scholar
  54. Gunther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, Steinborn R, Schulz S (2018) Targeting multiple opioid receptors – improved analgesics with reduced side effects? Br J Pharmacol 175:2857–2868Google Scholar
  55. Hansson AC, Cippitelli A, Sommer WH, Fedeli A, Bjork K, Soverchia L, Terasmaa A, Massi M, Heilig M, Ciccocioppo R (2006) Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proc Natl Acad Sci U S A 103:15236–15241Google Scholar
  56. Hansson AC, Cippitelli A, Sommer WH, Ciccocioppo R, Heilig M (2007) Region-specific down-regulation of Crhr1 gene expression in alcohol-preferring msP rats following ad lib access to alcohol. Addict Biol 12:30–34Google Scholar
  57. Herman MA, Kallupi M, Luu G, Oleata CS, Heilig M, Koob GF, Ciccocioppo R, Roberto M (2013) Enhanced GABAergic transmission in the central nucleus of the amygdala of genetically selected Marchigian Sardinian rats: alcohol and CRF effects. Neuropharmacology 67:337–348Google Scholar
  58. Huang P, Kehner GB, Cowan A, Liu-Chen LY (2001) Comparison of pharmacological activities of buprenorphine and norbuprenorphine: norbuprenorphine is a potent opioid agonist. J Pharmacol Exp Ther 297:688–695Google Scholar
  59. Jenck F, Ouagazzal AM, Pauly-Evers M, Moreau JL (2000a) OrphaninFQ: role in behavioral fear responses and vulnerability to stress? Mol Psychiatry 5:572–574Google Scholar
  60. Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, Lundstrom K, Cesura AM, Poli SM, Roever S, Kolczewski S, Adam G, Kilpatrick G (2000b) A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci U S A 97:4938–4943Google Scholar
  61. Jones SR, Joseph JD, Barak LS, Caron MG, Wightman RM (1999) Dopamine neuronal transport kinetics and effects of amphetamine. J Neurochem 73:2406–2414Google Scholar
  62. Journigan VB, Polgar WE, Khroyan TV, Zaveri NT (2014) Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP-receptor selective scaffolds. Part II. Bioorg Med Chem 22:2508–2516Google Scholar
  63. Kakko J, Svanborg KD, Kreek MJ, Heilig M (2003) 1-year retention and social function after buprenorphine-assisted relapse prevention treatment for heroin dependence in Sweden: a randomised, placebo-controlled trial. Lancet 361:662–668Google Scholar
  64. Kallupi M, Varodayan FP, Oleata CS, Correia D, Luu G, Roberto M (2014) Nociceptin/orphanin FQ decreases glutamate transmission and blocks ethanol-induced effects in the central amygdala of naive and ethanol-dependent rats. Neuropsychopharmacology 39:1081–1092Google Scholar
  65. Kallupi M, Scuppa G, de Guglielmo G, Calo G, Weiss F, Statnick MA, Rorick-Kehn LM, Ciccocioppo R (2017) Genetic deletion of the nociceptin/orphanin FQ receptor in the rat confers resilience to the development of drug addiction. Neuropsychopharmacology 42:695–706Google Scholar
  66. Kallupi M, Shen Q, de Guglielmo G, Yasuda D, Journigan VB, Zaveri NT, Ciccocioppo R (2018) Buprenorphine requires concomitant activation of NOP and MOP receptors to reduce cocaine consumption. Addict Biol 23:585–595Google Scholar
  67. Khroyan TV, Zaveri NT, Polgar WE, Orduna J, Olsen C, Jiang F, Toll L (2007) SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice. J Pharmacol Exp Ther 320:934–943Google Scholar
  68. Khroyan TV, Polgar WE, Jiang F, Zaveri NT, Toll L (2009) Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/mu-opioid receptor agonists. J Pharmacol Exp Ther 331:946–953Google Scholar
  69. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L (2011a) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-meth oxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther 336:952–961Google Scholar
  70. Khroyan TV, Polgar WE, Orduna J, Montenegro J, Jiang F, Zaveri NT, Toll L (2011b) Differential effects of nociceptin/orphanin FQ (NOP) receptor agonists in acute versus chronic pain: studies with bifunctional NOP/mu receptor agonists in the sciatic nerve ligation chronic pain model in mice. J Pharmacol Exp Ther 339:687–693Google Scholar
  71. Kiguchi N, Ding H, Ko MC (2016) Central N/OFQ-NOP receptor system in pain modulation. Adv Pharmacol 75:217–243Google Scholar
  72. Kimura Y, Fujita M, Hong J, Lohith TG, Gladding RL, Zoghbi SS, Tauscher JA, Goebl N, Rash KS, Chen Z, Pedregal C, Barth VN, Pike VW, Innis RB (2011) Brain and whole-body imaging in rhesus monkeys of 11C-NOP-1A, a promising PET radioligand for nociceptin/orphanin FQ peptide receptors. J Nucl Med 52:1638–1645Google Scholar
  73. Ko MC, Woods JH, Fantegrossi WE, Galuska CM, Wichmann J, Prinssen EP (2009) Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology 34:2088–2096Google Scholar
  74. Koizumi M, Midorikawa N, Takeshima H, Murphy NP (2004) Exogenous, but not endogenous nociceptin modulates mesolimbic dopamine release in mice. J Neurochem 89:257–263Google Scholar
  75. Koob GF (2013) Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder. Curr Top Behav Neurosci 13:3–30Google Scholar
  76. Koob GF, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53Google Scholar
  77. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3:760–773Google Scholar
  78. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O’Dell LE, Parsons LH, Sanna PP (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 27:739–749Google Scholar
  79. Kotlinska J, Suder P, Legowska A, Rolka K, Silberring J (2000) Orphanin FQ/nociceptin inhibits morphine withdrawal. Life Sci 66:PL119–PL123Google Scholar
  80. Kotlinska J, Wichmann J, Legowska A, Rolka K, Silberring J (2002) Orphanin FQ/nociceptin but not Ro 65-6570 inhibits the expression of cocaine-induced conditioned place preference. Behav Pharmacol 13:229–235Google Scholar
  81. Kotlinska J, Rafalski P, Biala G, Dylag T, Rolka K, Silberring J (2003) Nociceptin inhibits acquisition of amphetamine-induced place preference and sensitization to stereotypy in rats. Eur J Pharmacol 474:233–239Google Scholar
  82. Kotlinska J, Rafalski P, Talarek S, Dylag T, Rolka K, Wichmann J, Silberring J (2005) Is the nociceptin (NOP) receptor involved in attenuation of the expression of sensitization to morphine-induced hyperlocomotion in mice? Behav Pharmacol 16:101–106Google Scholar
  83. Kuzmin A, Sandin J, Terenius L, Ogren SO (2003) Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of opioid receptor-like 1 receptor agonists and naloxone. J Pharmacol Exp Ther 304:310–318Google Scholar
  84. Kuzmin A, Kreek MJ, Bakalkin G, Liljequist S (2007) The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking. Neuropsychopharmacology 32:902–910Google Scholar
  85. Lambert DG (2008) The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7:694–710Google Scholar
  86. Lambert DG, Bird MF, Rowbotham DJ (2015) Cebranopadol: a first in-class example of a nociceptin/orphanin FQ receptor and opioid receptor agonist. Br J Anaesth 114:364–366Google Scholar
  87. Le Merrer J, Becker JA, Befort K, Kieffer BL (2009) Reward processing by the opioid system in the brain. Physiol Rev 89:1379–1412Google Scholar
  88. Letchworth SR, Mathis JP, Rossi GC, Bodnar RJ, Pasternak GW (2000) Autoradiographic localization of (125)I[Tyr(14)]orphanin FQ/nociceptin and (125)I[Tyr(10)]orphanin FQ/nociceptin(1-11) binding sites in rat brain. J Comp Neurol 423:319–329Google Scholar
  89. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schroder W, Kogel BY, Beier H, Englberger W, Schunk S, De Vry J, Jahnel U, Frosch S (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther 349:535–548Google Scholar
  90. Logrip ML, Walker JR, Ayanwuyi LO, Sabino V, Ciccocioppo R, Koob GF, Zorrilla EP (2018) Evaluation of alcohol preference and drinking in msP rats bearing a Crhr1 promoter polymorphism. Front Psych 9:28Google Scholar
  91. Lohith TG, Zoghbi SS, Morse CL, Araneta MF, Barth VN, Goebl NA, Tauscher JT, Pike VW, Innis RB, Fujita M (2012) Brain and whole-body imaging of nociceptin/orphanin FQ peptide receptor in humans using the PET ligand 11C-NOP-1A. J Nucl Med 53:385–392Google Scholar
  92. Lukas SE, Mello NK, Drieze JM, Mendelson JH (1995) Buprenorphine-induced alterations of cocaine’s reinforcing effects in rhesus monkey: a dose-response analysis. Drug Alcohol Depend 40:87–98Google Scholar
  93. Lutfy K, Zaveri NT (2016) The nociceptin receptor as an emerging molecular target for cocaine addiction. Prog Mol Biol Transl Sci 137:149–181Google Scholar
  94. Lutfy K, Do T, Maidment NT (2001) Orphanin FQ/nociceptin attenuates motor stimulation and changes in nucleus accumbens extracellular dopamine induced by cocaine in rats. Psychopharmacology (Berl) 154:1–7Google Scholar
  95. Lutfy K, Khaliq I, Carroll FI, Maidment NT (2002) Orphanin FQ/nociceptin blocks cocaine-induced behavioral sensitization in rats. Psychopharmacology (Berl) 164:168–176Google Scholar
  96. Lutfy K, Eitan S, Bryant CD, Yang YC, Saliminejad N, Walwyn W, Kieffer BL, Takeshima H, Carroll FI, Maidment NT, Evans CJ (2003) Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors. J Neurosci 23:10331–10337Google Scholar
  97. Marquez P, Borse J, Nguyen AT, Hamid A, Lutfy K (2008a) The role of the opioid receptor-like (ORL1) receptor in motor stimulatory and rewarding actions of buprenorphine and morphine. Neuroscience 155:597–602Google Scholar
  98. Marquez P, Nguyen AT, Hamid A, Lutfy K (2008b) The endogenous OFQ/N/ORL-1 receptor system regulates the rewarding effects of acute cocaine. Neuropharmacology 54:564–568Google Scholar
  99. Marquez P, Hamid A, Lutfy K (2013) The role of NOP receptors in psychomotor stimulation and locomotor sensitization induced by cocaine and amphetamine in mice. Eur J Pharmacol 707:41–45Google Scholar
  100. Martin-Fardon R, Ciccocioppo R, Massi M, Weiss F (2000) Nociceptin prevents stress-induced ethanol- but not cocaine-seeking behavior in rats. Neuroreport 11:1939–1943Google Scholar
  101. Martin-Fardon R, Zorrilla EP, Ciccocioppo R, Weiss F (2010) Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 1314:145–161Google Scholar
  102. Meis S, Pape HC (2001) Control of glutamate and GABA release by nociceptin/orphanin FQ in the rat lateral amygdala. J Physiol 532:701–712Google Scholar
  103. Mello NK, Lukas SE, Mendelson JH, Drieze J (1993) Naltrexone-buprenorphine interactions: effects on cocaine self-administration. Neuropsychopharmacology 9:211–224Google Scholar
  104. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B et al (1995) Isolation and structure of the endogenous agonist of opioid receptor- like ORL1 receptor. Nature 377:532–535Google Scholar
  105. Miranda-Morales RS, Nizhnikov ME, Waters DH, Spear NE (2013) Participation of the nociceptin/orphanin FQ receptor in ethanol-mediated locomotor activation and ethanol intake in preweanling rats. Behav Brain Res 245:137–144Google Scholar
  106. Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK, Grandy DK (1996a) Orphanin FQ is a functional anti-opioid peptide. Neuroscience 75:333–337Google Scholar
  107. Mogil JS, Grisel JE, Zhangs G, Belknap JK, Grandy DK (1996b) Functional antagonism of mu-, delta- and kappa-opioid antinociception by orphanin FQ. Neurosci Lett 214:131–134Google Scholar
  108. Montoya ID, Gorelick DA, Preston KL, Schroeder JR, Umbricht A, Cheskin LJ, Lange WR, Contoreggi C, Johnson RE, Fudala PJ (2004) Randomized trial of buprenorphine for treatment of concurrent opiate and cocaine dependence. Clin Pharmacol Ther 75:34–48Google Scholar
  109. Murphy NP, Maidment NT (1999) Orphanin FQ/nociceptin modulation of mesolimbic dopamine transmission determined by microdialysis. J Neurochem 73:179–186Google Scholar
  110. Murphy NP, Lee Y, Maidment NT (1999) Orphanin FQ/nociceptin blocks acquisition of morphine place preference. Brain Res 832:168–170Google Scholar
  111. Narendran R, Ciccocioppo R, Lopresti B, Paris J, Himes ML, Mason NS (2018) Nociceptin receptors in alcohol use disorders: a positron emission tomography study using [(11)C]NOP-1A. Biol Psychiatry 84:708–714Google Scholar
  112. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr (1999) Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 406:503–547Google Scholar
  113. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128Google Scholar
  114. Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63Google Scholar
  115. Nicolaysen LC, Justice JB Jr (1988) Effects of cocaine on release and uptake of dopamine in vivo: differentiation by mathematical modeling. Pharmacol Biochem Behav 31:327–335Google Scholar
  116. Podlesnik CA, Ko MC, Winger G, Wichmann J, Prinssen EP, Woods JH (2011) The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology 213:53–60Google Scholar
  117. Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257Google Scholar
  118. Post A, Smart TS, Jackson K, Mann J, Mohs R, Rorick-Kehn L, Statnick M, Anton R, O’Malley SS, Wong CJ (2016) Proof-of-concept study to assess the nociceptin receptor antagonist LY2940094 as a new treatment for alcohol dependence. Alcohol Clin Exp Res 40:1935–1944Google Scholar
  119. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein- coupled receptor. Science 270:792–794Google Scholar
  120. Roberto M, Siggins GR (2006) Nociceptin/orphanin FQ presynaptically decreases GABAergic transmission and blocks the ethanol-induced increase of GABA release in central amygdala. Proc Natl Acad Sci U S A 103:9715–9720Google Scholar
  121. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291Google Scholar
  122. Rorick-Kehn LM, Ciccocioppo R, Wong CJ, Witkin JM, Martinez-Grau MA, Stopponi S, Adams BL, Katner JS, Perry KW, Toledo MA, Diaz N, Lafuente C, Jimenez A, Benito A, Pedregal C, Weiss F, Statnick MA (2016) A novel, orally bioavailable nociceptin receptor antagonist, LY2940094, reduces ethanol self-administration and ethanol seeking in animal models. Alcohol Clin Exp Res 40:945–954Google Scholar
  123. Rutten K, De Vry J, Bruckmann W, Tzschentke TM (2010) Effects of the NOP receptor agonist Ro65-6570 on the acquisition of opiate- and psychostimulant-induced conditioned place preference in rats. Eur J Pharmacol 645:119–126Google Scholar
  124. Ruzza C, Holanda VA, Gavioli EC, Trapella C, Calo G (2018) NOP agonist action of cebranopadol counteracts its liability to promote physical dependence. Peptides 112:101–105Google Scholar
  125. Sakoori K, Murphy NP (2004) Central administration of nociceptin/orphanin FQ blocks the acquisition of conditioned place preference to morphine and cocaine, but not conditioned place aversion to naloxone in mice. Psychopharmacology 172:129–136Google Scholar
  126. Sakoori K, Murphy NP (2008a) Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 33:877–891Google Scholar
  127. Sakoori K, Murphy NP (2008b) Expression of morphine-conditioned place preference is more vulnerable than naloxone-conditioned place aversion to disruption by nociceptin in mice. Neurosci Lett 443:108–112Google Scholar
  128. Sakoori K, Murphy NP (2009) Enhanced nicotine sensitivity in nociceptin/orphanin FQ receptor knockout mice. Neuropharmacology 56:896–904Google Scholar
  129. Sartor GC, Powell SK, Wiedner HJ, Wahlestedt C, Brothers SP (2016) Nociceptin receptor activation does not alter acquisition, expression, extinction and reinstatement of conditioned cocaine preference in mice. Brain Res 1632:34–41Google Scholar
  130. Scholz A, Bothmer J, Kok M, Hoschen K, Daniels S (2018) Cebranopadol: a novel, first-in-class, strong analgesic: results from a randomized phase iia clinical trial in postoperative acute pain. Pain Physician 21:E193–E206Google Scholar
  131. Schunk S, Linz K, Hinze C, Frormann S, Oberborsch S, Sundermann B, Zemolka S, Englberger W, Germann T, Christoph T, Kogel BY, Schroder W, Harlfinger S, Saunders D, Kless A, Schick H, Sonnenschein H (2014) Discovery of a potent analgesic NOP and opioid receptor agonist: cebranopadol. ACS Med Chem Lett 5:857–862Google Scholar
  132. Scoto GM, Arico G, Ronsisvalle S, Parenti C (2007) Blockade of the nociceptin/orphanin FQ/NOP receptor system in the rat ventrolateral periaqueductal gray potentiates DAMGO analgesia. Peptides 28:1441–1446Google Scholar
  133. Scoto GM, Arico G, Iemolo A, Ronsisvalle S, Parenti C (2009) Involvement of the Nociceptin/Orphanin FQ-NOP receptor system in the ventrolateral periaqueductal gray following mechanical allodynia in chronic pain. Life Sci 85:206–210Google Scholar
  134. Shen Q, Deng Y, Ciccocioppo R, Cannella N (2017) Cebranopadol, a mixed opioid agonist, reduces cocaine self-administration through nociceptin opioid and Mu opioid receptors. Front Psych 8:234Google Scholar
  135. Shoblock JR, Wichmann J, Maidment NT (2005) The effect of a systemically active ORL-1 agonist, Ro 64-6198, on the acquisition, expression, extinction, and reinstatement of morphine conditioned place preference. Neuropharmacology 49:439–446Google Scholar
  136. Sim LJ, Childers SR (1997) Anatomical distribution of mu, delta, and kappa opioid- and nociceptin/orphanin FQ-stimulated [35S]guanylyl-5′-O-(gamma-thio)-triphosphate binding in guinea pig brain. J Comp Neurol 386:562–572Google Scholar
  137. Sim-Selley LJ, Vogt LJ, Childers SR, Vogt BA (2003) Distribution of ORL-1 receptor binding and receptor-activated G-proteins in rat forebrain and their experimental localization in anterior cingulate cortex. Neuropharmacology 45:220–230Google Scholar
  138. Slowe SJ, Clarke S, Lena I, Goody RJ, Lattanzi R, Negri L, Simonin F, Matthes HW, Filliol D, Kieffer BL, Kitchen I (2001) Autoradiographic mapping of the opioid receptor-like 1 (ORL1) receptor in the brains of mu-, delta- or kappa-opioid receptor knockout mice. Neuroscience 106:469–480Google Scholar
  139. Sommer WH, Rimondini R, Hansson AC, Hipskind PA, Gehlert DR, Barr CS, Heilig MA (2008) Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala crhr1 expression following a history of dependence. Biol Psychiatry 63:139–145Google Scholar
  140. Sorge RE, Stewart J (2006) The effects of chronic buprenorphine on intake of heroin and cocaine in rats and its effects on nucleus accumbens dopamine levels during self-administration. Psychopharmacology (Berl) 188:28–41Google Scholar
  141. Sorge RE, Rajabi H, Stewart J (2005) Rats maintained chronically on buprenorphine show reduced heroin and cocaine seeking in tests of extinction and drug-induced reinstatement. Neuropsychopharmacology 30:1681–1692Google Scholar
  142. Spanagel R (2009) Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol Rev 89:649–705Google Scholar
  143. Spanagel R, Noori HR, Heilig M (2014) Stress and alcohol interactions: animal studies and clinical significance. Trends Neurosci 37:219–227Google Scholar
  144. Sukhtankar DD, Lagorio CH, Ko MC (2014) Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats. Eur J Pharmacol 745:182–189Google Scholar
  145. Toledo MA, Pedregal C, Lafuente C, Diaz N, Martinez-Grau MA, Jimenez A, Benito A, Torrado A, Mateos C, Joshi EM, Kahl SD, Rash KS, Mudra DR, Barth VN, Shaw DB, McKinzie D, Witkin JM, Statnick MA (2014) Discovery of a novel series of orally active nociceptin/orphanin FQ (NOP) receptor antagonists based on a dihydrospiro(piperidine-4,7′-thieno[2,3-c]pyran) scaffold. J Med Chem 57:3418–3429Google Scholar
  146. Toll L (2013) The use of bifunctional NOP/Mu and NOP receptor selective compounds for the treatment of pain, drug abuse, and psychiatric disorders. Curr Pharm Des 19:7451–7460Google Scholar
  147. Toll L, Khroyan TV, Polgar WE, Jiang F, Olsen C, Zaveri NT (2009) Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/mu-opioid receptor ligands: implications for therapeutic applications. J Pharmacol Exp Ther 331:954–964Google Scholar
  148. Toll L, Bruchas MR, Calo G, Cox BM, Zaveri NT (2016) Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev 68:419–457Google Scholar
  149. Tzschentke TM, Kogel BY, Frosch S, Linz K (2017) Limited potential of cebranopadol to produce opioid-type physical dependence in rodents. Addict Biol 23:1010–1019Google Scholar
  150. Ueda H, Yamaguchi T, Tokuyama S, Inoue M, Nishi M, Takeshima H (1997) Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci Lett 237:136–138Google Scholar
  151. Uezu K, Sano A, Sei H, Toida K, Houtani T, Sugimoto T, Suzuki-Yamamoto T, Takeshima H, Ishimura K, Morita Y (2005) Enhanced hippocampal acetylcholine release in nociceptin-receptor knockout mice. Brain Res 1050:118–123Google Scholar
  152. Vazquez-DeRose J, Stauber G, Khroyan TV, Xie XS, Zaveri NT, Toll L (2013) Retrodialysis of N/OFQ into the nucleus accumbens shell blocks cocaine-induced increases in extracellular dopamine and locomotor activity. Eur J Pharmacol 699:200–206Google Scholar
  153. Walker JR, Spina M, Terenius L, Koob GF (1998) Nociceptin fails to affect heroin self-administration in the rat. Neuroreport 9:2243–2247Google Scholar
  154. Wee S, Vendruscolo LF, Misra KK, Schlosburg JE, Koob GF (2012) A combination of buprenorphine and naltrexone blocks compulsive cocaine intake in rodents without producing dependence. Sci Transl Med 4:146ra110Google Scholar
  155. Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225Google Scholar
  156. Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, Tucker RC, Ciccocioppo R (2014) The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 141:283–299Google Scholar
  157. Witta J, Palkovits M, Rosenberger J, Cox BM (2004) Distribution of nociceptin/orphanin FQ in adult human brain. Brain Res 997:24–29Google Scholar
  158. Wnendt S, Kruger T, Janocha E, Hildebrandt D, Englberger W (1999) Agonistic effect of buprenorphine in a nociceptin/OFQ receptor-triggered reporter gene assay. Mol Pharmacol 56:334–338Google Scholar
  159. Yuan L, Han Z, Chang JK, Han JS (1999) Accelerated release and production of orphanin FQ in brain of chronic morphine tolerant rats. Brain Res 826:330–334Google Scholar
  160. Zaveri NT (2011) The nociceptin/orphanin FQ receptor (NOP) as a target for drug abuse medications. Curr Top Med Chem 11:1151–1156Google Scholar
  161. Zaveri NT, Jiang F, Olsen C, Polgar WE, Toll L (2013) Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP receptor-selective scaffolds. Part I. Bioorg Med Chem Lett 23:3308–3313Google Scholar
  162. Zaveri NT, Marquez PV, Meyer ME, Hamid A, Lutfy K (2018a) The nociceptin receptor (NOP) agonist AT-312 blocks acquisition of morphine- and cocaine-induced conditioned place preference in mice. Front Psych 9:638Google Scholar
  163. Zaveri NT, Marquez PV, Meyer ME, Polgar WE, Hamid A, Lutfy K (2018b) A novel and selective nociceptin receptor (NOP) agonist (1-(1-((cis)-4-isopropylcyclohexyl)piperidin-4-yl)-1H-indol-2-yl)methanol (AT-312) decreases acquisition of ethanol-induced conditioned place preference in mice. Alcohol Clin Exp Res 42:461–471Google Scholar
  164. Zhao RJ, Woo RS, Jeong MS, Shin BS, Kim DG, Kim KW (2003) Orphanin FQ/nociceptin blocks methamphetamine place preference in rats. Neuroreport 14:2383–2385Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roberto Ciccocioppo
    • 1
    Email author
  • Anna Maria Borruto
    • 1
  • Ana Domi
    • 1
  • Koji Teshima
    • 2
  • Nazzareno Cannella
    • 1
  • Friedbert Weiss
    • 3
  1. 1.School of Pharmacy, Pharmacology UnitUniversity of CamerinoCamerinoItaly
  2. 2.Research Unit/Neuroscience, Innovative Research DivisionMitsubishi Tanabe Pharma CorporationOsakaJapan
  3. 3.Department of NeuroscienceThe Scripps Research InstituteLa JollaUSA

Personalised recommendations