pp 1-15 | Cite as

Clinical Sleep-Wake Disorders I: Focus on Hypersomnias and Movement Disorders During Sleep

  • Christian R. BaumannEmail author
Part of the Handbook of Experimental Pharmacology book series


Central disorders of hypersomnolence are characterized by daily periods of irrepressible need to sleep or daytime lapses into sleep, as defined in the current version of the International Criteria of Sleep Disorders. Thus, the unifying symptom is excessive daytime sleepiness which is not caused by any other sleep-wake disorder. Relevant disorders including narcolepsy type 1 and 2, idiopathic hypersomnia, Kleine-Levin syndrome, and insufficient sleep syndrome will be discussed. Other central disorders of hypersomnolence include hypersomnias due to medical or psychiatric disorders or because of medication or substance use.

In sleep-related movement disorders, the cardinal symptom consists of simple, often stereotyped movements occurring during sleep. The most frequent disorder in this category of sleep-wake disorders is restless legs syndrome, which is often associated with period limb movements during sleep.


Excessive daytime sleepiness Hypersomnia Multiple sleep latency test Narcolepsy Polysomnography Restless legs 


Conflicts of Interest

Dr. Baumann reports no conflicts of interests in regard to this work.


  1. Ali M, Auger RR, Slocumb NL et al (2009) Idiopathic hypersomnia: clinical features and response to treatment. J Clin Sleep Med 5(6):562–568Google Scholar
  2. Allen RP, Picchietti DL, Garcia-Borreguero D et al (2014) Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria – history, rationale, description, and significance. Sleep Med 15(8):860–873Google Scholar
  3. Allen RP, Picchietti DL, Auerbach M et al (2018) Evidence-based and consensus clinical practice guidelines for the iron treatment of restless legs syndrome/Willis-Ekbom disease in adults and children: an IRLSSG task force report. Sleep Med 41:27–44Google Scholar
  4. American Academy of Sleep Medicine (AASM) (2014) The International Classification of Sleep Disorders – third edition (ICSD-3). American Academy of Sleep Medicine, DarienGoogle Scholar
  5. Antelmi E, Provini F (2015) Propriospinal myoclonus: the spectrum of clinical and neurophysiological phenotypes. Sleep Med Rev 22:54–63Google Scholar
  6. Arnulf I (2015) Kleine-Levin syndrome. Sleep Med Clin 10:151–161Google Scholar
  7. Arnulf I, Lin L, Gadoth N et al (2008) Kleine-Levin syndrome: a systematic study of 108 patients. Ann Neurol 63:482–493Google Scholar
  8. Bassetti CL, Bornatico F, Fuhr P, Schwander J, Kallweit U, Mathis J, Swiss RLS study group (2011) Pramipexole versus dual release levodopa in restless legs syndrome: a double blind, randomised, cross-over trial. Swiss Med Wkly w13274:141Google Scholar
  9. Baumann CR, Mignot E, Lammers GJ et al (2014) Challenges in diagnosing narcolepsy without cataplexy: a consensus statement. Sleep 37(6):1035–1042Google Scholar
  10. Bayard M, Bailey B, Acharya D et al (2011) F. Bupropion and restless legs syndrome: a randomized controlled trial. J Am Board Fam Med 24(4):422–428Google Scholar
  11. Cippà MA, Baumann CR, Siccoli MM, Bassetti CL, Poryazova R, Werth E (2013) Actigraphic assessment of periodic leg movements in patients with restless legs syndrome. J Sleep Res 22(5):589–592Google Scholar
  12. Connor JR, Ponnuru P, Wang XS, Patton SM, Allen RP, Earley CJ (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134(Pt 4):959–968Google Scholar
  13. Cvetkovic-Lopes V, Bayer L, Dorsaz S et al (2010) Elevated tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest 120(3):713–719Google Scholar
  14. Earley CJ, Connor J, Garcia-Borreguero D et al (2014) Altered brain iron homeostasis and dopaminergic function in restless legs syndrome (Willis-Ekbom disease). Sleep Med 15(11):1288–1301Google Scholar
  15. Garcia-Borreguero D, Silber MH, Winkelman JW et al (2016) Guidelines for the first-line treatment of restless legs syndrome/Willis-Ekbom disease, prevention and treatment of dopaminergic augmentation: a combined task force of the IRLSSG, EURLSSG, and the RLS-foundation. Sleep Med 21:1–11Google Scholar
  16. Haba-Rubio J, Marti-Soler H, Marques-Vidal P et al (2016) Prevalence and determinants of periodic limb movements in the general population. Ann Neurol 79(3):464–474Google Scholar
  17. Hallmayer J, Faraco J, Lin L et al (2009) Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 41(6):708–711Google Scholar
  18. Hening WA, Allen RP, Washburn M, Lesage SR, Earley CJ (2009) The four diagnostic criteria for Restless Legs Syndrome are unable to exclude confounding conditions (“mimics”). Sleep Med 10(9):976–981Google Scholar
  19. Hublin C, Kaprio J, Partinen M, Koskenvuo M, Heikkila K, Koskimies S, Guilleminault C (1994) The prevalence of narcolepsy: an epidemiological study of the Finnish Twin Cohort. Ann Neurol 35(6):709–716Google Scholar
  20. Iber C, Ancoli-Israel S, Chesson A et al (2007) The AASM manual for the scoring of sleep and associated events. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  21. John J, Thannickal TC, McGregor R et al (2013) Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol 74(6):786–793Google Scholar
  22. Kecklund G, Axelsson J (2016) Health consequences of shift work and insufficient sleep. BMJ 355:i5210Google Scholar
  23. Koo BB (2015) Restless leg syndrome across the globe: epidemiology of the restless legs syndrome/Willis-Ekbom disease. Sleep Med Clin 10(3):189–205Google Scholar
  24. Kornum BR, Knudsen S, Ollila HM, Pizza F, Jennum PJ, Dauvilliers Y, Overeem S (2017) Narcolepsy. Nat Rev Dis Primers 3:16100Google Scholar
  25. Kretzschmar U, Werth E, Sturzenegger C et al (2016) Which diagnostic findings in disorders with excessive daytime sleepiness are really helpful? A retrospective study. J Sleep Res 25(3):307–313Google Scholar
  26. Lavault S, Golmard J, Groos E et al (2015) Kleine-Levin syndrome in 120 patients: differential diagnosis and long episodes. Ann Neurol 77:529–540Google Scholar
  27. Lee YJ, Park J, Kim S, Cho SJ, Kim SJ (2015) Academic performance among adolescents with behaviorally induced insufficient sleep syndrome. J Clin Sleep Med 11(1):61–68Google Scholar
  28. Maric A, Montvai E, Werth E et al (2017) Insufficient sleep: enhanced risk-seeking relates to low local sleep intensity. Ann Neurol 82(3):409–418Google Scholar
  29. Marti I, Valko PO, Khatami R, Bassetti CL, Baumann CR (2009) Multiple sleep latency measures in narcolepsy and behaviourally induced insufficient sleep syndrome. Sleep Med 10:1146–1150Google Scholar
  30. Mayer G, Benes H, Young P et al (2015) Modafinil in the treatment of idiopathic hypersomnia without long sleep time-a randomized, double-blind, placebo-controlled study. J Sleep Res 24(1):74–81Google Scholar
  31. Mignot E, Lin L, Rogers W et al (2001) Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet 68(3):686–699Google Scholar
  32. Morita Y, Sasai-Sakuma T, Asaoka S, Inoue Y (2015) Prevalence and correlates of insufficient sleep syndrome in Japanese young adults: a web-based cross-sectional study. J Clin Sleep Med 11:1163–1169Google Scholar
  33. Neikrug AB, Crawford MR, Ong JC (2017) Behavioral sleep medicine services for hypersomnia disorders: a survey study. Behav Sleep Med 15(2):158–171Google Scholar
  34. Ohayon MM, Reynolds CF 3rd, Dauvilliers Y (2013) Excessive sleep duration and quality of life. Ann Neurol 73(6):785–794Google Scholar
  35. Ozaki A, Inoue Y, Hayashida K et al (2012) Quality of life in patients with narcolepsy with cataplexy, narcolepsy without cataplexy, and idiopathic hypersomnia without long sleep time: comparison between patients on psychostimulants, drug-naive patients and the general Japanese population. Sleep Med 13(2):200–206Google Scholar
  36. Papacostas SS, Hadjivasilis V (2000) The Kleine-Levin syndrome. Report of a case and review of the literature. Eur Psychiatry 15:231–235Google Scholar
  37. Peyron C, Faraco J, Rogers W et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997Google Scholar
  38. Philip P, Chaufton C, Taillard J et al (2014) Modafinil improves real driving performance in patients with hypersomnia: a randomized double-blind placebo-controlled crossover clinical trial. Sleep 37(3):483–487Google Scholar
  39. Pizza F, Antelmi E, Vandi S et al (2018) The distinguishing motor features of cataplexy: a study from video recorded attacks. Sleep [Epub ahead of print]Google Scholar
  40. Ruoff C, Pizza F, Trotti LM et al (2018) The MSLT is repeatable in narcolepsy type 1 but not narcolepsy type 2: a retrospective patient study. J Clin Sleep Med 14(1):65–74Google Scholar
  41. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263Google Scholar
  42. Scammell TE (2015) Narcolepsy. N Engl J Med 373(27):2654–2662Google Scholar
  43. Stefansson H, Rye DB, Hicks A et al (2007) A genetic risk factor for periodic limb movements in sleep. N Engl J Med 357(7):639–647Google Scholar
  44. Szakacs Z, Dauvilliers Y, Mikhaylov V et al (2017) Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16(3):200–207Google Scholar
  45. Taddei RN, Werth E, Poryazova R, Baumann CR, Valko PO (2016) Diagnostic delay in narcolepsy type 1: combining the patients’ and the doctors’ perspectives. J Sleep Res 25(6):709–715Google Scholar
  46. Thannickal TC, Moore RY, Nienhuis R et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27(3):469–474Google Scholar
  47. Trotti LM (2017) Idiopathic hypersomnia. Sleep Med Clin 12(3):331–344Google Scholar
  48. Trotti LM, Staab BA, Rye DB (2013) Test-retest reliability of the multiple sleep latency test in narcolepsy without cataplexy and idiopathic hypersomnia. J Clin Sleep Med 9(8):789–795Google Scholar
  49. Trotti LM, Saini P, Bliwise DL et al (2015) Clarithromycin in gamma-aminobutyric acid-related hypersomnolence: a randomized, crossover trial. Ann Neurol 78(3):454–465Google Scholar
  50. Valko PO, Gavrilov YV, Yamamoto M et al (2013) Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann Neurol 74(6):794–804Google Scholar
  51. Van Dongen HP, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26(2):117–126Google Scholar
  52. Winkelmann J, Schormair B, Lichtner P et al (2007) Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet 39(8):1000–1006Google Scholar
  53. Winkelmann J, Czamara D, Schormair B et al (2011) Genome-wide association study identifies novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1. PLoS Genet 7(7):e1002171Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity Hospital Zurich, University of ZurichZürichSwitzerland

Personalised recommendations