Advertisement

pH Modulation of Voltage-Gated Sodium Channels

  • Colin H. Peters
  • Mohammad-Reza Ghovanloo
  • Cynthia Gershome
  • Peter C. RubenEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 246)

Abstract

Changes in blood and tissue pH accompany physiological and pathophysiological conditions including exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents. These effects are shared with disease-causing mutants in neuronal, skeletal muscle, and cardiac tissue and may be compounded in mutants that impart greater proton sensitivity to sodium channels, suggesting a role of protons in triggering acute symptoms of electrical disease.

In this chapter, we review the mechanisms of proton block of the sodium channel pore and a suggested mode of action by which protons alter channel gating. We discuss the available data on isoform specificity of proton effects and tissue level effects. Finally, we review the role that protons play in disease and our own recent studies on proton-sensitizing mutants in cardiac and skeletal muscle sodium channels.

Keywords

Acidosis Extracellular pH Ischemia Proton block Voltage-gated sodium channel 

References

  1. Allam S, Noble JS (2001) Cocaine-excited delirium and severe acidosis. Anaesthesia 56:385–386CrossRefPubMedGoogle Scholar
  2. Anselm DD, Evans JM, Baranchuk A (2014) Brugada phenocopy: a new electrocardiogram phenomenon. World J Cardiol 6:81–86.  https://doi.org/10.4330/wjc.v6.i3.81 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antzelevitch C, Brugada P, Borggrefe M et al (2005) Brugada syndrome: report of the second consensus conference endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111:659–670.  https://doi.org/10.1161/01.CIR.0000152479.54298.51 CrossRefPubMedGoogle Scholar
  4. Baranchuk A, Nguyen T, Ryu MH et al (2012) Brugada phenocopy: new terminology and proposed classification. Ann Noninvasive Electrocardiol 17:299–314.  https://doi.org/10.1111/j.1542-474X.2012.00525.x CrossRefPubMedGoogle Scholar
  5. Bennetts B, Parker MW, Cromer BA (2007) Inhibition of skeletal muscle ClC-1 chloride channels by low intracellular pH and ATP. J Biol Chem 282:32780–32791.  https://doi.org/10.1074/jbc.M703259200 CrossRefPubMedGoogle Scholar
  6. Butterworth J, Tennant MC (1989) Postmortem human brain pH and lactate in sudden infant death syndrome. J Neurochem 53:1494–1499.  https://doi.org/10.1111/j.1471-4159.1989.tb08543.x CrossRefPubMedGoogle Scholar
  7. Campbell DT (1982) Do protons block Na+ channels by binding to a site outside the pore? Nature 298:165–167.  https://doi.org/10.1038/298165a0 CrossRefPubMedGoogle Scholar
  8. Cannon SC (1996) Sodium channel defects in myotonia and periodic paralysis. Annu Rev Neurosci 19:141–164.  https://doi.org/10.1146/annurev.ne.19.030196.001041 CrossRefPubMedGoogle Scholar
  9. Catterall WA (2012) Sodium channel mutations and epilepsy. In: Noebels JL, Avoli M, Rogawski MA et al (eds) Jasper’s basic mechanisms of the epilepsies, 4th edn. National Center for Biotechnology Information (US), BethesdaGoogle Scholar
  10. Cheng X, Dib-Hajj SD, Tyrrell L et al (2010) Mutations at opposite ends of the DIII/S4-S5 linker of sodium channel Na V 1.7 produce distinct pain disorders. Mol Pain 6:24.  https://doi.org/10.1186/1744-8069-6-24 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cheng J, Tester DJ, Tan B-H et al (2011) The common African American polymorphism SCN5A-S1103Y interacts with mutation SCN5A-R680H to increase late Na current. Physiol Genomics 43:461–466.  https://doi.org/10.1152/physiolgenomics.00198.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cobbe SM, Poole-Wilson PA (1980) The time of onset and severity of acidosis in myocardial ischaemia. J Mol Cell Cardiol 12:745–760CrossRefPubMedGoogle Scholar
  13. Constantinou JE, Gillis J, Ouvrier RA, Rahilly PM (1989) Hypoxic-ischaemic encephalopathy after near miss sudden infant death syndrome. Arch Dis Child 64:703–708.  https://doi.org/10.1136/adc.64.5.703 CrossRefPubMedPubMedCentralGoogle Scholar
  14. DeCaen PG, Takahashi Y, Krulwich TA et al (2014) Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus. Elife 3:e04387.  https://doi.org/10.7554/eLife.04387 CrossRefPubMedCentralGoogle Scholar
  15. Di Diego JM, Fish JM, Antzelevitch C (2005) Brugada syndrome and ischemia-induced ST-segment elevation. Similarities and differences. J Electrocardiol 38:14–17.  https://doi.org/10.1016/j.jelectrocard.2005.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dravet C (2011) The core Dravet syndrome phenotype. Epilepsia 52:3–9.  https://doi.org/10.1111/j.1528-1167.2011.02994.x CrossRefPubMedGoogle Scholar
  17. Epstein SK, Singh N (2001) Respiratory acidosis. Respir Care 46:366–383PubMedGoogle Scholar
  18. Estacion M, Gasser A, Dib-Hajj SD, Waxman SG (2010) A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Exp Neurol 224:362–368.  https://doi.org/10.1016/j.expneurol.2010.04.012 CrossRefPubMedGoogle Scholar
  19. Fleet WF, Johnson TA, Graebner CA, Gettes LS (1985) Effect of serial brief ischemic episodes on extracellular K+, pH, and activation in the pig. Circulation 72:922–932.  https://doi.org/10.1161/01.CIR.72.4.922 CrossRefPubMedGoogle Scholar
  20. Fry CH, Poole-Wilson PA (1981) Effects of acid-base changes on excitation--contraction coupling in guinea-pig and rabbit cardiac ventricular muscle. J Physiol 313:141–160CrossRefPubMedPubMedCentralGoogle Scholar
  21. García-Borbolla M, García-Borbolla R, Valenzuela LF et al (2007) Ventricular tachycardia induced by exercise testing in a patient with Brugada syndrome. Rev Esp Cardiol 60:993–994CrossRefPubMedGoogle Scholar
  22. Ghovanloo M-R, Abdelsayed M, Peters CH, Ruben PC (2017) A mixed periodic paralysis & myotonia mutant, P1158S, imparts pH sensitivity in skeletal muscle voltage-gated sodium channels. bioRxiv 164988.  https://doi.org/10.1101/164988
  23. Haberlandt E, Canestrini C, Brunner-Krainz M et al (2009) Epilepsy in patients with propionic acidemia. Neuropediatrics 40:120–125.  https://doi.org/10.1055/s-0029-1243167 CrossRefPubMedGoogle Scholar
  24. Hermansen L, Osnes JB (1972) Blood and muscle pH after maximal exercise in man. J Appl Physiol 32:304–308CrossRefPubMedGoogle Scholar
  25. Heron SE, Crossland KM, Andermann E et al (2002) Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 360:851–852.  https://doi.org/10.1016/S0140-6736(02)09968-3 CrossRefPubMedGoogle Scholar
  26. Hick JL, Smith SW, Lynch MT (1999) Metabolic acidosis in restraint-associated cardiac arrest: a case series. Acad Emerg Med 6:239–243CrossRefPubMedGoogle Scholar
  27. Hu R-M, Tan B-H, Tester DJ et al (2015) Arrhythmogenic biophysical phenotype for SCN5A mutation S1787N depends upon splice variant background and intracellular acidosis. PLoS One 10:e0124921.  https://doi.org/10.1371/journal.pone.0124921 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huang L, Zhao S, Lu W et al (2015) Acidosis-induced dysfunction of cortical GABAergic neurons through astrocyte-related excitotoxicity. PLoS One 10:e0140324.  https://doi.org/10.1371/journal.pone.0140324 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jones DK, Peters CH, Tolhurst SA et al (2011) Extracellular proton modulation of the cardiac voltage-gated sodium channel, Nav1.5. Biophys J 101:2147–2156.  https://doi.org/10.1016/j.bpj.2011.08.056 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jones DK, Claydon TW, Ruben PC (2013a) Extracellular protons inhibit charge immobilization in the cardiac voltage-gated sodium channel. Biophys J 105:101–107.  https://doi.org/10.1016/j.bpj.2013.04.022 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jones DK, Peters CH, Allard CR et al (2013b) Proton sensors in the pore domain of the cardiac voltage-gated sodium channel. J Biol Chem 288:4782–4791.  https://doi.org/10.1074/jbc.M112.434266 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kang I-S, Cho J-H, Choi I-S et al (2016) Acidic pH modulation of Na+ channels in trigeminal mesencephalic nucleus neurons. Neuroreport 27:1274–1280.  https://doi.org/10.1097/WNR.0000000000000692 CrossRefPubMedGoogle Scholar
  33. Khan A, Romantseva L, Lam A et al (2002) Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol 543:71–84.  https://doi.org/10.1113/jphysiol.2002.021014 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Khan A, Kyle JW, Hanck DA et al (2006) Isoform-dependent interaction of voltage-gated sodium channels with protons. J Physiol 576:493–501.  https://doi.org/10.1113/jphysiol.2006.115659 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kiyosue T, Arita M (1989) Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ Res 64:389–397.  https://doi.org/10.1161/01.RES.64.2.389 CrossRefPubMedGoogle Scholar
  36. Kléber AG, Janse MJ, Wilms-Schopmann FJ et al (1986) Changes in conduction velocity during acute ischemia in ventricular myocardium of the isolated porcine heart. Circulation 73:189–198.  https://doi.org/10.1161/01.CIR.73.1.189 CrossRefPubMedGoogle Scholar
  37. Komukai K, Brette F, Pascarel C, Orchard CH (2002) Electrophysiological response of rat ventricular myocytes to acidosis. Am J Physiol Heart Circ Physiol 283:H412–H422.  https://doi.org/10.1152/ajpheart.01042.2001 CrossRefPubMedGoogle Scholar
  38. Li F, Liu X, Su Z, Sun R (2011) Acidosis leads to brain dysfunctions through impairing cortical GABAergic neurons. Biochem Biophys Res Commun 410:775–779.  https://doi.org/10.1016/j.bbrc.2011.06.053 CrossRefPubMedGoogle Scholar
  39. Littmann L, Monroe MH, Svenson RH (2000) Brugada-type electrocardiographic pattern induced by cocaine. Mayo Clin Proc 75:845–849.  https://doi.org/10.4065/75.8.845 CrossRefPubMedGoogle Scholar
  40. Ma X, Zhang Y, Yang Y et al (2011) Epilepsy in children with methylmalonic acidemia: electroclinical features and prognosis. Brain and Development 33:790–795.  https://doi.org/10.1016/j.braindev.2011.06.001 CrossRefPubMedGoogle Scholar
  41. Makita N, Behr E, Shimizu W et al (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 118:2219–2229.  https://doi.org/10.1172/JCI34057 CrossRefPubMedPubMedCentralGoogle Scholar
  42. McClelland VM, Bakalinova DB, Hendriksz C, Singh RP (2009) Glutaric aciduria type 1 presenting with epilepsy. Dev Med Child Neurol 51:235–239.  https://doi.org/10.1111/j.1469-8749.2008.03240.x CrossRefPubMedGoogle Scholar
  43. Meadows LS, Isom LL (2005) Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. Cardiovasc Res 67:448–458.  https://doi.org/10.1016/j.cardiores.2005.04.003 CrossRefPubMedGoogle Scholar
  44. Miller TM, Dias da Silva MR, Miller HA et al (2004) Correlating phenotype and genotype in the periodic paralyses. Neurology 63:1647–1655CrossRefPubMedGoogle Scholar
  45. Murphy L, Renodin D, Antzelevitch C et al (2011) Extracellular proton depression of peak and late Na+ current in the canine left ventricle. Am J Physiol Heart Circ Physiol 301:H936–H944.  https://doi.org/10.1152/ajpheart.00204.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ortega-Carnicer J, Bertos-Polo J, Gutiérrez-Tirado C (2001) Aborted sudden death, transient Brugada pattern, and wide QRS dysrrhythmias after massive cocaine ingestion. J Electrocardiol 34:345–349CrossRefPubMedGoogle Scholar
  47. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358.  https://doi.org/10.1038/nature10238 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Payandeh J, Gamal El-Din TM, Scheuer T et al (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135–139.  https://doi.org/10.1038/nature11077 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pedersen TH, de Paoli F, Nielsen OB (2005) Increased excitability of acidified skeletal muscle. J Gen Physiol 125:237–246.  https://doi.org/10.1085/jgp.200409173 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Peters C, Sokolov S, Rajamani S, Ruben P (2013) Effects of the antianginal drug, ranolazine, on the brain sodium channel NaV1.2 and its modulation by extracellular protons. Br J Pharmacol 169:704–716.  https://doi.org/10.1111/bph.12150 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Peters CH, Abdelsayed M, Ruben PC (2016) Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes. Prog Biophys Mol Biol 120(1–3):77–88.  https://doi.org/10.1016/j.pbiomolbio.2015.12.009 CrossRefPubMedGoogle Scholar
  52. Postema PG, Vlaar APJ, DeVries JH, Tan HL (2011) Familial Brugada syndrome uncovered by hyperkalaemic diabetic ketoacidosis. Europace 13:1509–1510.  https://doi.org/10.1093/europace/eur151 CrossRefPubMedGoogle Scholar
  53. Ruan Y, Denegri M, Liu N et al (2010) Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ Res 106:1374–1383.  https://doi.org/10.1161/CIRCRESAHA.110.218891 CrossRefPubMedGoogle Scholar
  54. Scalmani P, Rusconi R, Armatura E et al (2006) Effects in neocortical neurons of mutations of the Na(v)1.2 Na+ channel causing benign familial neonatal-infantile seizures. J Neurosci 26:10100–10109.  https://doi.org/10.1523/JNEUROSCI.2476-06.2006 CrossRefPubMedGoogle Scholar
  55. Shi YP, Cheng YM, Van Slyke AC, Claydon TW (2014) External protons destabilize the activated voltage sensor in hERG channels. Eur Biophys J 43:59–69.  https://doi.org/10.1007/s00249-013-0940-y CrossRefPubMedGoogle Scholar
  56. Shimizu W, Antzelevitch C (1999) Cellular basis for long QT, transmural dispersion of repolarization, and torsade de pointes in the long QT syndrome. J Electrocardiol 32(Suppl):177–184CrossRefPubMedGoogle Scholar
  57. Silva JR, Goldstein SAN (2013a) Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4. J Gen Physiol 141:309–321.  https://doi.org/10.1085/jgp.201210909 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Silva JR, Goldstein SAN (2013b) Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: a periodic paralysis mutation in Na(V)1.4 (L689I). J Gen Physiol 141:323–334.  https://doi.org/10.1085/jgp.201210910 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sokolov S, Peters CH, Rajamani S, Ruben PC (2013) Proton-dependent inhibition of the cardiac sodium channel Nav1.5 by ranolazine. Front Pharmacol 4.  https://doi.org/10.3389/fphar.2013.00078
  60. Sun YM, Favre I, Schild L, Moczydlowski E (1997) On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J Gen Physiol 110:693–715CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tang Q, Ma J, Zhang P et al (2012) Persistent sodium current and Na+/H+ exchange contributes to the augmentation of the reverse Na+/Ca2+ exchange during hypoxia or acute ischemia in ventricular myocytes. Pflügers Arch - Eur J Physiol 463:513–522.  https://doi.org/10.1007/s00424-011-1070-y CrossRefGoogle Scholar
  62. Terlau H, Heinemann SH, Stühmer W et al (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293:93–96.  https://doi.org/10.1016/0014-5793(91)81159-6 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tombaugh GC, Somjen GG (1996) Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons. J Physiol 493:719–732CrossRefPubMedPubMedCentralGoogle Scholar
  64. Van Slyke AC, Cheng YM, Mafi P et al (2012) Proton block of the pore underlies the inhibition of hERG cardiac K+ channels during acidosis. Am J Physiol Cell Physiol 302:C1797–C1806.  https://doi.org/10.1152/ajpcell.00324.2011 CrossRefPubMedGoogle Scholar
  65. Veeramah KR, O’Brien JE, Meisler MH et al (2012) De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 90:502–510.  https://doi.org/10.1016/j.ajhg.2012.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vilin YY, Fujimoto E, Ruben PC (2001) A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys J 80:2221–2230.  https://doi.org/10.1016/S0006-3495(01)76195-4 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vilin YY, Peters CH, Ruben PC (2012) Acidosis differentially modulates inactivation in na(v)1.2, na(v)1.4, and na(v)1.5 channels. Front Pharmacol 3:109.  https://doi.org/10.3389/fphar.2012.00109 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang Q, Shen J, Splawski I et al (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811CrossRefPubMedGoogle Scholar
  69. Wang W, Tiwari JK, Bradley SR et al (2001) Acidosis-stimulated neurons of the medullary raphe are serotonergic. J Neurophysiol 85:2224–2235CrossRefPubMedGoogle Scholar
  70. Watson CL, Gold MR (1995) Effect of intracellular and extracellular acidosis on sodium current in ventricular myocytes. Am J Phys 268:H1749–H1756Google Scholar
  71. Webb J, Cannon SC (2008) Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotonia. Neurology 70:755–761.  https://doi.org/10.1212/01.wnl.0000265397.70057.d8 CrossRefPubMedGoogle Scholar
  72. Wilde AAM, Postema PG, Di Diego JM et al (2010) The pathophysiological mechanism underlying Brugada syndrome. J Mol Cell Cardiol 49:543–553.  https://doi.org/10.1016/j.yjmcc.2010.07.012 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61:687–708CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yan GX, Kléber AG (1992) Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ Res 71:460–470CrossRefPubMedGoogle Scholar
  75. Yatani A, Brown AM, Akaike N (1984) Effect of extracellular pH on sodium current in isolated, single rat ventricular cells. J Membr Biol 78:163–168CrossRefPubMedGoogle Scholar
  76. Yu FH, Mantegazza M, Westenbroek RE et al (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9:1142–1149.  https://doi.org/10.1038/nn1754 CrossRefPubMedGoogle Scholar
  77. Zhan R-Z, Nadler JV, Schwartz-Bloom RD (2007) Impaired firing and sodium channel function in CA1 hippocampal interneurons after transient cerebral ischemia. J Cereb Blood Flow Metab 27:1444–1452.  https://doi.org/10.1038/sj.jcbfm.9600448 CrossRefPubMedGoogle Scholar
  78. Zhang JF, Siegelbaum SA (1991) Effects of external protons on single cardiac sodium channels from guinea pig ventricular myocytes. J Gen Physiol 98:1065–1083CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Colin H. Peters
    • 1
  • Mohammad-Reza Ghovanloo
    • 1
  • Cynthia Gershome
    • 1
  • Peter C. Ruben
    • 1
    Email author
  1. 1.Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyCanada

Personalised recommendations