Advertisement

pp 1-26 | Cite as

Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function

  • Dimitrios C. Karampinos
  • Dominik Weidlich
  • Mingming Wu
  • Houchun H. Hu
  • Daniela Franz
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.

Keywords

Activation Brown adipose tissue Magnetic resonance imaging Magnetic resonance spectroscopy Morphology White adipose tissue 

Notes

Acknowledgment

The present work was supported by the European Research Council (grant agreement No 677661, ProFatMRI), the German Research Foundation (DFG-SFB824/A9), and Philips Healthcare.

References

  1. Anderson SE, Schwab C, Stauffer E, Banic A, Steinbach LS (2001) Hibernoma: imaging characteristics of a rare benign soft tissue tumor. Skelet Radiol 30:590–595Google Scholar
  2. Bao J, Cui X, Cai S, Zhong J, Cai C, Chen Z (2013) Brown adipose tissue mapping in rats with combined intermolecular double-quantum coherence and Dixon water–fat MRI. NMR Biomed 26:1663–1671Google Scholar
  3. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205Google Scholar
  4. Bauwens M, Wierts R, van Royen B, Bucerius J, Backes W, Mottaghy F, Brans B (2014) Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging 41:776–791Google Scholar
  5. Bhanu Prakash KN, Srour H, Velan SS, Chuang KH (2016a) A method for the automatic segmentation of brown adipose tissue. MAGMA 29:287–299Google Scholar
  6. Bhanu Prakash KN, Verma SK, Yaligar J, Goggi J, Gopalan V, Lee SS, Tian X, Sugii S, Leow MK, Bhakoo K, Velan SS (2016b) Segmentation and characterization of interscapular brown adipose tissue in rats by multi-parametric magnetic resonance imaging. MAGMA 29:277–286Google Scholar
  7. Borga M, Virtanen KA, Romu T, Leinhard OD, Persson A, Nuutila P, Enerback S (2014) Brown adipose tissue in humans: detection and functional analysis using PET (positron emission tomography), MRI (magnetic resonance imaging), and DECT (dual energy computed tomography). Methods Enzymol 537:141–159Google Scholar
  8. Branca RT, Warren WS (2011) In vivo brown adipose tissue detection and characterization using water-lipid intermolecular zero-quantum coherences. Magn Reson Med 65:313–319Google Scholar
  9. Branca RT, Zhang L, Warren WS, Auerbach E, Khanna A, Degan S, Ugurbil K, Maronpot R (2013) In vivo noninvasive detection of Brown adipose tissue through intermolecular zero-quantum MRI. PLoS One 8:e74206Google Scholar
  10. Branca RT, He T, Zhang L, Floyd CS, Freeman M, White C, Burant A (2014) Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci USA 111:18001–18006Google Scholar
  11. Chatterton BE, Mensforth D, Coventry BJ, Cohen P (2002) Hibernoma: intense uptake seen on Tc-99m tetrofosmin and FDG positron emission tomographic scanning. Clin Nucl Med 27:369–370Google Scholar
  12. Chen YI, Cypess AM, Sass CA, Brownell AL, Jokivarsi KT, Kahn CR, Kwong KK (2012) Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging. Obesity (Silver Spring) 20:1519–1526Google Scholar
  13. Chen YC, Cypess AM, Chen YC, Palmer M, Kolodny G, Kahn CR, Kwong KK (2013) Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J Nucl Med 54:1584–1587Google Scholar
  14. Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA, Enerback S, Kinahan PE, Lichtenbelt W, Lin FI, Sunderland JJ, Virtanen KA, Wahl RL (2016) Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab 24:210–222Google Scholar
  15. Chondronikola M, Beeman SC, Wahl RL (2018) Non-invasive methods for the assessment of brown adipose tissue in humans. J Physiol 596:363–378Google Scholar
  16. Cohade C, Mourtzikos KA, Wahl RL (2003) “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 44:1267–1270Google Scholar
  17. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517Google Scholar
  18. Cypess AM, Haft CR, Laughlin MR, Hu HH (2014) Brown fat in humans: consensus points and experimental guidelines. Cell Metab 20:408–415Google Scholar
  19. Dai W, Weines L, Alsop D, Cypess A (2015) Feasibility and repeatability of brown adipose tissue volume and perfusion activity using MRI. In: Proceedings of 23rd international society for magnetic resonance in medicine, Toronto, p 539Google Scholar
  20. Davis RM, Zhou Z, Chung H, Warren WS (2016) Multi-spin echo spatial encoding provides three-fold improvement of temperature precision during intermolecular zero quantum thermometry. Magn Reson Med 75:1958–1966Google Scholar
  21. Deng J, Schoeneman SE, Zhang H, Kwon S, Rigsby CK, Shore RM, Josefson JL (2015) MRI characterization of brown adipose tissue in obese and normal-weight children. Pediatr Radiol 45:1682–1689Google Scholar
  22. Deng J, Neff LM, Rubert NC, Zhang B, Shore RM, Samet JD, Nelson PC, Landsberg L (2018) MRI characterization of brown adipose tissue under thermal challenges in normal weight, overweight, and obese young men. J Magn Reson Imaging 47:936–947Google Scholar
  23. Dieckmeyer M, Ruschke S, Eggers H, Kooijman H, Rummeny EJ, Kirschke JS, Baum T, Karampinos DC (2017) ADC quantification of the vertebral bone marrow water component: removing the confounding effect of residual fat. Magn Reson Med 78:1432–1441Google Scholar
  24. Diefenbach MN, Ruschke S, Eggers H, Meineke J, Rummeny EJ, Karampinos DC (2018) Improving chemical shift encoding-based water–fat separation based on a detailed consideration of magnetic field contributions. Magn Reson Med 80:990Google Scholar
  25. Dinish US, Wong CL, Sriram S, Ong WK, Balasundaram G, Sugii S, Olivo M (2017) Diffuse optical spectroscopy and imaging to detect and quantify adipose tissue browning. Sci Rep 7:41357Google Scholar
  26. Dundamadappa SK, Shankar S, Danrad R, Singh A, Vijayaraghavan G, Kim Y, Perugini R (2007) Imaging of brown fat associated with adrenal pheochromocytoma. Acta Radiol 48:468–472Google Scholar
  27. Franconi F, Lemaire L, Saint-Jalmes H, Saulnier P (2018) Tissue oxygenation mapping by combined chemical shift and T1 magnetic resonance imaging. Magn Reson Med 79:1981–1991Google Scholar
  28. Franssens BT, Eikendal AL, Leiner T, van der Graaf Y, Visseren FL, Hoogduin JM (2016) Reliability and agreement of adipose tissue fat fraction measurements with water–fat MRI in patients with manifest cardiovascular disease. NMR Biomed 29:48–56Google Scholar
  29. Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FLJ (2017) Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging 46:497–504Google Scholar
  30. Franz D, Karampinos DC, Rummeny EJ, Souvatzoglou M, Beer AJ, Nekolla SG, Schwaiger M, Eiber M (2015) Discrimination between brown and white adipose tissue using a 2-point dixon water–fat separation method in simultaneous PET/MRI. J Nucl Med 56:1742–1747Google Scholar
  31. Franz D, Weidlich D, Freitag F, Holzapfel C, Drabsch T, Baum T, Eggers H, Witte A, Rummeny EJ, Hauner H, Karampinos DC (2018) Association of proton density fat fraction in adipose tissue with imaging-based and anthropometric obesity markers in adults. Int J Obes 42:175–182Google Scholar
  32. Galiana G, Branca RT, Jenista ER, Warren WS (2008) Accurate temperature imaging based on intermolecular coherences in magnetic resonance. Science 322:421–424Google Scholar
  33. Ganesan G, Warren RV, Leproux A, Compton M, Cutler K, Wittkopp S, Tran G, O’Sullivan T, Malik S, Galassetti PR, Tromberg BJ (2016) Diffuse optical spectroscopic imaging of subcutaneous adipose tissue metabolic changes during weight loss. Int J Obes 40:1292–1300Google Scholar
  34. Gatidis S, Schmidt H, Pfannenberg CA, Nikolaou K, Schick F, Schwenzer NF (2016) Is it possible to detect activated brown adipose tissue in humans using single-time-point infrared thermography under thermoneutral conditions? Impact of BMI and subcutaneous adipose tissue thickness. PLoS One 11:e0151152Google Scholar
  35. Gifford A, Towse T, Avison M, Welch E (2014) Temperature mapping in human brown adipose tissue using fat–water MRI with explicit fitting of water peak location. In: Proceedings of 22nd international society for magnetic resonance in medicine, Milan, p 2354Google Scholar
  36. Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB (2015) Human brown adipose tissue depots automatically segmented by positron emission tomography/computed tomography and registered magnetic resonance images. J Vis Exp 96:e52415–e52415Google Scholar
  37. Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB (2016) Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging. Am J Physiol Endocrinol Metab 311:E95–E104Google Scholar
  38. Grimpo K, Volker MN, Heppe EN, Braun S, Heverhagen JT, Heldmaier G (2014) Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance. J Lipid Res 55:398–409Google Scholar
  39. Hamilton G, Smith DL Jr, Bydder M, Nayak KS, Hu HH (2011) MR properties of brown and white adipose tissues. J Magn Reson Imaging 34:468–473Google Scholar
  40. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398Google Scholar
  41. Hartwig V, Guiducci L, Marinelli M, Pistoia L, Tegrimi TM, Iervasi G, Quinones-Galvan A, L’Abbate A (2017) Multimodal imaging for the detection of brown adipose tissue activation in women: a pilot study using NIRS and infrared thermography. J Healthc Eng 2017:5986452Google Scholar
  42. Hernando D, Kellman P, Haldar JP, Liang ZP (2010) Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63:79–90Google Scholar
  43. Hernando D, Sharma SD, Kramer H, Reeder SB (2014) On the confounding effect of temperature on chemical shift-encoded fat quantification. Magn Reson Med 72:464–470Google Scholar
  44. Holstila M, Virtanen KA, Gronroos TJ, Laine J, Lepomaki V, Saunavaara J, Lisinen I, Komu M, Hannukainen JC, Nuutila P, Parkkola R, Borra RJ (2013) Measurement of brown adipose tissue mass using a novel dual-echo magnetic resonance imaging approach: a validation study. Metabolism 62:1189–1198Google Scholar
  45. Holstila M, Pesola M, Saari T, Koskensalo K, Raiko J, Borra RJ, Nuutila P, Parkkola R, Virtanen KA (2017) MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure. Metabolism 70:23–30Google Scholar
  46. Hu HH (2015) Magnetic resonance of brown adipose tissue: a review of current techniques. Crit Rev Biomed Eng 43:161–181Google Scholar
  47. Hu HH, Kan HE (2013) Quantitative proton MR techniques for measuring fat. NMR Biomed 26:1609–1629Google Scholar
  48. Hu HH, Hines CD, Smith DL Jr, Reeder SB (2012a) Variations in T2* and fat content of murine brown and white adipose tissues by chemical-shift MRI. Magn Reson Imaging 30:323–329Google Scholar
  49. Hu HH, Tovar JP, Pavlova Z, Smith ML, Gilsanz V (2012b) Unequivocal identification of brown adipose tissue in a human infant. J Magn Reson Imaging 35:938–942Google Scholar
  50. Hu HH, Yin L, Aggabao PC, Perkins TG, Chia JM, Gilsanz V (2013) Comparison of brown and white adipose tissues in infants and children with chemical-shift-encoded water–fat MRI. J Magn Reson Imaging 38:885–896Google Scholar
  51. Hu HH, Wu TW, Yin L, Kim MS, Chia JM, Perkins TG, Gilsanz V (2014) MRI detection of brown adipose tissue with low fat content in newborns with hypothermia. Magn Reson Imaging 32:107–117Google Scholar
  52. Hu HH, Chen J, Shen W (2016) Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGMA 29:259–276Google Scholar
  53. Hui SCN, Ko JKL, Zhang T, Shi L, Yeung DKW, Wang D, Chan Q, Chu WCW (2017) Quantification of brown and white adipose tissue based on Gaussian mixture model using water–fat and T2* MRI in adolescents. J Magn Reson Imaging 46:758–768Google Scholar
  54. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34:814–823Google Scholar
  55. Ito T, Tanuma Y, Yamada M, Yamamoto M (1991) Morphological studies on brown adipose tissue in the bat and in humans of various ages. Arch Histol Cytol 54:1–39Google Scholar
  56. Izzi-Engbeaya C, Salem V, Atkar RS, Dhillo WS (2015) Insights into brown adipose tissue physiology as revealed by imaging studies. Adipocytes 4:1–12Google Scholar
  57. Jung CS, Heine M, Freund B, Reimer R, Koziolek EJ, Kaul MG, Kording F, Schumacher U, Weller H, Nielsen P, Adam G, Heeren J, Ittrich H (2016) Quantitative activity measurements of brown adipose tissue at 7 T magnetic resonance imaging after application of triglyceride-rich lipoprotein 59Fe-superparamagnetic Iron oxide nanoparticle: intravenous versus intraperitoneal approach. Investig Radiol 51:194–202Google Scholar
  58. Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, Krug R, Baum T (2018) Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 47:332–353Google Scholar
  59. Khanna A, Branca RT (2012) Detecting brown adipose tissue activity with BOLD MRI in mice. Magn Reson Med 68:1285–1290Google Scholar
  60. Kim MS, Hu HH, Aggabao PC, Geffner ME, Gilsanz V (2014) Presence of brown adipose tissue in an adolescent with severe primary hypothyroidism. J Clin Endocrinol Metab 99:E1686–E1690Google Scholar
  61. Koksharova E, Ustyuzhanin D, Philippov Y, Mayorov A, Shestakova M, Shariya M, Ternovoy S, Dedov I (2017) The relationship between brown adipose tissue content in supraclavicular fat depots and insulin sensitivity in patients with type 2 diabetes mellitus and prediabetes. Diabetes Technol Ther 19:96–102Google Scholar
  62. Koskensalo K, Raiko J, Saari T, Saunavaara V, Eskola O, Nuutila P, Saunavaara J, Parkkola R, Virtanen KA (2017) Human brown adipose tissue temperature and fat fraction are related to its metabolic activity. J Clin Endocrinol Metab 102:1200–1207Google Scholar
  63. Lau AZ, Chen AP, Gu Y, Ladouceur-Wodzak M, Nayak KS, Cunningham CH (2014) Noninvasive identification and assessment of functional brown adipose tissue in rodents using hyperpolarized 13C imaging. Int J Obes 38:126–131Google Scholar
  64. Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, Tal I, Dieckmann W, Gupta G, Kolodny GM, Pacak K, Herscovitch P, Cypess AM, Chen KY (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci USA 114:8649–8654Google Scholar
  65. Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634Google Scholar
  66. Lindenberg KS, Weydt P, Muller HP, Bornstedt A, Ludolph AC, Landwehrmeyer GB, Rottbauer W, Kassubek J, Rasche V (2014) Two-point magnitude MRI for rapid mapping of brown adipose tissue and its application to the R6/2 mouse model of Huntington disease. PLoS One 9:e105556Google Scholar
  67. Lunati E, Marzola P, Nicolato E, Fedrigo M, Villa M, Sbarbati A (1999) In vivo quantitative lipidic map of brown adipose tissue by chemical shift imaging at 4.7 Tesla. J Lipid Res 40:1395–1400Google Scholar
  68. Lunati E, Farace P, Nicolato E, Righetti C, Marzola P, Sbarbati A, Osculati F (2001a) Polyunsaturated fatty acids mapping by (1)H MR-chemical shift imaging. Magn Reson Med 46:879–883Google Scholar
  69. Lunati E, Marzola P, Nicolato E, Sbarbati A (2001b) In-vivo quantitative hydrolipidic map of perirenal adipose tissue by chemical shift imaging at 4.7 Tesla. Int J Obes Relat Metab Disord 25:457–461Google Scholar
  70. Lundstrom E, Strand R, Johansson L, Bergsten P, Ahlstrom H, Kullberg J (2015) Magnetic resonance imaging cooling-reheating protocol indicates decreased fat fraction via lipid consumption in suspected brown adipose tissue. PLoS One 10:e0126705Google Scholar
  71. Lundstrom E, Strand R, Forslund A, Bergsten P, Weghuber D, Ahlstrom H, Kullberg J (2017) Automated segmentation of human cervical-supraclavicular adipose tissue in magnetic resonance images. Sci Rep 7:3064Google Scholar
  72. MacCannell A, Sinclair K, Friesen-Waldner L, McKenzie CA, Staples JF (2017) Water–fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure. J Comp Physiol B 187:759–767Google Scholar
  73. Marzola P, Boschi F, Moneta F, Sbarbati A, Zancanaro C (2016) Preclinical in vivo imaging for fat tissue identification, quantification, and functional characterization. Front Pharmacol 7:336Google Scholar
  74. McCallister A, Zhang L, Burant A, Katz L, Branca RT (2017) A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med 78:1922–1932Google Scholar
  75. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452Google Scholar
  76. Osculati F, Leclercq F, Sbarbati A, Zancanaro C, Cinti S, Antonakis K (1989) Morphological identification of brown adipose tissue by magnetic resonance imaging in the rat. Eur J Radiol 9:112–114Google Scholar
  77. Osculati F, Sbarbati A, Leclercq F, Zancanaro C, Accordini C, Antonakis K, Boicelli A, Cinti S (1991) The correlation between magnetic resonance imaging and ultrastructural patterns of brown adipose tissue. J Submicrosc Cytol Pathol 23:167–174Google Scholar
  78. Panagia M, Chen YC, Chen HH, Ernande L, Chen C, Chao W, Kwong K, Scherrer-Crosbie M, Sosnovik DE (2016) Functional and anatomical characterization of brown adipose tissue in heart failure with blood oxygen level dependent magnetic resonance. NMR Biomed 29:978–984Google Scholar
  79. Peng XG, Ju S, Fang F, Wang Y, Fang K, Cui X, Liu G, Li P, Mao H, Teng GJ (2013) Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy. Am J Physiol Endocrinol Metab 304:E160–E167Google Scholar
  80. Raiko J, Holstila M, Virtanen KA, Orava J, Saunavaara V, Niemi T, Laine J, Taittonen M, Borra RJ, Nuutila P, Parkkola R (2015) Brown adipose tissue triglyceride content is associated with decreased insulin sensitivity, independently of age and obesity. Diabetes Obes Metab 17:516–519Google Scholar
  81. Rasmussen JM, Entringer S, Nguyen A, van Erp TG, Burns J, Guijarro A, Oveisi F, Swanson JM, Piomelli D, Wadhwa PD, Buss C, Potkin SG (2013) Brown adipose tissue quantification in human neonates using water–fat separated MRI. PLoS One 8:e77907Google Scholar
  82. Reber J, Willershauser M, Karlas A, Paul-Yuan K, Diot G, Franz D, Fromme T, Ovsepian SV, Beziere N, Dubikovskaya E, Karampinos DC, Holzapfel C, Hauner H, Klingenspor M, Ntziachristos V (2018) Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab 27:689–701.e4Google Scholar
  83. Reddy NL, Jones TA, Wayte SC, Adesanya O, Sankar S, Yeo YC, Tripathi G, McTernan PG, Randeva HS, Kumar S, Hutchinson CE, Barber TM (2014) Identification of brown adipose tissue using MR imaging in a human adult with histological and immunohistochemical confirmation. J Clin Endocrinol Metab 99:E117–E121Google Scholar
  84. Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749Google Scholar
  85. Reeder SB, Hu HH, Sirlin CB (2012) Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 36:1011–1014Google Scholar
  86. Rieke V, Butts Pauly K (2008) MR thermometry. J Magn Reson Imaging 27:376–390Google Scholar
  87. Romu T, Elander L, Leinhard OD, Lidell ME, Betz MJ, Persson A, Enerback S, Borga M (2015) Characterization of brown adipose tissue by water–fat separated magnetic resonance imaging. J Magn Reson Imaging 42:1639–1645Google Scholar
  88. Romu T, Vavruch C, Dahlqvist-Leinhard O, Tallberg J, Dahlstrom N, Persson A, Heglind M, Lidell ME, Enerback S, Borga M, Nystrom FH (2016) A randomized trial of cold-exposure on energy expenditure and supraclavicular brown adipose tissue volume in humans. Metabolism 65:926–934Google Scholar
  89. Rossato M, Cecchin D, Vettor R (2016) Brown adipose tissue localization using (18)F-FDG PET/MRI in adult. Endocrine 54:562–563Google Scholar
  90. Sampath SC, Sampath SC, Bredella MA, Cypess AM, Torriani M (2016) Imaging of brown adipose tissue: state of the art. Radiology 280:4–19Google Scholar
  91. Sbarbati A, Guerrini U, Marzola P, Asperio R, Osculati F (1997) Chemical shift imaging at 4.7 tesla of brown adipose tissue. J Lipid Res 38:343–347Google Scholar
  92. Sbarbati A, Cavallini I, Marzola P, Nicolato E, Osculati F (2006) Contrast-enhanced MRI of brown adipose tissue after pharmacological stimulation. Magn Reson Med 55:715–718Google Scholar
  93. Scotti A, Tain RW, Li W, Gil V, Liew CW, Cai K (2017) Mapping brown adipose tissue based on fat water fraction provided by Z-spectral imaging. J Magn Reson Imaging 47:1527–33Google Scholar
  94. Simchick G, Yin A, Yin H, Zhao Q (2017) Dynamic monitoring of brown adipose tissue activation and white adipose tissue beiging. In: Proceedings of 25th international society for magnetic resonance in medicine, Honolulu, p 5045Google Scholar
  95. Smith DL Jr, Yang Y, Hu HH, Zhai G, Nagy TR (2013) Measurement of interscapular brown adipose tissue of mice in differentially housed temperatures by chemical-shift-encoded water–fat MRI. J Magn Reson Imaging 38:1425–1433Google Scholar
  96. Stahl V, Maier F, Freitag MT, Floca RO, Berger MC, Umathum R, Berriel Diaz M, Herzig S, Weber MA, Dimitrakopoulou-Strauss A, Rink K, Bachert P, Ladd ME, Nagel AM (2017) In vivo assessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI. J Magn Reson Imaging 45:369–380Google Scholar
  97. Strobel K, van den Hoff J, Pietzsch J (2008) Localized proton magnetic resonance spectroscopy of lipids in adipose tissue at high spatial resolution in mice in vivo. J Lipid Res 49:473–480Google Scholar
  98. Sun L, Yan J, Sun L, Velan SS, Leow MKS (2017) A synopsis of brown adipose tissue imaging modalities for clinical research. Diabetes Metab 43:401–410Google Scholar
  99. van der Lans AA, Wierts R, Vosselman MJ, Schrauwen P, Brans B, van Marken Lichtenbelt WD (2014) Cold-activated brown adipose tissue in human adults: methodological issues. Am J Physiol Regul Integr Comp Physiol 307:R103–R113Google Scholar
  100. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508Google Scholar
  101. van Rooijen BD, van der Lans AA, Brans B, Wildberger JE, Mottaghy FM, Schrauwen P, Backes WH, van Marken Lichtenbelt WD (2013) Imaging cold-activated brown adipose tissue using dynamic T2*-weighted magnetic resonance imaging and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography. Investig Radiol 48:708–714Google Scholar
  102. Verma SK, Nagashima K, Yaligar J, Michael N, Lee SS, Xianfeng T, Gopalan V, Sadananthan SA, Anantharaj R, Velan SS (2017) Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy. J Lipid Res 58:289–298Google Scholar
  103. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525Google Scholar
  104. Warren WS, Richter W, Andreotti AH, Farmer BT 2nd (1993) Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR. Science 262:2005–2009Google Scholar
  105. Weidlich D, Hock A, Ruschke S, Franz D, Hauner H, Rummeny EJ, Karampinos DC (2017) Improving the quality of DW spectra in the supraclavicular fossa with a navigator-gated and cardiac-triggered flow-compensated diffusion-weighted STEAM MRS acquisition. In: Proceedings of 25th international society for magnetic resonance in medicine, Honolulu, p 5490Google Scholar
  106. Welch E, Gifford A, Towse T (2014) Phantom validation of temperature mapping using fat–water MRI with explicit fitting of water peak location. In: Proceedings of 22nd international society for magnetic resonance in medicine, Milan, p 3673Google Scholar
  107. Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, Thieme A, Budach V, Wust P, Niendorf T (2016) Magnetic resonance thermometry: methodology, pitfalls and practical solutions. Int J Hyperth 32:63–75Google Scholar
  108. Yaligar J, Verma SK, Gopalan V, Rengaraj A, Xianfeng T, Velan SS (2017) Evaluation of the vascular perfusion in activated brown adipose tissue by dynamic contrast enhanced MR imaging. In: Proceedings of 25th international society for magnetic resonance in medicine, Honolulu, p 1067Google Scholar
  109. Zancanaro C, Nano R, Marchioro C, Sbarbati A, Boicelli A, Osculati F (1994) Magnetic resonance spectroscopy investigations of brown adipose tissue and isolated brown adipocytes. J Lipid Res 35:2191–2199Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dimitrios C. Karampinos
    • 1
  • Dominik Weidlich
    • 1
  • Mingming Wu
    • 1
  • Houchun H. Hu
    • 2
  • Daniela Franz
    • 1
  1. 1.Department of Diagnostic and Interventional Radiology, Klinikum rechts der IsarTechnical University of MunichMunichGermany
  2. 2.Department of RadiologyNationwide Children’s HospitalColumbusUSA

Personalised recommendations