Selective Ligands and Drug Discovery Targeting the Voltage-Gated Sodium Channel Nav1.7

  • Jian PayandehEmail author
  • David H. HackosEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 246)


The voltage-gated sodium (Nav) channel Nav1.7 has been the focus of intense investigation in recent years. Human genetics studies of individuals with gain-of-function and loss-of-function mutations in the Nav1.7 channel have implicated Nav1.7 as playing a critical role in pain. Therefore, selective inhibition of Nav1.7 represents a potentially new analgesic strategy that is expected to be devoid of the significant liabilities associated with available treatment options. Although the identification and development of selective Nav channel modulators have historically been challenging, a number of recent publications has demonstrated progression of increasingly subtype-selective small molecules and peptides toward potential use in preclinical or clinical studies. In this respect, we focus on three binding sites that appear to offer the highest potential for the discovery and optimization of Nav1.7-selective inhibitors: the extracellular vestibule of the pore, the extracellular loops of voltage-sensor domain II (VSD2), and the extracellular loops of voltage-sensor domain IV (VSD4). Notably, these three receptor sites on Nav1.7 can all be defined as extracellular druggable sites, suggesting that non-small molecule formats are potential therapeutic options. In this chapter, we will review specific considerations and challenges underlying the identification and optimization of selective, potential therapeutics targeting Nav1.7 for chronic pain indications.


Drug discovery Nav1.7 Pain Subtype-selectivity Voltage-gated sodium channel 


  1. Abdelsayed M, Sokolov S (2013) Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes. Channels (Austin) 7:146–152CrossRefGoogle Scholar
  2. Abriel H, Kass RS (2005) Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins. Trends Cardiovasc Med 15:35–40PubMedCrossRefGoogle Scholar
  3. Agwa AJ, Huang YH, Craik DJ, Henriques ST, Schroeder CI (2017a) Lengths of the C-terminus and interconnecting loops impact stability of spider-derived gating modifier toxins. Toxins (Basel) 9:248CrossRefGoogle Scholar
  4. Agwa AJ, Lawrence N, Deplazes E, Cheneval O, Chen RM, Craik DJ, Schroeder CI, Henriques ST (2017b) Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNaV1.7. Biochim Biophys Acta 1859:835–844PubMedCrossRefGoogle Scholar
  5. Ahern CA, Eastwood AL, Dougherty DA, Horn R (2008) Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res 102:86–94PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ahern CA, Payandeh J, Bosmans F, Chanda B (2016) The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 147:1–24PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ahmad S, Dahllund L, Eriksson AB, Hellgren D, Karlsson U, Lund PE, Meijer IA, Meury L, Mills T, Moody A et al (2007) A stop codon mutation in SCN9A causes lack of pain sensation. Hum Mol Genet 16:2114–2121PubMedCrossRefGoogle Scholar
  8. Ahuja S, Mukund S, Deng L, Khakh K, Chang E, Ho H, Shriver S, Young C, Lin S, Johnson JP Jr et al (2015) Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350:aac5464PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alexandrou AJ, Brown AR, Chapman ML, Estacion M, Turner J, Mis MA, Wilbrey A, Payne EC, Gutteridge A, Cox PJ et al (2016) Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS One 11:e0152405PubMedPubMedCentralCrossRefGoogle Scholar
  10. Armstrong CM, Bezanilla F (1973) Currents related to movement of the gating particles of the sodium channels. Nature 242:459–461PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bagal SK, Marron BE, Owen RM, Storer RI, Swain NA (2015) Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9:360–366CrossRefGoogle Scholar
  12. Bagneris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci U S A 111:8428–8433PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barhanin J, Pauron D, Lombet A, Norman RI, Vijverberg HP, Giglio JR, Lazdunski M (1983) Electrophysiological characterization, solubilization and purification of the Tityus γ toxin receptor associated with the gating component of the Na+ channel from rat brain. EMBO J 2:915–920PubMedPubMedCentralCrossRefGoogle Scholar
  14. Beneski DA, Catterall WA (1980) Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci U S A 77:639–643PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592PubMedPubMedCentralCrossRefGoogle Scholar
  16. Biswas K, Nixey TE, Murray JK, Falsey JR, Yin L, Liu H, Gingras J, Hall BE, Herberich B, Holder JR et al (2017) Engineering antibody reactivity for efficient derivatization to generate NaV1.7 inhibitory GpTx-1 peptide-antibody conjugates. ACS Chem Biol 12:2427–2435PubMedCrossRefGoogle Scholar
  17. Black JA, Dib-Hajj S, McNabola K, Jeste S, Rizzo MA, Kocsis JD, Waxman SG (1996) Spinal sensory neurons express multiple sodium channel α-subunit mRNAs. Brain Res Mol Brain Res 43:117–131PubMedCrossRefGoogle Scholar
  18. Black JA, Frezel N, Dib-Hajj SD, Waxman SG (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bosmans F, Swartz KJ (2010) Targeting voltage sensors in sodium channels with spider toxins. Trends Pharmacol Sci 31:175–182PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bosmans F, Martin-Eauclaire MF, Swartz KJ (2008) Deconstructing voltage sensor function and pharmacology in sodium channels. Nature 456:202–208PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brady RM, Zhang M, Gable R, Norton RS, Baell JB (2013) De novo design and synthesis of a μ-conotoxin KIIIA peptidomimetic. Bioorg Med Chem Lett 23:4892–4895PubMedCrossRefGoogle Scholar
  22. Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S, Lee AK, Wood JN, Sternson SM (2016) Near-perfect synaptic integration by Nav1.7 in hypothalamic neurons regulates body weight. Cell 165:1749–1761PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brouwer BA, Merkies IS, Gerrits MM, Waxman SG, Hoeijmakers JG, Faber CG (2014) Painful neuropathies: the emerging role of sodium channelopathies. J Peripher Nerv Syst 19:53–65PubMedCrossRefPubMedCentralGoogle Scholar
  24. Campos FV, Chanda B, Beirao PS, Bezanilla F (2008) α-Scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels. J Gen Physiol 132:251–263PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cannon SC (2010) Voltage-sensor mutations in channelopathies of skeletal muscle. J Physiol 588:1887–1895PubMedPubMedCentralCrossRefGoogle Scholar
  26. Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 142:101–112PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cardoso FC, Dekan Z, Rosengren KJ, Erickson A, Vetter I, Deuis JR, Herzig V, Alewood PF, King GF, Lewis RJ (2015) Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens. Mol Pharmacol 88:291–303PubMedCrossRefGoogle Scholar
  28. Catterall WA (1976) Purification of a toxic protein from scorpion venom which activates the action potential Na+ ionophore. J Biol Chem 251:5528–5536PubMedGoogle Scholar
  29. Catterall WA (1977) Membrane potential-dependent binding of scorpion toxin to the action potential Na+ ionophore. Studies with a toxin derivative prepared by lactoperoxidase-catalyzed iodination. J Biol Chem 252:8660–8668PubMedGoogle Scholar
  30. Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–928PubMedPubMedCentralCrossRefGoogle Scholar
  31. Catterall WA, Goldin AL, Waxman SG (2005a) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409PubMedPubMedCentralCrossRefGoogle Scholar
  32. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005b) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425PubMedPubMedCentralCrossRefGoogle Scholar
  33. Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124–141PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 82:883–892PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cestele S, Qu Y, Rogers JC, Rochat H, Scheuer T, Catterall WA (1998) Voltage sensor-trapping: enhanced activation of sodium channels by β-scorpion toxin bound to the S3-S4 loop in domain II. Neuron 21:919–931PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cestele S, Scheuer T, Mantegazza M, Rochat H, Catterall WA (2001) Neutralization of gating charges in domain II of the sodium channel α subunit enhances voltage-sensor trapping by a β-scorpion toxin. J Gen Physiol 118:291–302PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cestele S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA (2006) Structure and function of the voltage sensor of sodium channels probed by a β-scorpion toxin. J Biol Chem 281:21332–21344PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cha A, Ruben PC, George AL Jr, Fujimoto E, Bezanilla F (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22:73–87PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chahine M, O’Leary ME (2011) Regulatory role of voltage-gated Na channel β subunits in sensory neurons. Front Pharmacol 2:70PubMedPubMedCentralGoogle Scholar
  40. Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120:629–645PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chanda B, Asamoah OK, Bezanilla F (2004) Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J Gen Physiol 123:217–230PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chanda B, Asamoah OK, Blunck R, Roux B, Bezanilla F (2005) Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436:852–856PubMedCrossRefGoogle Scholar
  43. Chow CY, Cristofori-Armstrong B, Undheim EA, King GF, Rash LD (2015) Three peptide modulators of the human voltage-gated sodium channel 1.7, an important analgesic target, from the venom of an Australian tarantula. Toxins (Basel) 7:2494–2513CrossRefGoogle Scholar
  44. Clairfeuille T, Xu H, Koth CM, Payandeh J (2017) Voltage-gated sodium channels viewed through a structural biology lens. Curr Opin Struct Biol 45:74–84PubMedCrossRefGoogle Scholar
  45. Cohen CJ, Bean BP, Colatsky TJ, Tsien RW (1981) Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. Interactions between toxin binding and channel gating. J Gen Physiol 78:383–411PubMedCrossRefGoogle Scholar
  46. Cohen L, Ilan N, Gur M, Stuhmer W, Gordon D, Gurevitz M (2007) Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture. J Biol Chem 282:29424–29430PubMedPubMedCentralCrossRefGoogle Scholar
  47. Couraud F, Rochat H, Lissitzky S (1978) Binding of scorpion and sea anemone neurotoxins to a common site related to the action potential Na+ ionophore in neuroblastoma cells. Biochem Biophys Res Commun 83:1525–1530PubMedCrossRefGoogle Scholar
  48. Couraud F, Jover E, Dubois JM, Rochat H (1982) Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20:9–16PubMedCrossRefGoogle Scholar
  49. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cox JJ, Sheynin J, Shorer Z, Reimann F, Nicholas AK, Zubovic L, Baralle M, Wraige E, Manor E, Levy J et al (2010) Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat 31:E1670–E1686PubMedCrossRefGoogle Scholar
  51. Cummins TR, Howe JR, Waxman SG (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18:9607–9619PubMedCrossRefGoogle Scholar
  52. Das S, Gilchrist J, Bosmans F, Van Petegem F (2016) Binary architecture of the Nav1.2-β2 signaling complex. Elife. 2016;5. pii: e10960Google Scholar
  53. de Lera Ruiz M, Kraus RL (2015) Voltage-gated sodium channels: structure, function, pharmacology, and clinical indications. J Med Chem 58:7093–7118PubMedCrossRefGoogle Scholar
  54. Deuis JR, Wingerd JS, Winter Z, Durek T, Dekan Z, Sousa SR, Zimmermann K, Hoffmann T, Weidner C, Nassar MA et al (2016) Analgesic effects of GpTx-1, PF-04856264 and CNV1014802 in a mouse model of NaV1.7-mediated pain. Toxins (Basel). 201;8(3). pii: E78PubMedCentralCrossRefGoogle Scholar
  55. Deuis JR, Dekan Z, Wingerd JS, Smith JJ, Munasinghe NR, Bhola RF, Imlach WL, Herzig V, Armstrong DA, Rosengren KJ et al (2017) Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Sci Rep 7:40883PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 95:8963–8968PubMedPubMedCentralCrossRefGoogle Scholar
  57. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325–347PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dib-Hajj SD, Yang Y, Black JA, Waxman SG (2013) The NaV1.7 sodium channel: from molecule to man. Nat Rev Neurosci 14:49–62PubMedCrossRefPubMedCentralGoogle Scholar
  59. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77PubMedPubMedCentralCrossRefGoogle Scholar
  60. Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51:1650–1658PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fischer TZ, Waxman SG (2010) Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann N Y Acad Sci 1184:196–207PubMedCrossRefGoogle Scholar
  62. Flinspach M, Xu Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, Liu Y, Neff RA, Freedman J, Eckert WA et al (2017) Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci Rep 7:39662PubMedPubMedCentralCrossRefGoogle Scholar
  63. Focken T, Liu S, Chahal N, Dauphinais M, Grimwood ME, Chowdhury S, Hemeon I, Bichler P, Bogucki D, Waldbrook M et al (2016) Discovery of aryl sulfonamides as isoform-selective inhibitors of NaV1.7 with efficacy in rodent pain models. ACS Med Chem Lett 7:277–282PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fozzard HA, Sheets MF, Hanck DA (2011) The sodium channel as a target for local anesthetic drugs. Front Pharmacol 2:68PubMedPubMedCentralCrossRefGoogle Scholar
  65. French RJ, Yoshikami D, Sheets MF, Olivera BM (2010) The tetrodotoxin receptor of voltage-gated sodium channels – perspectives from interactions with μ-conotoxins. Mar Drugs 8:2153–2161PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fry M, Boegle AK, Maue RA (2007) Differentiated pattern of sodium channel expression in dissociated Purkinje neurons maintained in long-term culture. J Neurochem 101:737–748PubMedCrossRefGoogle Scholar
  67. Gilchrist J, Das S, Van Petegem F, Bosmans F (2013) Crystallographic insights into sodium-channel modulation by the β4 subunit. Proc Natl Acad Sci U S A 110:E5016–E5024PubMedPubMedCentralCrossRefGoogle Scholar
  68. Glaaser IW, Clancy CE (2006) Cardiac Na+ channels as therapeutic targets for antiarrhythmic agents. Handb Exp Pharmacol 171:99–121CrossRefGoogle Scholar
  69. Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C, Hossain S, Pape T et al (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71:311–319PubMedCrossRefGoogle Scholar
  70. Graceffa RF, Boezio AA, Able J, Altmann S, Berry LM, Boezio C, Butler JR, Chu-Moyer M, Cooke M, DiMauro EF et al (2017) Sulfonamides as selective NaV1.7 inhibitors: optimizing potency, pharmacokinetics, and metabolic properties to obtain atropisomeric quinolinone (AM-0466) that affords robust in vivo activity. J Med Chem 60:5990–6017PubMedCrossRefGoogle Scholar
  71. Guo J, Zeng W, Chen Q, Lee C, Chen L, Yang Y, Cang C, Ren D, Jiang Y (2016) Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:196–201PubMedCrossRefGoogle Scholar
  72. Gur M, Kahn R, Karbat I, Regev N, Wang J, Catterall WA, Gordon D, Gurevitz M (2011) Elucidation of the molecular basis of selective recognition uncovers the interaction site for the core domain of scorpion α-toxins on sodium channels. J Biol Chem 286:35209–35217PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W et al (2005) International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 57:473–508PubMedCrossRefGoogle Scholar
  74. Habib AM, Wood JN, Cox JJ (2015) Sodium channels and pain. Handb Exp Pharmacol 227:39–56PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hackel D, Krug SM, Sauer RS, Mousa SA, Bocker A, Pflucke D, Wrede EJ, Kistner K, Hoffmann T, Niedermirtl B et al (2012) Transient opening of the perineurial barrier for analgesic drug delivery. Proc Natl Acad Sci U S A 109:E2018–E2027PubMedPubMedCentralCrossRefGoogle Scholar
  76. Henriques ST, Deplazes E, Lawrence N, Cheneval O, Chaousis S, Inserra M, Thongyoo P, King GF, Mark AE, Vetter I et al (2016) Interaction of tarantula venom peptide ProTx-II with lipid membranes is a prerequisite for its inhibition of human voltage-gated sodium channel NaV1.7. J Biol Chem 291:17049–17065PubMedPubMedCentralCrossRefGoogle Scholar
  77. Herzog RI, Cummins TR, Ghassemi F, Dib-Hajj SD, Waxman SG (2003) Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551:741–750PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hille B (1975) The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys J 15:615–619PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  80. Ho C, O’Leary ME (2011) Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 46:159–166PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hockley JR, Gonzalez-Cano R, McMurray S, Tejada-Giraldez MA, McGuire C, Torres A, Wilbrey AL, Cibert-Goton V, Nieto FR, Pitcher T et al (2017) Visceral and somatic pain modalities reveal NaV 1.7-independent visceral nociceptive pathways. J Physiol 595:2661–2679PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hosseinzadeh P, Bhardwaj G, Mulligan VK, Shortridge MD, Craven TW, Pardo-Avila F, Rettie SA, Kim DE, Silva D, Ibrahim YM et al (2017) Comprehensive computational design of ordered peptide macrocycles. Science 358:1461–1466PubMedPubMedCentralCrossRefGoogle Scholar
  84. Huang W, Liu M, Yan SF, Yan N (2017) Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell 8:401–438PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hui K, Lipkind G, Fozzard HA, French RJ (2002) Electrostatic and steric contributions to block of the skeletal muscle sodium channel by μ-conotoxin. J Gen Physiol 119:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  86. Israel MR, Tay B, Deuis JR, Vetter I (2017) Sodium channels and venom peptide pharmacology. Adv Pharmacol 79:67–116PubMedCrossRefGoogle Scholar
  87. Jaimovich E, Ildefonse M, Barhanin J, Rougier O, Lazdunski M (1982) Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor. Proc Natl Acad Sci U S A 79:3896–3900PubMedPubMedCentralCrossRefGoogle Scholar
  88. Jalali A, Bosmans F, Amininasab M, Clynen E, Cuypers E, Zaremirakabadi A, Sarbolouki MN, Schoofs L, Vatanpour H, Tytgat J (2005) OD1, the first toxin isolated from the venom of the scorpion Odonthobuthus doriae active on voltage-gated Na+ channels. FEBS Lett 579:4181–4186PubMedCrossRefGoogle Scholar
  89. Jones HM, Butt RP, Webster RW, Gurrell I, Dzygiel P, Flanagan N, Fraier D, Hay T, Iavarone LE, Luckwell J et al (2016) Clinical micro-dose studies to explore the human pharmacokinetics of four selective inhibitors of human Nav1.7 voltage-dependent sodium channels. Clin Pharmacokinet 55:875–887PubMedCrossRefGoogle Scholar
  90. Klint JK, Smith JJ, Vetter I, Rupasinghe DB, Er SY, Senff S, Herzig V, Mobli M, Lewis RJ, Bosmans F et al (2015a) Seven novel modulators of the analgesic target NaV 1.7 uncovered using a high-throughput venom-based discovery approach. Br J Pharmacol 172:2445–2458PubMedPubMedCentralCrossRefGoogle Scholar
  91. Klint JK, Chin YK, Mobli M (2015b) Rational engineering defines a molecular switch that is essential for activity of spider-venom peptides against the analgesics target NaV1.7. Mol Pharmacol 88:1002–1010PubMedCrossRefGoogle Scholar
  92. Klugbauer N, Lacinova L, Flockerzi V, Hofmann F (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14:1084–1090PubMedPubMedCentralCrossRefGoogle Scholar
  93. Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel) 4:1236–1260CrossRefGoogle Scholar
  94. Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP, Jarosh M, Johnson D, Lee JH, Lehto SG et al (2017) Pharmacologic characterization of AMG8379, a potent and selective small molecule sulfonamide antagonist of the voltage-gated sodium channel NaV1.7. J Pharmacol Exp Ther 362:146–160PubMedCrossRefGoogle Scholar
  95. Kurban M, Wajid M, Shimomura Y, Christiano AM (2010) A nonsense mutation in the SCN9A gene in congenital insensitivity to pain. Dermatology 221:179–183PubMedPubMedCentralCrossRefGoogle Scholar
  96. La DS, Peterson EA, Bode C, Boezio AA, Bregman H, Chu-Moyer MY, Coats J, DiMauro EF, Dineen TA, Du B et al (2017) The discovery of benzoxazine sulfonamide inhibitors of NaV1.7: tools that bridge efficacy and target engagement. Bioorg Med Chem Lett 27:3477–3485PubMedCrossRefGoogle Scholar
  97. Lacroix JJ, Campos FV, Frezza L, Bezanilla F (2013) Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. Neuron 79:651–657PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lampert A, Eberhardt M, Waxman SG (2014) Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. Handb Exp Pharmacol 221:91–110PubMedCrossRefPubMedCentralGoogle Scholar
  99. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lee SY, MacKinnon R (2004) A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430:232–235PubMedCrossRefGoogle Scholar
  101. Lee CH, MacKinnon R (2017) Structures of the human HCN1 hyperpolarization-activated channel. Cell 168:111–120. e111PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lee JH, Park CK, Chen G, Han Q, Xie RG, Liu T, Ji RR, Lee SY (2014) A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell 157:1393–1404PubMedPubMedCentralCrossRefGoogle Scholar
  103. Leffler A, Herzog RI, Dib-Hajj SD, Waxman SG, Cummins TR (2005) Pharmacological properties of neuronal TTX-resistant sodium channels and the role of a critical serine pore residue. Pflugers Arch 451:454–463PubMedCrossRefGoogle Scholar
  104. Leipold E, Hansel A, Borges A, Heinemann SH (2006) Subtype specificity of scorpion β-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol 70:340–347PubMedPubMedCentralCrossRefGoogle Scholar
  105. Leipold E, DeBie H, Zorn S, Borges A, Olivera BM, Terlau H, Heinemann SH (2007) μO-conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2. Channels (Austin) 1:253–262CrossRefGoogle Scholar
  106. Leipold E, Borges A, Heinemann SH (2012) Scorpion β-toxin interference with NaV channel voltage sensor gives rise to excitatory and depressant modes. J Gen Physiol 139:305–319PubMedPubMedCentralCrossRefGoogle Scholar
  107. Leterrier C, Brachet A, Fache MP, Dargent B (2010) Voltage-gated sodium channel organization in neurons: protein interactions and trafficking pathways. Neurosci Lett 486:92–100PubMedCrossRefGoogle Scholar
  108. Lipkind GM, Fozzard HA (1994) A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys J 66:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  109. Liu D, Tseng M, Epstein LF, Green L, Chan B, Soriano B, Lim D, Pan O, Murawsky CM, King CT et al (2016) Evaluation of recombinant monoclonal antibody SVmab1 binding to NaV1.7 target sequences and block of human NaV1.7 currents. F1000Res 5:2764PubMedPubMedCentralCrossRefGoogle Scholar
  110. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309:897–903PubMedCrossRefGoogle Scholar
  111. Maertens C, Cuypers E, Amininasab M, Jalali A, Vatanpour H, Tytgat J (2006) Potent modulation of the voltage-gated sodium channel Nav1.7 by OD1, a toxin from the scorpion Odonthobuthus doriae. Mol Pharmacol 70:405–414PubMedGoogle Scholar
  112. Mansouri M, Chafai Elalaoui S, Ouled Amar Bencheikh B, El Alloussi M, Dion PA, Sefiani A, Rouleau GA (2014) A novel nonsense mutation in SCN9A in a Moroccan child with congenital insensitivity to pain. Pediatr Neurol 51:741–744PubMedCrossRefGoogle Scholar
  113. Marx IE, Dineen TA, Able J, Bode C, Bregman H, Chu-Moyer M, DiMauro EF, Du B, Foti RS, Fremeau RT Jr et al (2016) Sulfonamides as selective NaV1.7 inhibitors: optimizing potency and pharmacokinetics to enable in vivo target engagement. ACS Med Chem Lett 7:1062–1067PubMedPubMedCentralCrossRefGoogle Scholar
  114. McArthur JR, Singh G, McMaster D, Winkfein R, Tieleman DP, French RJ (2011) Interactions of key charged residues contributing to selective block of neuronal sodium channels by μ-conotoxin KIIIA. Mol Pharmacol 80:573–584PubMedCrossRefGoogle Scholar
  115. McCormack K, Santos S, Chapman ML, Krafte DS, Marron BE, West CW, Krambis MJ, Antonio BM, Zellmer SG, Printzenhoff D et al (2013) Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci U S A 110:E2724–E2732PubMedPubMedCentralCrossRefGoogle Scholar
  116. McCusker EC, Bagneris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102PubMedPubMedCentralCrossRefGoogle Scholar
  117. Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM et al (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41:14734–14747PubMedCrossRefGoogle Scholar
  118. Milescu M, Bosmans F, Lee S, Alabi AA, Kim JI, Swartz KJ (2009) Interactions between lipids and voltage sensor paddles detected with tarantula toxins. Nat Struct Mol Biol 16:1080–1085PubMedPubMedCentralCrossRefGoogle Scholar
  119. Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S, Kanellopoulos AH, Mancini F, Iannetti GD, Bogdanov YD, Santana-Varela S et al (2015) Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat Commun 6:8967PubMedPubMedCentralCrossRefGoogle Scholar
  120. Morinville A, Fundin B, Meury L, Jureus A, Sandberg K, Krupp J, Ahmad S, O’Donnell D (2007) Distribution of the voltage-gated sodium channel NaV1.7 in the rat: expression in the autonomic and endocrine systems. J Comp Neurol 504:680–689PubMedCrossRefGoogle Scholar
  121. Murray JK, Ligutti J, Liu D, Zou A, Poppe L, Li H, Andrews KL, Moyer BD, McDonough SI, Favreau P et al (2015a) Engineering potent and selective analogues of GpTx-1, a tarantula venom peptide antagonist of the NaV1.7 sodium channel. J Med Chem 58:2299–2314PubMedCrossRefGoogle Scholar
  122. Murray JK, Biswas K, Holder JR, Zou A, Ligutti J, Liu D, Poppe L, Andrews KL, Lin FF, Meng SY et al (2015b) Sustained inhibition of the NaV1.7 sodium channel by engineered dimers of the domain II binding peptide GpTx-1. Bioorg Med Chem Lett 25:4866–4871PubMedCrossRefGoogle Scholar
  123. Nicole S, Fontaine B (2015) Skeletal muscle sodium channelopathies. Curr Opin Neurol 28:508–514PubMedCrossRefGoogle Scholar
  124. Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S (1986) Expression of functional sodium channels from cloned cDNA. Nature 322:826–828PubMedCrossRefGoogle Scholar
  125. O’Brien JE, Meisler MH (2013) Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4:213PubMedPubMedCentralGoogle Scholar
  126. O’Malley HA, Isom LL (2015) Sodium channel beta subunits: emerging targets in channelopathies. Annu Rev Physiol 77:481–504PubMedPubMedCentralCrossRefGoogle Scholar
  127. Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, Castro J, Garcia-Caraballo S, Grundy L, Rychkov GY et al (2016) Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 534:494–499PubMedPubMedCentralCrossRefGoogle Scholar
  128. Osteen JD, Sampson K, Iyer V, Julius D, Bosmans F (2017) Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A 114:6836–6841PubMedPubMedCentralGoogle Scholar
  129. Over B, Matsson P, Tyrchan C, Artursson P, Doak BC, Foley MA, Hilgendorf C, Johnston SE, Lee MD, Lewis RJ et al (2016) Structural and conformational determinants of macrocycle cell permeability. Nat Chem Biol 12:1065–1074PubMedCrossRefGoogle Scholar
  130. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753PubMedCrossRefGoogle Scholar
  131. Park JH, Carlin KP, Wu G, Ilyin VI, Kyle DJ (2012) Cysteine racemization during the Fmoc solid phase peptide synthesis of the Nav1.7-selective peptide – protoxin II. J Pept Sci 18:442–448PubMedCrossRefGoogle Scholar
  132. Park JH, Carlin KP, Wu G, Ilyin VI, Musza LL, Blake PR, Kyle DJ (2014) Studies examining the relationship between the chemical structure of protoxin II and its activity on voltage gated sodium channels. J Med Chem 57:6623–6631PubMedCrossRefGoogle Scholar
  133. Payandeh J, Minor DL Jr (2015) Bacterial voltage-gated sodium channels (BacNavs) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart. J Mol Biol 427:3–30PubMedPubMedCentralCrossRefGoogle Scholar
  134. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358PubMedPubMedCentralCrossRefGoogle Scholar
  135. Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135–139PubMedPubMedCentralCrossRefGoogle Scholar
  136. Payne CE, Brown AR, Theile JW, Loucif AJ, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM et al (2015) A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol 172:2654–2670PubMedPubMedCentralCrossRefGoogle Scholar
  137. Pero JE, Rossi MA, Lehman H, Kelly MJ 3rd, Mulhearn JJ, Wolkenberg SE, Cato MJ, Clements MK, Daley CJ, Filzen T et al (2017) Benzoxazolinone aryl sulfonamides as potent, selective Nav1.7 inhibitors with in vivo efficacy in a preclinical pain model. Bioorg Med Chem Lett 27:2683–2688PubMedCrossRefGoogle Scholar
  138. Pineda SS, Undheim EA, Rupasinghe DB, Ikonomopoulou MP, King GF (2014) Spider venomics: implications for drug discovery. Future Med Chem 6:1699–1714PubMedCrossRefGoogle Scholar
  139. Pitt GS, Lee SY (2016) Current view on regulation of voltage-gated sodium channels by calcium and auxiliary proteins. Protein Sci 25:1573–1584PubMedPubMedCentralCrossRefGoogle Scholar
  140. Pless SA, Galpin JD, Frankel A, Ahern CA (2011) Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. Nat Commun 2:351PubMedPubMedCentralCrossRefGoogle Scholar
  141. Pless SA, Elstone FD, Niciforovic AP, Galpin JD, Yang R, Kurata HT, Ahern CA (2014) Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. J Gen Physiol 143:645–656PubMedPubMedCentralCrossRefGoogle Scholar
  142. Price N, Namdari R, Neville J, Proctor KJ, Kaber S, Vest J, Fetell M, Malamut R, Sherrington R, Pimstone SN et al (2017) Safety and efficacy of a topical sodium channel inhibitor (TV-45070) in patients with post herpetic neuralgia (PHN): a randomized, controlled, proof-of-concept, crossover study, with a subgroup analysis of the Nav1.7 R1150W genotype. Clin J Pain 33:310–318PubMedPubMedCentralCrossRefGoogle Scholar
  143. Rajamani R, Wu S, Rodrigo I, Gao M, Low S, Megson L, Wensel D, Pieschl RL, Post-Munson DJ, Watson J et al (2017) A functional NaV1.7-NaVAb chimera with a reconstituted high-affinity ProTx-II binding site. Mol Pharmacol 92:310–317PubMedCrossRefGoogle Scholar
  144. Rodriguez de la Vega RC, Possani LD (2005) Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 46:831–844PubMedCrossRefGoogle Scholar
  145. Roecker AJ, Egbertson M, Jones KLG, Gomez R, Kraus RL, Li Y, Koser AJ, Urban MO, Klein R, Clements M et al (2017) Discovery of selective, orally bioavailable, N-linked arylsulfonamide Nav1.7 inhibitors with pain efficacy in mice. Bioorg Med Chem Lett 27:2087–2093PubMedCrossRefGoogle Scholar
  146. Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of α-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel α subunit. J Biol Chem 271:15950–15962PubMedPubMedCentralCrossRefGoogle Scholar
  147. Rosker C, Lohberger B, Hofer D, Steinecker B, Quasthoff S, Schreibmayer W (2007) The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Nav1.6 voltage-dependent sodium channel. Am J Physiol Cell Physiol 293:C783–C789PubMedCrossRefGoogle Scholar
  148. Savio-Galimberti E, Argenziano M, Antzelevitch C (2017) Cardiac arrhythmias related to sodium channel dysfunction. Handb Exp Pharmacol.
  149. Sawal HA, Harripaul R, Mikhailov A, Dad R, Ayub M, Jawad Hassan M, Vincent JB (2016) Biallelic truncating SCN9A mutation identified in four families with congenital insensitivity to pain from Pakistan. Clin Genet 90:563–565PubMedCrossRefGoogle Scholar
  150. Scanio MJ, Shi L, Drizin I, Gregg RJ, Atkinson RN, Thomas JB, Johnson MS, Chapman ML, Liu D, Krambis MJ et al (2010) Discovery and biological evaluation of potent, selective, orally bioavailable, pyrazine-based blockers of the NaV1.8 sodium channel with efficacy in a model of neuropathic pain. Bioorg Med Chem 18:7816–7825PubMedCrossRefGoogle Scholar
  151. Schenkel LB, DiMauro EF, Nguyen HN, Chakka N, Du B, Foti RS, Guzman-Perez A, Jarosh M, La DS, Ligutti J et al (2017) Discovery of a biarylamide series of potent, state-dependent NaV1.7 inhibitors. Bioorg Med Chem Lett 27:3817–3824PubMedCrossRefGoogle Scholar
  152. Schmalhofer WA, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB, Kaczorowski GJ, Garcia ML, Koltzenburg M, Priest BT (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74:1476–1484PubMedCrossRefGoogle Scholar
  153. Sharkey RG, Beneski DA, Catterall WA (1984) Differential labeling of the α and β1 subunits of the sodium channel by photoreactive derivatives of scorpion toxin. Biochemistry 23:6078–6086PubMedPubMedCentralCrossRefGoogle Scholar
  154. Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL Jr (2014) Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol 426:467–483PubMedPubMedCentralCrossRefGoogle Scholar
  155. Shcherbatko A, Rossi A, Foletti D, Zhu G, Bogin O, Galindo Casas M, Rickert M, Hasa-Moreno A, Bartsevich V, Crameri A et al (2016) Engineering highly potent and selective microproteins against Nav1.7 sodium channel for treatment of pain. J Biol Chem 291:13974–13986PubMedPubMedCentralCrossRefGoogle Scholar
  156. Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science. 2017;355(6328). pii: eaal4326Google Scholar
  157. Shorer Z, Wajsbrot E, Liran TH, Levy J, Parvari R (2014) A novel mutation in SCN9A in a child with congenital insensitivity to pain. Pediatr Neurol 50:73–76PubMedCrossRefGoogle Scholar
  158. Skerratt SE, West CW (2015) Ion channel therapeutics for pain. Channels (Austin) 9:344–351CrossRefGoogle Scholar
  159. Smith JJ, Alphy S, Seibert AL, Blumenthal KM (2005) Differential phospholipid binding by site 3 and site 4 toxins. Implications for structural variability between voltage-sensitive sodium channel domains. J Biol Chem 280:11127–11133PubMedCrossRefGoogle Scholar
  160. Sokolov S, Kraus RL, Scheuer T, Catterall WA (2008) Inhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II. Mol Pharmacol 73:1020–1028PubMedCrossRefGoogle Scholar
  161. Storer RI, Pike A, Swain NA, Alexandrou AJ, Bechle BM, Blakemore DC, Brown AD, Castle NA, Corbett MS, Flanagan NJ et al (2017) Highly potent and selective NaV1.7 inhibitors for use as intravenous agents and chemical probes. Bioorg Med Chem Lett 27:4805–4811PubMedCrossRefGoogle Scholar
  162. Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sun J, MacKinnon R (2017) Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital long QT syndrome. Cell 169:1042–1050. e1049PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sun S, Cohen CJ, Dehnhardt CM (2014) Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010. Pharm Pat Anal 3:509–521PubMedCrossRefGoogle Scholar
  165. Swain NA, Batchelor D, Beaudoin S, Bechle BM, Bradley PA, Brown AD, Brown B, Butcher KJ, Butt RP, Chapman ML et al (2017) Discovery of clinical candidate 4-[2-(5-amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): design and optimization of diaryl ether aryl sulfonamides as selective inhibitors of NaV1.7. J Med Chem 60:7029–7042PubMedCrossRefGoogle Scholar
  166. Tang L, Gamal El-Din TM, Swanson TM, Pryde DC, Scheuer T, Zheng N, Catterall WA (2016) Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature 537:117–121PubMedPubMedCentralCrossRefGoogle Scholar
  167. Theile JW, Fuller MD, Chapman ML (2016) The selective Nav1.7 inhibitor, PF-05089771, interacts equivalently with fast and slow inactivated Nav1.7 channels. Mol Pharmacol 90:540–548PubMedCrossRefGoogle Scholar
  168. Thomas-Tran R, Du Bois J (2016) Mutant cycle analysis with modified saxitoxins reveals specific interactions critical to attaining high-affinity inhibition of hNaV1.7. Proc Natl Acad Sci U S A 113:5856–5861PubMedPubMedCentralCrossRefGoogle Scholar
  169. Thomsen WJ, Catterall WA (1989) Localization of the receptor site for α-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci U S A 86:10161–10165PubMedPubMedCentralCrossRefGoogle Scholar
  170. Ulbricht W (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85:1271–1301PubMedPubMedCentralCrossRefGoogle Scholar
  171. Vargas E, Yarov-Yarovoy V, Khalili-Araghi F, Catterall WA, Klein ML, Tarek M, Lindahl E, Schulten K, Perozo E, Bezanilla F et al (2012) An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J Gen Physiol 140:587–594PubMedPubMedCentralCrossRefGoogle Scholar
  172. Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M (2017) NaV1.7 as a pain target – from gene to pharmacology. Pharmacol Ther 172:73–100PubMedCrossRefPubMedCentralGoogle Scholar
  173. Vijverberg HP, Lazdunski M (1984) A new scorpion toxin with a very high affinity for sodium channels. An electrophysiological study. J Physiol Paris 79:275–279PubMedGoogle Scholar
  174. Walewska A, Han TS, Zhang MM, Yoshikami D, Bulaj G, Rolka K (2013) Expanding chemical diversity of conotoxins: peptoid-peptide chimeras of the sodium channel blocker μ-KIIIA and its selenopeptide analogues. Eur J Med Chem 65:144–150PubMedPubMedCentralCrossRefGoogle Scholar
  175. Walker JR, Novick PA, Parsons WH, McGregor M, Zablocki J, Pande VS, Du Bois J (2012) Marked difference in saxitoxin and tetrodotoxin affinity for the human nociceptive voltage-gated sodium channel Nav1.7. Proc Natl Acad Sci U S A 109:18102–18107PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wang GK, Strichartz G (1982) Simultaneous modifications of sodium channel gating by two scorpion toxins. Biophys J 40:175–179PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wang J, Yarov-Yarovoy V, Kahn R, Gordon D, Gurevitz M, Scheuer T, Catterall WA (2011) Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 108:15426–15431PubMedPubMedCentralCrossRefGoogle Scholar
  178. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T et al (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472:186–190PubMedPubMedCentralCrossRefGoogle Scholar
  179. Weiss MM, Dineen TA, Marx IE, Altmann S, Boezio A, Bregman H, Chu-Moyer M, DiMauro EF, Feric Bojic E, Foti RS et al (2017) Sulfonamides as selective NaV1.7 inhibitors: optimizing potency and pharmacokinetics while mitigating metabolic liabilities. J Med Chem 60:5969–5989PubMedCrossRefGoogle Scholar
  180. Whicher JR, MacKinnon R (2016) Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353:664–669PubMedPubMedCentralCrossRefGoogle Scholar
  181. Wilson MJ, Zhang MM, Azam L, Olivera BM, Bulaj G, Yoshikami D (2011a) Navbeta subunits modulate the inhibition of Nav1.8 by the analgesic gating modifier μO-conotoxin MrVIB. J Pharmacol Exp Ther 338:687–693PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang MM (2011b) μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci U S A 108:10302–10307PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wright ZVF, McCarthy S, Dickman R, Reyes FE, Sanchez-Martinez S, Cryar A, Kilford I, Hall A, Takle AK, Topf M et al (2017) The role of disulfide bond replacements in analogues of the tarantula toxin ProTx-II and their effects on inhibition of the voltage-gated sodium ion channel Nav1.7. J Am Chem Soc 139:13063–13075PubMedPubMedCentralCrossRefGoogle Scholar
  184. Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:aad2395PubMedCrossRefGoogle Scholar
  185. Wu W, Li Z, Yang G, Teng M, Qin J, Hu Z, Hou L, Shen L, Dong H, Zhang Y et al (2017a) The discovery of tetrahydropyridine analogs as hNav1.7 selective inhibitors for analgesia. Bioorg Med Chem Lett 27:2210–2215PubMedCrossRefGoogle Scholar
  186. Wu YJ, Guernon J, McClure A, Luo G, Rajamani R, Ng A, Easton A, Newton A, Bourin C, Parker D et al (2017b) Discovery of non-zwitterionic aryl sulfonamides as Nav1.7 inhibitors with efficacy in preclinical behavioral models and translational measures of nociceptive neuron activation. Bioorg Med Chem 25:5490–5505PubMedCrossRefGoogle Scholar
  187. Wu YJ, Guernon J, Shi J, Ditta J, Robbins KJ, Rajamani R, Easton A, Newton A, Bourin C, Mosure K et al (2017c) Development of new benzenesulfonamides as potent and selective Nav1.7 inhibitors for the treatment of pain. J Med Chem 60:2513–2525PubMedCrossRefGoogle Scholar
  188. Xiao Y, Blumenthal K, Jackson JO 2nd, Liang S, Cummins TR (2010) The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation. Mol Pharmacol 78:1124–1134PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yan Z, Zhou Q, Wang L, Wu J, Zhao Y, Huang G, Peng W, Shen H, Lei J, Yan N (2017) Structure of the Nav1.4-β1 complex from electric eel. Cell 170:470–482.e411PubMedPubMedCentralCrossRefGoogle Scholar
  190. Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110:17534–17539PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yang SW, Ho GD, Tulshian D, Bercovici A, Tan Z, Hanisak J, Brumfield S, Matasi J, Sun X, Sakwa SA et al (2014) Bioavailable pyrrolo-benzo-1,4-diazines as NaV1.7 sodium channel blockers for the treatment of pain. Bioorg Med Chem Lett 24:4958–4962PubMedCrossRefGoogle Scholar
  192. Yu FH, Catterall WA (2004) The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci STKE 2004:re15PubMedGoogle Scholar
  193. Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA (2011) Structure-function map of the receptor site for β-scorpion toxins in domain II of voltage-gated sodium channels. J Biol Chem 286:33641–33651PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J et al (2012a) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–134PubMedPubMedCentralCrossRefGoogle Scholar
  195. Zhang JZ, Yarov-Yarovoy V, Scheuer T, Karbat I, Cohen L, Gordon D, Gurevitz M, Catterall WA (2012b) Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na+ channels. J Biol Chem 287:30719–30728PubMedPubMedCentralCrossRefGoogle Scholar
  196. Zhang MM, Wilson MJ, Azam L, Gajewiak J, Rivier JE, Bulaj G, Olivera BM, Yoshikami D (2013) Co-expression of NaVβ subunits alters the kinetics of inhibition of voltage-gated sodium channels by pore-blocking μ-conotoxins. Br J Pharmacol 168:1597–1610PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Structural BiologyGenentech Inc.South San FranciscoUSA
  2. 2.Department of NeuroscienceGenentech Inc.South San FranciscoUSA

Personalised recommendations