Advertisement

Brown Adipokines

  • Francesc VillarroyaEmail author
  • Aleix Gavaldà-Navarro
  • Marion Peyrou
  • Joan Villarroya
  • Marta Giralt
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 251)

Abstract

Brown adipokines are regulatory factors secreted by brown and beige adipocytes that exhibit endocrine, paracrine, and autocrine actions. Peptidic and non-peptidic molecules, including miRNAs and lipids, are constituents of brown adipokines. Brown adipose tissue remodeling to meet thermogenic needs is dependent on the secretory properties of brown/beige adipocytes. The association between brown fat activity and a healthy metabolic profile, in relation to energy balance and glucose and lipid homeostasis, is influenced by the endocrine actions of brown adipokines. A comprehensive knowledge of the brown adipocyte secretome is still lacking. Advancements in the identification and characterization of brown adipokines will facilitate therapeutic interventions for metabolic diseases, as these molecules are obvious candidates to therapeutic agents. Moreover, identification of brown adipokines as circulating biomarkers of brown adipose tissue activity may be particularly useful for noninvasive assessment of brown adipose tissue alterations in human pathologies.

Keywords

Adipokine Beige adipocyte Brown adipocyte Brown adipose tissue 

Notes

Acknowledgments

This work has been supported by Grants SAF2017-85722-R from the Ministerio de Ciencia e Innovación (MINECO) and PI17/00420 from the Instituto de Salud Carlos III, Spain, cofinanced by the European Regional Development Fund (ERDF), and Fundació Marató de TV3 (grant 201612-30). M.P. and J.V. are “Juan de la Cierva” researchers (MINECO, Spain).

References

  1. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD et al (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102:3324–3329PubMedPubMedCentralGoogle Scholar
  2. Blüher M, Mantzoros CS (2015) From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 64:131–145PubMedGoogle Scholar
  3. Boon MR, Kooijman S, van Dam AD, Pelgrom LR, Berbée JF, Visseren CA et al (2014) Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity. FASEB J 28:5361–5375PubMedGoogle Scholar
  4. Braga M, Reddy ST, Vergnes L, Pervin S, Grijalva V, Stout D et al (2014) Follistatin promotes adipocyte differentiation, browning, and energy metabolism. J Lipid Res 55:375–384PubMedPubMedCentralGoogle Scholar
  5. Burysek L, Houstek J (1997) β-Adrenergic stimulation of interleukin-1α and interleukin-6 expression in mouse brown adipocytes. FEBS Lett 411:83–86PubMedGoogle Scholar
  6. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–259PubMedGoogle Scholar
  7. Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG (2011) Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 17:736–740PubMedPubMedCentralGoogle Scholar
  8. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G et al (2009) Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res 104:541–549PubMedPubMedCentralGoogle Scholar
  9. Chen KY, Cypess AM, Laughlin MR, Haft CR, Hu HH, Bredella MA et al (2014) Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab 24:210–222Google Scholar
  10. Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J et al (2016) Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 7:11420PubMedPubMedCentralGoogle Scholar
  11. Chen Z, Wang GX, Ma SL, Jung DY, Ha H, Altamimi T et al (2017) Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Mol Metab 6:863–872PubMedPubMedCentralGoogle Scholar
  12. Di Franco A, Guasti D, Squecco R, Mazzanti B, Rossi F, Idrizaj E et al (2016) Searching for classical brown fat in humans: development of a novel human fetal brown stem cell model. Stem Cells 34:1679–1691PubMedGoogle Scholar
  13. Duchamp C, Burton KA, Géloën A, Dauncey MJ (1997) Transient upregulation of IGF-I gene expression in brown adipose tissue of cold-exposed rats. Am J Physiol 272:E453–EE60PubMedGoogle Scholar
  14. Fernandez JA, Mampel T, Villarroya F, Iglesias R (1987) Direct assessment of brown adipose tissue as a site of systemic tri-iodothyronine production in the rat. Biochem J 243:281–284PubMedPubMedCentralGoogle Scholar
  15. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301:H1425–H1437PubMedPubMedCentralGoogle Scholar
  16. Fournier B, Murray B, Gutzwiller S, Marcaletti S, Marcellin D, Bergling S et al (2012) Blockade of the activin receptor IIb activates functional brown adipogenesis and thermogenesis by inducing mitochondrial oxidative metabolism. Mol Cell Biol 32:2871–2879PubMedPubMedCentralGoogle Scholar
  17. Friederich-Persson M, Nguyen Dinh Cat A, Persson P, Montezano AC, Touyz RM (2017) Brown adipose tissue regulates small artery function through NADPH oxidase 4-derived hydrogen peroxide and redox-sensitive protein kinase G-1α. Arterioscler Thromb Vasc Biol 37:455–465PubMedGoogle Scholar
  18. Fu Z, Yao F, Abou-Samra AB, Zhang R (2013) Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem Biophys Res Commun 430:1126–1131PubMedGoogle Scholar
  19. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340PubMedGoogle Scholar
  20. García-Alonso V, Clària J (2014) Prostaglandin E2 signals white-to-brown adipogenic differentiation. Adipocytes 3:290–296Google Scholar
  21. García-Alonso V, López-Vicario C, Titos E, Morán-Salvador E, González-Périz A, Rius B et al (2013) Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator activated receptor γ (PPARγ) in the conversion of white-to-brown adipocytes. J Biol Chem 288:28230–28242PubMedPubMedCentralGoogle Scholar
  22. García-Alonso V, Titos E, Alcaraz-Quiles J, Rius B, Lopategi A, López-Vicario C et al (2016) Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PLoS One 11:e0153751PubMedPubMedCentralGoogle Scholar
  23. Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256PubMedGoogle Scholar
  24. Giralt M, Gavaldà-Navarro A, Villarroya F (2015) Fibroblast growth factor-21, energy balance and obesity. Mol Cell Endocrinol 418:66–63PubMedGoogle Scholar
  25. Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A et al (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399PubMedGoogle Scholar
  26. Gunawardana SC, Piston DW (2012) Reversal of type 1 diabetes in mica by brown adipose tissue transplant. Diabetes 61:674–682PubMedPubMedCentralGoogle Scholar
  27. Gunawardana SC, Piston DW (2015) Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab 308:E1043–E1055PubMedPubMedCentralGoogle Scholar
  28. Hansen IR, Jansson KM, Cannon B, Nedergaard J (2014) Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues. Biochim Biophys Acta 1841:1691–1699PubMedGoogle Scholar
  29. Hanssen MJ, Broeders E, Samms RJ, Vosselman MJ, van der Lans AA, Cheng CC et al (2015) Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci Rep 5:10275PubMedPubMedCentralGoogle Scholar
  30. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T et al (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286:12983–12990PubMedPubMedCentralGoogle Scholar
  31. Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A et al (2014) Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism 63:312–317PubMedGoogle Scholar
  32. Jorge AS, Jorge GC, Paraíso AF, Franco RM, Vieira LJ, Hilzenderger AM et al (2017) Brown and White adipose tissue expression of IL6, UCP1 and SIRT1 are associated with alterations in clinical, metabolic and anthropometric parameters in obese humans. Exp Clin Endocrinol Diabetes 125:163–170PubMedGoogle Scholar
  33. Kang YE, Choung S, Lee JH, Kim HJ, Ku BJ (2017) The role of circulating Slit2, the one of the newly Batokines, in human diabetes mellitus. Endocrinol Metab (Seoul) 32:383–388Google Scholar
  34. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163:643–655PubMedPubMedCentralGoogle Scholar
  35. Keipert S, Kutschke M, Lamp D, Brachthäuser L, Neff F, Meyer CW et al (2015) Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion. Mol Metab 4:537–542PubMedPubMedCentralGoogle Scholar
  36. Klepac K, Kilić A, Gnad T, Brown LM, Herrmann B, Wilderman A et al (2016) The Gq signalling pathway inhibits brown and beige adipose tissue. Nat Commun 7:10895PubMedPubMedCentralGoogle Scholar
  37. Kralisch S, Hoffmann A, Kratzsch J, Blüher M, Stumvoll M, Fasshauer M et al (2017) The brown-fat-secreted adipokine neuregulin 4 is decreased in gestational diabetes mellitus. Diabetes Metab. pii: S1262-3636(17)30465-2Google Scholar
  38. Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552PubMedGoogle Scholar
  39. Krott LM, Piscitelli F, Heine M, Borrino S, Scheja L, Silvestri C et al (2016) Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation. J Lipid Res 57:464–473PubMedPubMedCentralGoogle Scholar
  40. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C et al (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 19:302–309PubMedGoogle Scholar
  41. Lidell ME, Enerbäck S (2015) Brown adipose tissue and bone. Int J Obes Suppl 5:S23–S27PubMedPubMedCentralGoogle Scholar
  42. Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA et al (2016) The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell 166:424–435PubMedPubMedCentralGoogle Scholar
  43. Lorenzo M, Valverde AM, Teruel T, Benito M (1993) IGF-I is a mitogen also involved in differentiation related gene expression in fetal brown adipocytes. J Cell Biol 123:1567–1575PubMedGoogle Scholar
  44. Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL et al (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23:631–637PubMedPubMedCentralGoogle Scholar
  45. Mahdaviani K, Chess D, Wu Y, Shirihai O, Aprahamian TR (2016) Autocrine effect of vascular endothelial growth factor-A is essential for mitochondrial function in brown adipocytes. Metabolism 65:26–35PubMedGoogle Scholar
  46. Martinez-Perez B, Ejarque M, Gutierrez C, Nuñez-Roa C, Roche K, Vila-Bedmar R et al (2016) Angiopoietin-like protein 8 (ANGPTL8) in pregnancy: a brown adipose tissue-derived endocrine factor with a potential role in fetal growth. Transl Res 178:1–12PubMedGoogle Scholar
  47. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD et al (2014) Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol 15:423–430PubMedPubMedCentralGoogle Scholar
  48. Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH et al (2016) Human “brite/beige” adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22:312–318PubMedPubMedCentralGoogle Scholar
  49. Murano I, Barbatelli G, Giordano A, Cinti S (2009) Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J Anat 214:171–178PubMedGoogle Scholar
  50. Néchad M, Ruka E, Thibault J (1994) Production of nerve growth factor by brown fat in culture: relation with the in vivo developmental stage of the tissue. Comp Biochem Physiol Comp Physiol 107:381–388PubMedGoogle Scholar
  51. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T et al (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108PubMedPubMedCentralGoogle Scholar
  52. Nisoli E, Tonello C, Benarese M, Liberini P, Carruba MO (1996) Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. Endocrinology 137:495–503PubMedGoogle Scholar
  53. Nisoli E, Tonello C, Briscini L, Carruba MO (1997) Inducible nitric oxide synthase in rat brown adipocytes: implications for blood flow to brown adipose tissue. Endocrinology 138:676–682PubMedGoogle Scholar
  54. Nisoli E, Clementi E, Tonello C, Sciorati C, Briscini L, Carruba MO (1998) Effects of nitric oxide on proliferation and differentiation of rat brown adipocytes in primary cultures. Br J Pharmacol 125:888–894PubMedPubMedCentralGoogle Scholar
  55. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T et al (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279Google Scholar
  56. Pal M, Febbraio MA, Whitham M (2014) From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol 92:331–339PubMedGoogle Scholar
  57. Pellegrinelli V, Carobbio S, Vidal-Puig A (2016) Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 59:1075–1088PubMedPubMedCentralGoogle Scholar
  58. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164PubMedGoogle Scholar
  59. Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY et al (2013) BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci U S A 110:E798–E807PubMedPubMedCentralGoogle Scholar
  60. Rabelo R, Schifman A, Rubio A, Sheng X, Silva JE (1995) Delineation of thyroid hormone-responsive sequences within a critical enhancer in the rat uncoupling protein gene. Endocrinology 136:1003–1013PubMedGoogle Scholar
  61. Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B (2013) Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology 154:2687–2701PubMedPubMedCentralGoogle Scholar
  62. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I et al (2014) Meteorin-like is a hormone that regulates immune adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291PubMedPubMedCentralGoogle Scholar
  63. Roberts LD, Ashmore T, Kotwica AO, Murfitt SA, Fernandez BO, Feelisch M et al (2015) Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway. Diabetes 64:471–484PubMedGoogle Scholar
  64. Rosell M, Hondares E, Iwamoto S, Gonzalez FJ, Wabitsch M, Staels B et al (2012) Peroxisome proliferator-activated receptors-alpha and -gamma, and cAMP-mediated pathways, control retinol-binding protein-4 gene expression in brown adipose tissue. Endocrinology 153:1162–1173PubMedGoogle Scholar
  65. Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E et al (2014) Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 306:E945–E964PubMedPubMedCentralGoogle Scholar
  66. Rourke JL, Muruganandan S, Dranse HJ, McMullen NM, Sinal CJ (2014) Gpr1 is an active chemerin receptor influencing glucose homeostasis in obese mice. J Endocrinol 222:201–215PubMedGoogle Scholar
  67. Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H et al (2013) Adult epicardial fat exhibits beige features. J Clin Endocrinol Metab 98:E1448–E1455PubMedGoogle Scholar
  68. Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL et al (2013) Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495:379–383PubMedPubMedCentralGoogle Scholar
  69. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–1203PubMedGoogle Scholar
  70. Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S et al (2014) Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest 124:2099–2112PubMedPubMedCentralGoogle Scholar
  71. Silva JE, Larsen PR (1985) Potential 520 of brown adipose tissue type II thyroxine 5′-deiodinase as a local and systemic source of triiodothyronine in rats. J Clin Invest 76:2296–2305PubMedPubMedCentralGoogle Scholar
  72. Singh R, Braga M, Pervin S (2014) Regulation of brown adipocyte metabolism by myostatin/follistatin signaling. Front Cell Dev Biol 2:60PubMedPubMedCentralGoogle Scholar
  73. Singh R, Braga M, Reddy ST, Lee SJ, Parveen M, Grijalva V et al (2017) Follistatin targets distinct pathways to promote brown adipocyte characteristics in brown and white adipose tissues. Endocrinology 158:1217–1230PubMedPubMedCentralGoogle Scholar
  74. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM et al (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223PubMedGoogle Scholar
  75. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM et al (2016) AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell 165:125–138Google Scholar
  76. Sun K, Kusminski CM, Luby-Phelps K, Spurgin SB, An YA, Wang QA et al (2014) Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metab 3:474–483PubMedPubMedCentralGoogle Scholar
  77. Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S et al (2016) A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab 23:454–466PubMedPubMedCentralGoogle Scholar
  78. Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C et al (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542:450–455PubMedPubMedCentralGoogle Scholar
  79. Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004PubMedPubMedCentralGoogle Scholar
  80. Vegiopoulos A, Müller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–1161PubMedGoogle Scholar
  81. Villarroya F, Giralt M (2015) The beneficial effects of brown fat transplantation: further evidence of an endocrine role of brown adipose tissue. Endocrinology 156:2368–2370PubMedGoogle Scholar
  82. Villarroya F, Vidal-Puig A (2013) Beyond the sympathetic tone: the new brown fat activators. Cell Metab 17:638–643PubMedGoogle Scholar
  83. Villarroya F, Cereijo R, Villarroya J, Giralt M (2017) Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13:26–35PubMedGoogle Scholar
  84. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedPubMedCentralGoogle Scholar
  85. Virtue S, Feldmann H, Christian M, Tan CY, Masoodi M, Dale M et al (2012) A new role for lipocalin prostaglandin D synthase in the regulation of brown adipose tissue substrate utilization. Diabetes 61:3139–3147PubMedPubMedCentralGoogle Scholar
  86. Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z et al (2014) The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med 20:1436–1443PubMedPubMedCentralGoogle Scholar
  87. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885PubMedPubMedCentralGoogle Scholar
  88. Whittle AJ, Jiang M, Peirce V, Relat J, Virtue S, Ebinuma H et al (2015) Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans. Nat Commun 6:8951PubMedPubMedCentralGoogle Scholar
  89. Wright WS, Longo KA, Dolinsky VW, Gerin I, Kang S, Bennett CN et al (2007) Wnt10b inhibits obesity in ob/ob and agouti mice. Diabetes 56:295–303PubMedGoogle Scholar
  90. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang AH et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376PubMedPubMedCentralGoogle Scholar
  91. Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S et al (2009) Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 9:99–109PubMedGoogle Scholar
  92. Yamashita H, Sato Y, Kizaki T, Oh S, Nagasawa J, Ohno H (1994) Basic fibroblast growth factor (bFGF) contributes to the enlargement of brown adipose tissue during cold acclimation. Pflugers Arch 428:352–356PubMedGoogle Scholar
  93. Zhang R, Abou-Samra AB (2013) Emerging roles of lipasin as a critical lipid regulator. Biochem Biophys Res Commun 432:401–405PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francesc Villarroya
    • 1
    • 2
    Email author
  • Aleix Gavaldà-Navarro
    • 1
    • 2
  • Marion Peyrou
    • 1
    • 2
  • Joan Villarroya
    • 1
    • 3
  • Marta Giralt
    • 1
    • 2
  1. 1.Departament de Bioquímica i Biomedicina Molecular, Institut de BiomedicinaUniversitat de BarcelonaBarcelonaSpain
  2. 2.CIBER Fisiopatología de la Obesidad y NutriciónBarcelonaSpain
  3. 3.Hospital de la Santa Creu I Sant PauBarcelonaSpain

Personalised recommendations