Advertisement

BAT Exosomes: Metabolic Crosstalk with Other Organs and Biomarkers for BAT Activity

  • Deborah Goody
  • Alexander PfeiferEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 251)

Abstract

In the last decade, exosomes have gained interest as a new type of intercellular communication between cells and tissues. Exosomes are circulating, cell-derived lipid vesicles smaller than 200 nm that contain proteins and nucleic acids, including microRNAs (miRNAs), and are able to modify cellular targets. Exosomal miRNAs function as signalling molecules that regulate the transcription of their target genes and can cause phenotypic transformation of recipient cells. Recent studies have shown that brown fat secretes exosomes as a form of communication with other metabolic organs such as the liver. Moreover, it has been shown that levels of miRNAs in BAT-derived exosomes change after BAT activation in vitro and in vivo. Thus, BAT-derived exosomes can be used as potential biomarkers of BAT activity. Here, we review the present knowledge about BAT-derived exosomes and their role in metabolism.

Keywords

Biomarker Brown adipose tissue Exosomes MicroRNA 

References

  1. Akers JC, Gonda D, Kim R, Carter BS, Chen CC (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11CrossRefGoogle Scholar
  2. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437CrossRefGoogle Scholar
  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  4. Beninson LA, Brown PN, Loughridge AB, Saludes JP, Maslanik T, Hills AK, Woodworth T, Craig W, Yin H, Fleshner M (2014) Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72) and microRNA (miR-142-5p and miR-203). PLoS One 9:e108748CrossRefGoogle Scholar
  5. Camussi G, Deregibus MC, Cantaluppi V (2013) Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans 41:283–287CrossRefGoogle Scholar
  6. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefGoogle Scholar
  7. Chen Y, Siegel F, Kipschull S, Haas B, Frohlich H, Meister G, Pfeifer A (2013) miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun 4:1769CrossRefGoogle Scholar
  8. Chen L, Dai YM, Ji CB, Yang L, Shi CM, Xu GF, Pang LX, Huang FY, Zhang CM, Guo XR (2014) MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol Cell Endocrinol 393:65–74CrossRefGoogle Scholar
  9. Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J, Schell M, Van Der Lans A, Schlein C, Froehlich H, Heeren J, Virtanen KA, Van Marken Lichtenbelt W, Pfeifer A (2016) Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 7:11420CrossRefGoogle Scholar
  10. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, Cheng HH, Arroyo JD, Meredith EK, Gallichotte EN, Pogosova-Agadjanyan EL, Morrissey C, Stirewalt DL, Hladik F, Yu EY, Higano CS, Tewari M (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A 111:14888–14893CrossRefGoogle Scholar
  11. Colombo M, Moita C, Van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126:5553–5565CrossRefGoogle Scholar
  12. Cousin B, Agou K, Leturque A, Ferre P, Girard J, Penicaud L (1992) Molecular and metabolic changes in white adipose tissue of the rat during development of ventromedial hypothalamic obesity. Eur J Biochem 207:377–382CrossRefGoogle Scholar
  13. De Jong OG, Van Balkom BW, Schiffelers RM, Bouten CV, Verhaar MC (2014) Extracellular vesicles: potential roles in regenerative medicine. Front Immunol 5:608PubMedPubMedCentralGoogle Scholar
  14. Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X, Shah SV, Sun D, Michalek S, Grizzle WE, Garvey T, Mobley J, Zhang HG (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58:2498–2505CrossRefGoogle Scholar
  15. Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Madrid F, De La Fuente H (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell 107:61–77CrossRefGoogle Scholar
  16. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143CrossRefGoogle Scholar
  17. Glebov K, Lochner M, Jabs R, Lau T, Merkel O, Schloss P, Steinhauser C, Walter J (2015) Serotonin stimulates secretion of exosomes from microglia cells. Glia 63:626–634CrossRefGoogle Scholar
  18. Guduric-Fuchs J, O’connor A, Camp B, O’neill CL, Medina RJ, Simpson DA (2012) Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 13:357CrossRefGoogle Scholar
  19. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252–1263CrossRefGoogle Scholar
  20. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573PubMedGoogle Scholar
  21. Ho DH, Yi S, Seo H, Son I, Seol W (2014) Increased DJ-1 in urine exosome of Korean males with Parkinson’s disease. Biomed Res Int 2014:704678PubMedPubMedCentralGoogle Scholar
  22. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, De Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335CrossRefGoogle Scholar
  23. Jansen FH, Krijgsveld J, Van Rijswijk A, Van Den Bemd GJ, Van Den Berg MS, Van Weerden WM, Willemsen R, Dekker LJ, Luider TM, Jenster G (2009) Exosomal secretion of cytoplasmic prostate cancer xenograft-derived proteins. Mol Cell Proteomics 8:1192–1205CrossRefGoogle Scholar
  24. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMedGoogle Scholar
  25. Kajimoto T, Okada T, Miya S, Zhang L, Nakamura S (2013) Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat Commun 4:2712CrossRefGoogle Scholar
  26. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108CrossRefGoogle Scholar
  27. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452CrossRefGoogle Scholar
  28. Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125CrossRefGoogle Scholar
  29. Li M, Liu Z, Zhang Z, Liu G, Sun S, Sun C (2015) miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem 396:235–244CrossRefGoogle Scholar
  30. Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 383:13–20CrossRefGoogle Scholar
  31. Lotvall J, Valadi H (2007) Cell to cell signalling via exosomes through esRNA. Cell Adh Migr 1:156–158CrossRefGoogle Scholar
  32. Lowell BB, Flier JS (1997) Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med 48:307–316CrossRefGoogle Scholar
  33. Mathew A, Bell A, Johnstone RM (1995) Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. Biochem J 308(Pt 3):823–830CrossRefGoogle Scholar
  34. Mcgregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316CrossRefGoogle Scholar
  35. Melo SA, Sugimoto H, O’connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, Lucci A, Ivan C, Calin GA, Kalluri R (2014) Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 26:707–721CrossRefGoogle Scholar
  36. Nedaeinia R, Manian M, Jazayeri MH, Ranjbar M, Salehi R, Sharifi M, Mohaghegh F, Goli M, Jahednia SH, Avan A, Ghayour-Mobarhan M (2017) Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer. Cancer Gene Ther 24:48–56CrossRefGoogle Scholar
  37. Nolte-’T Hoen EN, Wauben MH (2012) Immune cell-derived vesicles: modulators and mediators of inflammation. Curr Pharm Des 18:2357–2368CrossRefGoogle Scholar
  38. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, Watanabe M, Nakagama H, Yokota J, Kohno T, Tsuchiya N (2014) Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9:e92921CrossRefGoogle Scholar
  39. Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K, Nakagawa Y, Aoki N (2010) Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun 398:723–729CrossRefGoogle Scholar
  40. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Fernandez-Real JM (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5:e9022CrossRefGoogle Scholar
  41. Potthoff MJ, Kliewer SA, Mangelsdorf DJ (2012) Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 26:312–324CrossRefGoogle Scholar
  42. Rekker K, Saare M, Roost AM, Kubo AL, Zarovni N, Chiesi A, Salumets A, Peters M (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47:135–138CrossRefGoogle Scholar
  43. Roma-Rodrigues C, Fernandes AR, Baptista PV (2014) Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int 2014:179486CrossRefGoogle Scholar
  44. Rupp AK, Rupp C, Keller S, Brase JC, Ehehalt R, Fogel M, Moldenhauer G, Marme F, Sultmann H, Altevogt P (2011) Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecol Oncol 122:437–446CrossRefGoogle Scholar
  45. Sala-Valdes M, Ailane N, Greco C, Rubinstein E, Boucheix C (2012) Targeting tetraspanins in cancer. Expert Opin Ther Targets 16:985–997CrossRefGoogle Scholar
  46. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099CrossRefGoogle Scholar
  47. Stoorvogel W, Strous GJ, Geuze HJ, Oorschot V, Schwartz AL (1991) Late endosomes derive from early endosomes by maturation. Cell 65:417–427CrossRefGoogle Scholar
  48. Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10:925–937CrossRefGoogle Scholar
  49. Taylor DD, Gercel-Taylor C (2014) Exosome platform for diagnosis and monitoring of traumatic brain injury. Philos Trans R Soc Lond Ser B Biol Sci 369(1652). pii: 20130503. doi:  https://doi.org/10.1098/rstb.2013.0503
  50. Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn CR (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542:450–455CrossRefGoogle Scholar
  51. Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O’byrne KJ (2014) Functions and therapeutic roles of exosomes in cancer. Front Oncol 4:127CrossRefGoogle Scholar
  52. Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645:63–70CrossRefGoogle Scholar
  53. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefGoogle Scholar
  54. Wu L, Dai X, Zhan J, Zhang Y, Zhang H, Zeng S, Xi W (2015) Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS 123:580–585CrossRefGoogle Scholar
  55. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky JM (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171:372–384.e12CrossRefGoogle Scholar
  56. Zhang B, Yin Y, Lai RC, Lim SK (2014) Immunotherapeutic potential of extracellular vesicles. Front Immunol 5:518PubMedPubMedCentralGoogle Scholar
  57. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24CrossRefGoogle Scholar
  58. Zhang Y, Yu M, Tian W (2016) Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif 49:3–13CrossRefGoogle Scholar
  59. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’connor ST, Chin AR, Yen Y, Wang Y, Marcusson EG, Chu P, Wu J, Wu X, Li AX, Li Z, Gao H, Ren X, Boldin MP, Lin PC, Wang SE (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–515CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pharmacology and ToxicologyUniversity Hospital Bonn, University of BonnBonnGermany

Personalised recommendations