pp 1-23 | Cite as

Omics Approaches in Sleep-Wake Regulation

  • Emma K. O’Callaghan
  • Edward W. Green
  • Paul Franken
  • Valérie Mongrain
Part of the Handbook of Experimental Pharmacology book series


Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. ‘omics’ approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as ‘systems genetics’, will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.


Circadian timing system Epigenomics Metabolomics Proteomics Sleep homeostasis Transcriptomics 



The authors want to thank M. Freyburger, R. Massart, L. Boureau, and A. Blanchet-Cohen for their help in producing the data included in Fig. 2.


  1. Aho V, Ollila HM, Kronholm E, Bondia-Pons I, Soininen P et al (2016) Prolonged sleep restriction induces changes in pathways involved in cholesterol metabolism and inflammatory responses. Sci Rep 6:24828Google Scholar
  2. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM et al (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12(7):540–550Google Scholar
  3. Anafi RC, Pellegrino R, Shockley KR, Romer M, Tufik S, Pack AI (2013) Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues. BMC Genomics 14:362Google Scholar
  4. Ang JE, Revell V, Mann A, Mäntele S, Otway DT et al (2012) Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int 29(7):868–881Google Scholar
  5. Arbon EL, Knurowska M, Dijk DJ (2015) Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people. J Psychopharmacol 29(7):764–776Google Scholar
  6. Archer SN, Oster H (2015) How sleep and wakefulness influence circadian rhythmicity: effects of insufficient and mistimed sleep on the animal and human transcriptome. J Sleep Res 24(5):476–493Google Scholar
  7. Archer SN, Laing EE, Möller-Levet CS, van der Veen DR, Bucca G et al (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111(6):E682–E691Google Scholar
  8. Arnardottir ES, Nikonova EV, Shockley KR, Podtelezhnikov AA, Anafi RC et al (2014) Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation. Sleep 37(10):1589–1600Google Scholar
  9. Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A et al (2014) Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci 17(3):377–382Google Scholar
  10. Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS et al (2009) Night/day changes in pineal expression of >600 genes: central role of adrenergic/cAMP signaling. J Biol Chem 284(12):7606–7622Google Scholar
  11. Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344Google Scholar
  12. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395Google Scholar
  13. Basheer R, Brown R, Ramesh V, Begum S, McCarley RW (2005) Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. J Neurosci Res 82(5):650–658Google Scholar
  14. Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C (2013) Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 33(36):14288–14300Google Scholar
  15. Bellesi M, de Vivo L, Tononi G, Cirelli C (2015) Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:66Google Scholar
  16. Bettica P, Squassante L, Groeger JA, Gennery B, Winsky-Sommerer R, Dijk DJ (2012) Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology 37(5):1224–1233Google Scholar
  17. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–21.29.9Google Scholar
  18. Chiang CK, Mehta N, Patel A, Zhang P, Ning Z et al (2014) The proteomic landscape of the suprachiasmatic nucleus clock reveals large-scale coordination of key biological processes. PLoS Genet 10(10):e1004695Google Scholar
  19. Cirelli C, Tononi G (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res 885(2):303–321Google Scholar
  20. Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41(1):35–43Google Scholar
  21. Cirelli C, LaVaute TM, Tononi G (2005) Sleep and wakefulness modulate gene expression in Drosophila. J Neurochem 94(5):1411–1419Google Scholar
  22. Cirelli C, Faraguna U, Tononi G (2006) Changes in brain gene expression after long-term sleep deprivation. J Neurochem 98(5):1632–1645Google Scholar
  23. Cirelli C, Pfister-Genskow M, McCarthy D, Woodbury R, Tononi G (2009) Proteomic profiling of the rat cerebral cortex in sleep and waking. Arch Ital Biol 147(3):59–68Google Scholar
  24. Daan S, Beersma DG, Borbély AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Phys 246(2 Pt 2):R161–R183Google Scholar
  25. Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA (2012) The human circadian metabolome. Proc Natl Acad Sci U S A 109(7):2625–2629Google Scholar
  26. Darlington TM, Ehringer MA, Larson C, Phang TL, Radcliffe RA (2013) Transcriptome analysis of inbred long sleep and inbred short sleep mice. Genes Brain Behav 12(2):263–274Google Scholar
  27. Davies SK, Ang JE, Revell VL, Holmes B, Mann A et al (2014) Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A 111(29):10761–10766Google Scholar
  28. Davis CJ, Bohnet SG, Meyerson JM, Krueger JM (2007) Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett 422(1):68–73Google Scholar
  29. Davis CJ, Clinton JM, Krueger JM (2012) MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol 113(11):1756–1762Google Scholar
  30. Davis CJ, Taishi P, Honn KA, Koberstein JN, Krueger JM (2016) P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation. Am J Physiol Regul Integr Comp Physiol 311(6):R1004–R1012Google Scholar
  31. Deery MJ, Maywood ES, Chesham JE, Sládek M, Karp NA et al (2009) Proteomic analysis reveals the role of synaptic vesicle cycling in sustaining the suprachiasmatic circadian clock. Curr Biol 19(23):2031–2036Google Scholar
  32. Duffield GE (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15(10):991–1002Google Scholar
  33. Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC et al (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67(2):469–474Google Scholar
  34. Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 109(14):5541–5546Google Scholar
  35. Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421(6919):177–182Google Scholar
  36. Faraco J, Lin L, Kornum BR, Kenny EE, Trynka G et al (2013) ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet 9(2):e1003270Google Scholar
  37. Franken P, Chollet D, Tafti M (2001) The homeostatic regulation of sleep need is under genetic control. J Neurosci 21(8):2610–2621Google Scholar
  38. Freyburger M, Pierre A, Paquette G, Bélanger-Nelson E, Bedont J et al (2016) EphA4 is involved in sleep regulation but not in the electrophysiological response to sleep deprivation. Sleep 39(3):613–624Google Scholar
  39. Fustin JM, Karakawa S, Okamura H (2017) Circadian profiling of amino acids in the SCN and cerebral cortex by laser capture microdissection-mass spectrometry. J Biol Rhythms 32(6):609–620Google Scholar
  40. Giskeødegård GF, Davies SK, Revell VL, Keun H, Skene DJ (2015) Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep 5:14843Google Scholar
  41. Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14(8):16010–16039Google Scholar
  42. Gottlieb DJ, Hek K, Chen TH, Watson NF, Eiriksdottir G et al (2015) Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study. Mol Psychiatry 20(10):1232–1239Google Scholar
  43. Hasan S, Pradervand S, Ahnaou A, Drinkenburg W, Tafti M, Franken P (2009) How to keep the brain awake? The complex molecular pharmacogenetics of wake promotion. Neuropsychopharmacology 34(7):1625–1640Google Scholar
  44. Hasan S, van der Veen DR, Winsky-Sommerer R, Hogben A, Laing EE et al (2014) A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism. FASEB J 28(6):2441–2454Google Scholar
  45. Havekes R, Abel T (2017) The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function. Curr Opin Neurobiol 44:13–19Google Scholar
  46. Hobson JA (2005) Sleep is of the brain, by the brain and for the brain. Nature 437(7063):1254–1256Google Scholar
  47. Holst SC, Valomon A, Landolt HP (2016) Sleep pharmacogenetics: personalized sleep-wake therapy. Annu Rev Pharmacol Toxicol 56:577–603Google Scholar
  48. Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ et al (2010) Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet 42(9):786–789Google Scholar
  49. Hughes ME, Hong HK, Chong JL, Indacochea AA, Lee SS et al (2012) Brain-specific rescue of clock reveals system-driven transcriptional rhythms in peripheral tissue. PLoS Genet 8(7):e1002835Google Scholar
  50. Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB et al (2017) Guidelines for genome-scale analysis of biological rhythms. J Biol Rhythms 32(5):380–393Google Scholar
  51. Ji Y, Qin Y, Shu H, Li X (2010) Methylation analyses on promoters of mPer1, mPer2, and mCry1 during perinatal development. Biochem Biophys Res Commun 391(4):1742–1747Google Scholar
  52. Jones S, Pfister-Genskow M, Benca RM, Cirelli C (2008) Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 105(1):46–62Google Scholar
  53. Katada S, Sassone-Corsi P (2010) The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 17(12):1414–1421Google Scholar
  54. Kaufmann T, Elvsåshagen T, Alnæs D, Zak N, Pedersen PØ et al (2016) The brain functional connectome is robustly altered by lack of sleep. NeuroImage 127:324–332Google Scholar
  55. Keegan KP, Pradhan S, Wang JP, Allada R (2007) Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes. PLoS Comput Biol 3(11):e208Google Scholar
  56. Khalyfa A, Mutskov V, Carreras A, Khalyfa AA, Hakim F, Gozal D (2014) Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice. Diabetes 63(10):3230–3241Google Scholar
  57. Kim J, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Capdevila OS et al (2012) DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med 185(3):330–338Google Scholar
  58. Kim JH, Kim JH, Cho YE, Baek MC, Jung JY et al (2014) Chronic sleep deprivation-induced proteome changes in astrocytes of the rat hypothalamus. J Proteome Res 13(9):4047–4061Google Scholar
  59. Koh KP, Rao A (2013) DNA methylation and methylcytosine oxidation in cell fate decisions. Curr Opin Cell Biol 25(2):152–161Google Scholar
  60. Koike N, Yoo SH, Huang HC, Kumar V, Lee C et al (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354Google Scholar
  61. Kolbe I, Husse J, Salinas G, Lingner T, Astiz M, Oster H (2016) The SCN clock governs circadian transcription rhythms in murine epididymal white adipose tissue. J Biol Rhythms 31(6):577–587Google Scholar
  62. Laing EE, Johnston JD, Möller-Levet CS, Bucca G, Smith CP et al (2015) Exploiting human and mouse transcriptomic data: identification of circadian genes and pathways influencing health. BioEssays 37(5):544–556Google Scholar
  63. Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F et al (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10(11):e1001442Google Scholar
  64. Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J et al (2014) 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet 10(11):e1004792Google Scholar
  65. Liu X, Yanagawa T, Leopold DA, Fujii N, Duyn JH (2015) Robust long-range coordination of spontaneous neural activity in waking, sleep and anesthesia. Cereb Cortex 25(9):2929–2938Google Scholar
  66. Lück S, Thurley K, Thaben PF, Westermark PO (2014) Rhythmic degradation explains and unifies circadian transcriptome and proteome data. Cell Rep 9(2):741–751Google Scholar
  67. Mackiewicz M, Shockley KR, Romer MA, Galante RJ, Zimmerman JE et al (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31(3):441–457Google Scholar
  68. Mackiewicz M, Zimmerman JE, Shockley KR, Churchill GA, Pack AI (2009) What are microarrays teaching us about sleep? Trends Mol Med 15(2):79–87Google Scholar
  69. Maekawa F, Shimba S, Takumi S, Sano T, Suzuki T et al (2012) Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics 7(9):1046–1056Google Scholar
  70. Manning JH, Courchesne E, Fox PT (2013) Intrinsic connectivity network mapping in young children during natural sleep. NeuroImage 83:288–293Google Scholar
  71. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104(50):20090–20095Google Scholar
  72. Marguerat S, Bähler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67(4):569–579Google Scholar
  73. Martinez-Lozano Sinues P, Tarokh L, Li X, Kohler M, Brown SA et al (2014) Circadian variation of the human metabolome captured by real-time breath analysis. PLoS One 9(12):e114422Google Scholar
  74. Masri S, Patel VR, Eckel-Mahan KL, Peleg S, Forne I et al (2013) Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci U S A 110(9):3339–3344Google Scholar
  75. Massart R, Freyburger M, Suderman M, Paquet J, El Helou J et al (2014) The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Transl Psychiatry 4:e347Google Scholar
  76. Massart R, Suderman M, Mongrain V, Szyf M (2017) DNA methylation and transcription onset in the brain. Epigenomics 9(6):797–809Google Scholar
  77. Mauvoisin D, Wang J, Jouffe C, Martin E, Atger F et al (2014) Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 111(1):167–172Google Scholar
  78. McGowan PO, Szyf M (2010) The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiol Dis 39(1):66–72Google Scholar
  79. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53(6):857–869Google Scholar
  80. Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A 104(9):3342–3347Google Scholar
  81. Møller M, Sparre T, Bache N, Roepstorff P, Vorum H (2007) Proteomic analysis of day-night variations in protein levels in the rat pineal gland. Proteomics 7(12):2009–2018Google Scholar
  82. Möller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110(12):E1132–E1141Google Scholar
  83. Mongrain V, Hernandez SA, Pradervand S, Dorsaz S, Curie T et al (2010) Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33(9):1147–1157Google Scholar
  84. Monti JM, Torterolo P, Pandi Perumal SR (2017) The effects of second generation antipsychotic drugs on sleep variables in healthy subjects and patients with schizophrenia. Sleep Med Rev 33:51–57Google Scholar
  85. Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G (2013) The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7:70Google Scholar
  86. Münzel M, Globisch D, Bruckl T, Wagner M, Welzmiller V et al (2010) Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 49(31):5375–5377Google Scholar
  87. Nicod J, Davies RW, Cai N, Hassett C, Goodstadt L et al (2016) Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing. Nat Genet 48(8):912–918Google Scholar
  88. Nilsson EK, Boström AE, Mwinyi J, Schiöth HB (2016) Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. OMICS 20(6):334–342Google Scholar
  89. Okoniewski MJ, Miller CJ (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics 7:276Google Scholar
  90. Ollila HM, Kettunen J, Pietiläinen O, Aho V, Silander K et al (2014) Genome-wide association study of sleep duration in the Finnish population. J Sleep Res 23(6):609–618Google Scholar
  91. Pawlyk AC, Ferber M, Shah A, Pack AI, Naidoo N (2007) Proteomic analysis of the effects and interactions of sleep deprivation and aging in mouse cerebral cortex. J Neurochem 103(6):2301–2313Google Scholar
  92. Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR et al (2012) Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44(21):1003–1012Google Scholar
  93. Pirooznia SK, Chiu K, Chan MT, Zimmerman JE, Elefant F (2012) Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics 192(4):1327–1345Google Scholar
  94. Porter NM, Bohannon JH, Curran-Rauhut M, Buechel HM, Dowling AL et al (2012) Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress. PLoS One 7(7):e40128Google Scholar
  95. Qureshi IA, Mehler MF (2014) An evolving view of epigenetic complexity in the brain. Philos Trans R Soc Lond B Biol Sci 369(1652):20130506Google Scholar
  96. Rajasethupathy P, Antonov I, Sheridan R, Frey S, Sander C et al (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149(3):693–707Google Scholar
  97. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M et al (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16(11):1107–1115Google Scholar
  98. Sabir M, Gaudreault PO, Freyburger M, Massart R, Blanchet-Cohen A et al (2015) Impact of traumatic brain injury on sleep structure, electrocorticographic activity and transcriptome in mice. Brain Behav Immun 47:118–130Google Scholar
  99. Sahar S, Sassone-Corsi P (2013) The epigenetic language of circadian clocks. Handb Exp Pharmacol 217:29–44Google Scholar
  100. Schwartz MD, Nguyen AT, Warrier DR, Palmerston JB, Thomas AM, et al (2016) Locus coeruleus and tuberomammillary nuclei ablations attenuate hypocretin/orexin antagonist-mediated REM sleep. eNeuro 3(2):ENEURO.0018-16.2016Google Scholar
  101. Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A et al (2012) Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22(8):676–682Google Scholar
  102. Shi F, Chen X, Fu A, Hansen J, Stevens R et al (2013) Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen 54(6):406–413Google Scholar
  103. Soshnev AA, Ishimoto H, McAllister BF, Li X, Wehling MD et al (2011) A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics 189(2):455–468Google Scholar
  104. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B et al (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130(4):730–741Google Scholar
  105. Syed F, Grunenwald H, Caruccio N (2009) Next-generation sequencing library preparation: simultaneous fragmentation and tagging using in vitro transposition. Nat Methods 6:i–iiGoogle Scholar
  106. Tafti M, Chollet D, Valatx JL, Franken P (1999) Quantitative trait loci approach to the genetics of sleep in recombinant inbred mice. J Sleep Res 8(Suppl 1):37–43Google Scholar
  107. Takahashi JS, Kumar V, Nakashe P, Koike N, Huang HC et al (2015) ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. Methods Enzymol 551:285–321Google Scholar
  108. Terao A, Steininger TL, Hyder K, Apte-Deshpande A, Ding J et al (2003) Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116(1):187–200Google Scholar
  109. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159(3):514–529Google Scholar
  110. Thimgan MS, Seugnet L, Turk J, Shaw PJ (2015) Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila. Sleep 38(5):801–814Google Scholar
  111. Toth LA, Williams RW (1999) A quantitative genetic analysis of slow-wave sleep and rapid-eye movement sleep in CXB recombinant inbred mice. Behav Genet 29(5):329–337Google Scholar
  112. Tudor JC, Davis EJ, Peixoto L, Wimmer ME, van Tilborg E et al (2016) Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Sci Signal 9(425):ra41Google Scholar
  113. Valekunja UK, Edgar RS, Oklejewicz M, van der Horst GT, O’Neill JS et al (2013) Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A 110(4):1554–1559Google Scholar
  114. Vecsey CG, Peixoto L, Choi JH, Wimmer M, Jaganath D et al (2012) Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Genomics 44(20):981–991Google Scholar
  115. Ventskovska O, Porkka-Heiskanen T, Karpova NN (2015) Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats. J Sleep Res 24(2):124–130Google Scholar
  116. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63Google Scholar
  117. Wang H, Liu Y, Briesemann M, Yan J (2010) Computational analysis of gene regulation in animal sleep deprivation. Physiol Genomics 42(3):427–436Google Scholar
  118. Weljie AM, Meerlo P, Goel N, Sengupta A, Kayser MS et al (2015) Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proc Natl Acad Sci U S A 112(8):2569–2574Google Scholar
  119. Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J et al (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21(10):2205–2210Google Scholar
  120. Winrow CJ, Williams DL, Kasarskis A, Millstein J, Laposky AD et al (2009) Uncovering the genetic landscape for multiple sleep-wake traits. PLoS One 4(4):e5161Google Scholar
  121. Wither RG, Colic S, Wu C, Bardakjian BL, Zhang L, Eubanks JH (2012) Daily rhythmic behaviors and thermoregulatory patterns are disrupted in adult female MeCP2-deficient mice. PLoS One 7(4):e35396Google Scholar
  122. Wolffe AP, Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61:379–422Google Scholar
  123. Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K et al (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25(7):679–684Google Scholar
  124. Xia L, Ma S, Zhang Y, Wang T, Zhou M et al (2015) Daily variation in global and local DNA methylation in mouse livers. PLoS One 10(2):e0118101Google Scholar
  125. Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L et al (2015) Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. elife 4:e08638Google Scholar
  126. Yu M, Hon GC, Szulwach KE, Song CX, Jin P et al (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7(12):2159–2170Google Scholar
  127. Zhang RR, Cui QY, Murai K, Lim YC, Smith ZD et al (2013) Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13(2):237–245Google Scholar
  128. Zhao Z, Fan L, Frick KM (2010) Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc Natl Acad Sci U S A 107(12):5605–5610Google Scholar
  129. Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB et al (2011) Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int 28(10):852–861Google Scholar
  130. Zimmerman JE, Rizzo W, Shockley KR, Raizen DM, Naidoo N et al (2006) Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol Genomics 27(3):337–350Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emma K. O’Callaghan
    • 1
    • 2
  • Edward W. Green
    • 3
  • Paul Franken
    • 4
  • Valérie Mongrain
    • 1
    • 2
  1. 1.Center for Advanced Research in Sleep Medicine and Research CenterHôpital du Sacré-Coeur de MontréalMontrealCanada
  2. 2.Department of NeuroscienceUniversité de MontréalMontrealCanada
  3. 3.German Cancer Research Center (DKFZ)HeidelbergGermany
  4. 4.Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland

Personalised recommendations