Skip to main content

Central Noradrenergic Interactions with Alcohol and Regulation of Alcohol-Related Behaviors

  • Chapter
  • First Online:
The Neuropharmacology of Alcohol

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 248))

Abstract

Alcohol use disorder (AUD) results from disruption of a number of neural systems underlying motivation, emotion, and cognition. Patients with AUD exhibit not only elevated motivation for alcohol but heightened stress and anxiety, and disruptions in cognitive domains such as decision-making. One system at the intersection of these functions is the central norepinephrine (NE) system. This catecholaminergic neuromodulator, produced by several brainstem nuclei, plays profound roles in a wide range of behaviors and functions, including arousal, attention, and other aspects of cognition, motivation, emotional regulation, and control over basic physiological processes. It has been known for some time that NE has an impact on alcohol seeking and use, but the mechanisms of its influence are still being revealed. This chapter will discuss the influence of NE neuron activation and NE release at alcohol-relevant targets on behaviors and disruptions underlying alcohol motivation and AUD. Potential NE-based pharmacotherapies for AUD treatment will also be discussed. Given the basic properties of NE function, the strong relationship between NE and alcohol use, and the effectiveness of current NE-related treatments, the studies presented here indicate an encouraging direction for the development of precise and efficacious future therapies for AUD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghajanian GK, Cedarbaum JM, Wang RY (1977) Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res 136:570–577

    CAS  PubMed  Google Scholar 

  • Aimino MA, Coker CR, Silberman Y (2017) Acute ethanol modulation of neurocircuit function in the nucleus of the tractus solitarius. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2017.07.019

  • Alari L, Lewander T, Sjoquist B (1987a) The effect of ethanol on the brain catecholamine systems in female mice, rats, and guinea pigs. Alcohol Clin Exp Res 11:144–149

    CAS  PubMed  Google Scholar 

  • Alari L, Sjoquist B, Lewander T (1987b) Ethanol-induced hypothermia and biogenic amine metabolites. Drug Alcohol Depend 19:369–373

    CAS  PubMed  Google Scholar 

  • Amit Z, Brown ZW (1982) Actions of drugs of abuse on brain reward systems: a reconsideration with specific attention to alcohol. Pharmacol Biochem Behav 17:233–238

    CAS  PubMed  Google Scholar 

  • Amit Z, Brown ZW, Levitan DE, Ogren SO (1977) Noradrenergic mediation of the positive reinforcing properties of ethanol: I. Suppression of ethanol consumption in laboratory rats following dopamine-beta-hydroxylase inhibition. Arch Int Pharmacodyn Ther 230:65–75

    CAS  PubMed  Google Scholar 

  • Andreas K, Fischer HD, Schmidt J (1983) Effect of central effective substances on alcohol preference. Biomed Biochim Acta 42:391–398

    CAS  PubMed  Google Scholar 

  • Aoki C, Go CG, Venkatesan C, Kurose H (1994) Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650:181–204

    CAS  PubMed  Google Scholar 

  • Aoki C, Venkatesan C, Go CG, Forman R, Kurose H (1998) Cellular and subcellular sites for noradrenergic action in the monkey dorsolateral prefrontal cortex as revealed by the immunocytochemical localization of noradrenergic receptors and axons. Cereb Cortex 8:269–277

    CAS  PubMed  Google Scholar 

  • Asan E (1998) The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol 142:1–118

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Foote SL, Bloom FE (1982) Low doses of ethanol disrupt sensory responses of brain noradrenergic neurones. Nature 296:857–860

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Zhu Y, Card JP (2004) Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool. J Neurosci 24:2313–2321

    CAS  PubMed  Google Scholar 

  • Baker KG, Tork I, Hornung JP, Halasz P (1989) The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp Brain Res 77:257–270

    CAS  PubMed  Google Scholar 

  • Bangasser DA, Curtis A, Reyes BA, Bethea TT, Parastatidis I, Ischiropoulos H, Van Bockstaele EJ, Valentino RJ (2010) Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry 15(877):896–904

    CAS  Google Scholar 

  • Barson JR, Leibowitz SF (2016) Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuro-Psychopharmacol Biol Psychiatry 65:321–329

    CAS  Google Scholar 

  • Becker HC (2012) Effects of alcohol dependence and withdrawal on stress responsiveness and alcohol consumption. Alcohol Res 34:448–458

    PubMed  PubMed Central  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42:33–84

    PubMed  Google Scholar 

  • Berridge CW, Stratford TL, Foote SL, Kelley AE (1997) Distribution of dopamine beta-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27:230–241

    CAS  PubMed  Google Scholar 

  • Bevan P, Bradshaw CM, Roberts MH, Szabadi E (1973) The excitation of neurons by noradrenaline. J Pharm Pharmacol 25:309–314

    CAS  PubMed  Google Scholar 

  • Borg S, Kvande H, Sedvall G (1981) Central norepinephrine metabolism during alcohol intoxication in addicts and healthy volunteers. Science 213:1135–1137

    CAS  PubMed  Google Scholar 

  • Brown ZW, Amit Z (1977) The effects of selective catecholamine depletions by 6-hydroxydopamine on ethanol preference in rats. Neurosci Lett 5(6):333

    CAS  PubMed  Google Scholar 

  • Brown ZW, Amit Z, Levitan DE, Ogren SO, Sutherland EA (1977) Noradrenergic mediation of the positive reinforcing properties of ethanol: II. Extinction of ethanol-drinking behavior in laboratory rats by inhibition of dopamine-beta-hydroxylase. Implications for treatment procedures in human alcoholics. Arch Int Pharmacodyn Ther 230:76–82

    CAS  PubMed  Google Scholar 

  • Carlsson C (1976) Propranolol in the treatment of alchoholism: a review. Postgrad Med J 52(Suppl 4):166–167

    PubMed  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178(1):16

    Google Scholar 

  • Chang HT (1989) Noradrenergic innervation of the substantia innominata: a light and electron microscopic analysis of dopamine beta-hydroxylase immunoreactive elements in the rat. Exp Neurol 104:101–112

    CAS  PubMed  Google Scholar 

  • Chang SL, Patel NA, Romero AA (1995) Activation and desensitization of Fos immunoreactivity in the rat brain following ethanol administration. Brain Res 679:89–98

    CAS  PubMed  Google Scholar 

  • Clarke TK, Dempster E, Docherty SJ, Desrivieres S, Lourdsamy A, Wodarz N, Ridinger M, Maier W, Rietschel M, Schumann G (2012) Multiple polymorphisms in genes of the adrenergic stress system confer vulnerability to alcohol abuse. Addict Biol 17:202–208

    CAS  PubMed  Google Scholar 

  • Clayton EC, Rajkowski J, Cohen JD, Aston-Jones G (2004) Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. J Neurosci 24:9914–9920

    CAS  PubMed  Google Scholar 

  • Corcoran ME, Lewis J, Fibiger HC (1983) Forebrain noradrenaline and oral self-administration of ethanol by rats. Behav Brain Res 8:1–21

    CAS  PubMed  Google Scholar 

  • Corrodi H, Fuxe K, Hokfelt T (1966) The effect of ethanol on the activity of central catecholamine neurones in rat brain. J Pharm Pharmacol 18:821–823

    CAS  PubMed  Google Scholar 

  • Cui C, Noronha A, Warren KR, Koob GF, Sinha R, Thakkar M, Matochik J, Crews FT, Chandler LJ, Pfefferbaum A, Becker HC, Lovinger D, Everitt BJ, Egli M, Mandyam CD, Fein G, Potenza MN, Harris RA, Grant KA, Roberto M, Meyerhoff DJ, Sullivan EV (2015) Brain pathways to recovery from alcohol dependence. Alcohol 49:435–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    CAS  PubMed  Google Scholar 

  • Daniel SE, Rainnie DG (2016) Stress modulation of opposing circuits in the bed nucleus of the Stria terminalis. Neuropsychopharmacology 41:103–125

    PubMed  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones GS (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140

    CAS  PubMed  Google Scholar 

  • Do Monte FH, Canteras NS, Fernandes D, Assreuy J, Carobrez AP (2008) New perspectives on beta-adrenergic mediation of innate and learned fear responses to predator odor. J Neurosci 28:13296–13302

    PubMed  Google Scholar 

  • Domyancic AV, Morilak DA (1997) Distribution of alpha1A adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. J Comp Neurol 386:358–378

    CAS  PubMed  Google Scholar 

  • Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265

    CAS  PubMed  Google Scholar 

  • Ennis M, Aston-Jones G (1988) Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. J Neurosci 8:3644–3657

    CAS  PubMed  Google Scholar 

  • Espana RA, Schmeichel BE, Berridge CW (2016) Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res 1641:207–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald PJ (2013) Elevated norepinephrine may be a unifying etiological factor in the abuse of a broad range of substances: alcohol, nicotine, marijuana, heroin, cocaine, and caffeine. Subst Abuse 7:171–183

    PubMed  PubMed Central  Google Scholar 

  • Foote SL, Freedman R, Oliver AP (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Res 86:229–242

    CAS  PubMed  Google Scholar 

  • Fox HC, Anderson GM, Tuit K, Hansen J, Kimmerling A, Siedlarz KM, Morgan PT, Sinha R (2012) Prazosin effects on stress- and cue-induced craving and stress response in alcohol-dependent individuals: preliminary findings. Alcohol Clin Exp Res 36:351–360

    CAS  PubMed  Google Scholar 

  • Fredriksson I, Jayaram-Lindstrom N, Wirf M, Nylander E, Nystrom E, Jardemark K, Steensland P (2015) Evaluation of guanfacine as a potential medication for alcohol use disorder in long-term drinking rats: behavioral and electrophysiological findings. Neuropsychopharmacology 40:1130–1140

    CAS  PubMed  Google Scholar 

  • Froehlich JC, Hausauer BJ, Federoff DL, Fischer SM, Rasmussen DD (2013) Prazosin reduces alcohol drinking throughout prolonged treatment and blocks the initiation of drinking in rats selectively bred for high alcohol intake. Alcohol Clin Exp Res 37:1552–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Froehlich JC, Hausauer B, Fischer S, Wise B, Rasmussen DD (2015) Prazosin reduces alcohol intake in an animal model of alcohol relapse. Alcohol Clin Exp Res 39:1538–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk D, Coen K, Tamadon S, Li Z, Loughlin A, Le AD (2016) Effects of prazosin and doxazosin on yohimbine-induced reinstatement of alcohol seeking in rats. Psychopharmacology 233:2197–2207

    CAS  PubMed  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. 3. The monoamine nerve terminal. Z Zellforsch Mikrosk Anat 65:573–596

    CAS  PubMed  Google Scholar 

  • Gilpin NW (2012) Corticotropin-releasing factor (CRF) and neuropeptide Y (NPY): effects on inhibitory transmission in central amygdala, and anxiety- & alcohol-related behaviors. Alcohol 46:329–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin NW, Koob GF (2010) Effects of beta-adrenoceptor antagonists on alcohol drinking by alcohol-dependent rats. Psychopharmacology 212:431–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin NW, Roberto M (2012) Neuropeptide modulation of central amygdala neuroplasticity is a key mediator of alcohol dependence. Neurosci Biobehav Rev 36:873–888

    CAS  PubMed  Google Scholar 

  • Giustino TF, Fitzgerald PJ, Maren S (2016) Revisiting propranolol and PTSD: memory erasure or extinction enhancement? Neurobiol Learn Mem 130:26–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman AL, Dunn AJ (1993) Beta-adrenergic receptors are involved in stress-related behavioral changes. Pharmacol Biochem Behav 45:1–7

    CAS  PubMed  Google Scholar 

  • Hawley RJ, Nemeroff CB, Bissette G, Guidotti A, Rawlings R, Linnoila M (1994) Neurochemical correlates of sympathetic activation during severe alcohol withdrawal. Alcohol Clin Exp Res 18(6):1312

    CAS  PubMed  Google Scholar 

  • Herman JP (2017) Regulation of hypothalamo-pituitary-adrenocortical responses to stressors by the nucleus of the solitary tract/dorsal vagal complex. Cell Mol Neurobiol 38(1):25–35

    PubMed  PubMed Central  Google Scholar 

  • Howes LG, Reid JL (1985) Changes in plasma free 3,4-dihydroxyphenylethylene glycol and noradrenaline levels after acute alcohol administration. Clin Sci (Lond) 69:423–428

    CAS  Google Scholar 

  • Jones BE, Moore RY (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res 127:25–53

    CAS  PubMed  Google Scholar 

  • Kalwani RM, Joshi S, Gold JI (2014) Phasic activation of individual neurons in the locus ceruleus/subceruleus complex of monkeys reflects rewarded decisions to go but not stop. J Neurosci 34:13656–13669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karkhanis AN, Locke JL, McCool BA, Weiner JL, Jones SR (2014) Social isolation rearing increases nucleus accumbens dopamine and norepinephrine responses to acute ethanol in adulthood. Alcohol Clin Exp Res 38:2770–2779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karkhanis AN, Alexander NJ, McCool BA, Weiner JL, Jones SR (2015) Chronic social isolation during adolescence augments catecholamine response to acute ethanol in the basolateral amygdala. Synapse 69:385–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karoum F, Wyatt RJ, Majchrowicz E (1976) Brain concentrations of biogenic amine metabolites in acutely treated and ethanol-dependent rats. Br J Pharmacol 56:403–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiianmaa K, Attila LM (1979) Alcohol intake, ethanol-induced narcosis and intoxication in rats following neonatal 6-hydroxydopamine or 5, 7-dihydroxytryptamine treatment. Naunyn Schmiedeberg’s Arch Pharmacol 308:165–170

    CAS  Google Scholar 

  • Kiianmaa K, Fuxe K, Jonsson G, Ahtee L (1975) Evidence for involvement of central NA neurones in alcohol intake. Increased alcohol consumption after degeneration of the NA pathway to the cortex cerebri. Neurosci Lett 1:41–45

    CAS  Google Scholar 

  • Kim AK, Souza-Formigoni ML (2013) Alpha1-adrenergic drugs affect the development and expression of ethanol-induced behavioral sensitization. Behav Brain Res 256:646–654

    CAS  PubMed  Google Scholar 

  • Knapp DJ, Duncan GE, Crews FT, Breese GR (1998) Induction of Fos-like proteins and ultrasonic vocalizations during ethanol withdrawal: further evidence for withdrawal-induced anxiety. Alcohol Clin Exp Res 22:481–493

    CAS  PubMed  Google Scholar 

  • Kolodziejska-Akiyama KM, Cha YM, Jiang Y, Loh HH, Chang SL (2005) Ethanol-induced FOS immunoreactivity in the brain of mu-opioid receptor knockout mice. Drug Alcohol Depend 80:161–168

    CAS  PubMed  Google Scholar 

  • Koob GF (2014) Neurocircuitry of alcohol addiction: synthesis from animal models. Handb Clin Neurol 125:33–54

    PubMed  Google Scholar 

  • Kostowski W, Trzaskowska E (1980) Effects of lesion of the locus coeruleus and clonidine treatment on ethanol withdrawal syndrome in rats. Pol J Pharmacol Pharm 32:617–623

    CAS  PubMed  Google Scholar 

  • Lanteri C, Salomon L, Torrens Y, Glowinski J, Tassin JP (2008) Drugs of abuse specifically sensitize noradrenergic and serotonergic neurons via a non-dopaminergic mechanism. Neuropsychopharmacology 33:1724–1734

    CAS  PubMed  Google Scholar 

  • Le AD, Harding S, Juzytsch W, Funk D, Shaham Y (2005) Role of alpha-2 adrenoceptors in stress-induced reinstatement of alcohol seeking and alcohol self-administration in rats. Psychopharmacology 179:366–373

    CAS  PubMed  Google Scholar 

  • Lee S, Craddock Z, Rivier C (2011) Brain stem catecholamines circuitry: activation by alcohol and role in the hypothalamic-pituitary-adrenal response to this drug. J Neuroendocrinol 23:531–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt P, Moore RY (1979) Origin and organization of brainstem catecholamine innervation in the rat. J Comp Neurol 186:505–528

    CAS  PubMed  Google Scholar 

  • Litten RZ, Falk DE, Ryan ML, Fertig J, Leggio L (2018) Advances in pharmacotherapy development: human clinical studies. Handb Exp Pharmacol. https://doi.org/10.1007/164_2017_79

  • MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting – homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci 18:211–219

    CAS  PubMed  Google Scholar 

  • McElligott ZA, Klug JR, Nobis WP, Patel S, Grueter BA, Kash TL, Winder DG (2010) Distinct forms of Gq-receptor-dependent plasticity of excitatory transmission in the BNST are differentially affected by stress. Proc Natl Acad Sci U S A 107:2271–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melander T, Hokfelt T, Rokaeus A, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986) Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6:3640–3654

    CAS  PubMed  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168

    CAS  PubMed  Google Scholar 

  • Morrow AL, Creese I (1986) Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol Pharmacol 29:321–330

    CAS  PubMed  Google Scholar 

  • Murphy JM, McBride WJ, Lumeng L, Li TK (1983) Monoamine and metabolite levels in CNS regions of the P line of alcohol-preferring rats after acute and chronic ethanol treatment. Pharmacol Biochem Behav 19:849–856

    CAS  PubMed  Google Scholar 

  • Musini VM, Gueyffier F, Puil L, Salzwedel DM, Wright JM (2017) Pharmacotherapy for hypertension in adults aged 18 to 59 years. Cochrane Database Syst Rev 8:CD008276

    PubMed  Google Scholar 

  • Muzyk AJ, Fowler JA, Norwood DK, Chilipko A (2011) Role of alpha2-agonists in the treatment of acute alcohol withdrawal. Ann Pharmacother 45:649–657

    CAS  PubMed  Google Scholar 

  • Nicholas AP, Pieribone V, Hokfelt T (1993a) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594

    CAS  PubMed  Google Scholar 

  • Nicholas AP, Pieribone VA, Hokfelt T (1993b) Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1023–1039

    CAS  PubMed  Google Scholar 

  • O’Neil ML, Beckwith LE, Kincaid CL, Rasmussen DD (2013) The alpha1-adrenergic receptor antagonist, doxazosin, reduces alcohol drinking in alcohol-preferring (P) rats. Alcohol Clin Exp Res 37:202–212

    PubMed  Google Scholar 

  • Olpe HR, Steinmann M (1991) Responses of locus coeruleus neurons to neuropeptides. Prog Brain Res 88:241–248

    CAS  PubMed  Google Scholar 

  • Opitz K (1990) The effect of clonidine and related substances on voluntary ethanol consumption in rats. Drug Alcohol Depend 25:43–48

    CAS  PubMed  Google Scholar 

  • Osmanovic SS, Shefner SA (1994) Ethanol enhances inward rectification in rat locus ceruleus neurons by increasing the extracellular potassium concentration. J Pharmacol Exp Ther 271:334–342

    CAS  PubMed  Google Scholar 

  • Park J, Kile BM, Wightman RM (2009) In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus. Eur J Neurosci 30:2121–2133

    PubMed  PubMed Central  Google Scholar 

  • Petrakis IL, Trevisan L, D’Souza C, Gil R, Krasnicki S, Webb E, Heninger G, Cooney N, Krystal JH (1999) CSF monoamine metabolite and beta endorphin levels in recently detoxified alcoholics and healthy controls: prediction of alcohol cue-induced craving? Alcohol Clin Exp Res 23:1336–1341

    CAS  PubMed  Google Scholar 

  • Phelix CF, Liposits Z, Paull WK (1992) Monoamine innervation of bed nucleus of stria terminalis: an electron microscopic investigation. Brain Res Bull 28:949–965

    CAS  PubMed  Google Scholar 

  • Putzke J, Spanagel R, Tolle TR, Zieglgansberger W (1996) The anti-craving drug acamprosate reduces c-fos expression in rats undergoing ethanol withdrawal. Eur J Pharmacol 317:39–48

    CAS  PubMed  Google Scholar 

  • Ramos BP, Arnsten AF (2007) Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol Ther 113:523–536

    CAS  PubMed  Google Scholar 

  • Rasmussen DD, Wilkinson CW, Raskind MA (2006) Chronic daily ethanol and withdrawal: 6. Effects on rat sympathoadrenal activity during “abstinence”. Alcohol 38:173–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen DD, Alexander L, Malone J, Federoff D, Froehlich JC (2014a) The alpha2-adrenergic receptor agonist, clonidine, reduces alcohol drinking in alcohol-preferring (P) rats. Alcohol 48:543–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen DD, Beckwith LE, Kincaid CL, Froehlich JC (2014b) Combining the alpha1-adrenergic receptor antagonist, prazosin, with the beta-adrenergic receptor antagonist, propranolol, reduces alcohol drinking more effectively than either drug alone. Alcohol Clin Exp Res 38:1532–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen DD, Kincaid CL, Froehlich JC (2017) Prazosin prevents increased anxiety behavior that occurs in response to stress during alcohol deprivations. Alcohol Alcohol 52:5–11

    CAS  PubMed  Google Scholar 

  • Rassnick S, Stinus L, Koob GF (1993) The effects of 6-hydroxydopamine lesions of the nucleus accumbens and the mesolimbic dopamine system on oral self-administration of ethanol in the rat. Brain Res 623:16–24

    CAS  PubMed  Google Scholar 

  • Retson TA, Reyes BA, Van Bockstaele EJ (2015) Chronic alcohol exposure differentially affects activation of female locus coeruleus neurons and the subcellular distribution of corticotropin releasing factor receptors. Prog Neuro-Psychopharmacol Biol Psychiatry 56:66–74

    CAS  Google Scholar 

  • Retson TA, Sterling RC, Van Bockstaele EJ (2016) Alcohol-induced dysregulation of stress-related circuitry: the search for novel targets and implications for interventions across the sexes. Prog Neuro-Psychopharmacol Biol Psychiatry 65:252–259

    CAS  Google Scholar 

  • Richardson HN, Lee SY, O’Dell LE, Koob GF, Rivier CL (2008) Alcohol self-administration acutely stimulates the hypothalamic-pituitary-adrenal axis, but alcohol dependence leads to a dampened neuroendocrine state. Eur J Neurosci 28:1641–1653

    PubMed  PubMed Central  Google Scholar 

  • Riga D, Schmitz LJ, van der Harst JE, van Mourik Y, Hoogendijk WJ, Smit AB, De Vries TJ, Spijker S (2014) A sustained depressive state promotes a guanfacine reversible susceptibility to alcohol seeking in rats. Neuropsychopharmacology 39:1115–1124

    CAS  PubMed  Google Scholar 

  • Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinaman L (2011) Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 300:R222–R235

    CAS  PubMed  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodberg EM, den Hartog CR, Anderson RI, Becker HC, Moorman DE, Vazey EM (2017) Stress facilitates the development of cognitive dysfunction after chronic ethanol exposure. Alcohol Clin Exp Res 41:1574–1583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roman CW, Derkach VA, Palmiter RD (2016) Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun 7:11905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryabinin AE, Criado JR, Henriksen SJ, Bloom FE, Wilson MC (1997) Differential sensitivity of c-Fos expression in hippocampus and other brain regions to moderate and low doses of alcohol. Mol Psychiatry 2:32–43

    CAS  PubMed  Google Scholar 

  • Sands SA, Morilak DA (1999) Expression of alpha1D adrenergic receptor messenger RNA in oxytocin- and corticotropin-releasing hormone-synthesizing neurons in the rat paraventricular nucleus. Neuroscience 91:639–649

    CAS  PubMed  Google Scholar 

  • Sara SJ (2015) Locus Coeruleus in time with the making of memories. Curr Opin Neurobiol 35:87–94

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1981) Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic responses. Science 214:685–687

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 257:275–325

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW, Grzanna R, Howe PR, Bloom SR, Polak JM (1985) Colocalization of neuropeptide Y immunoreactivity in brainstem catecholaminergic neurons that project to the paraventricular nucleus of the hypothalamus. J Comp Neurol 241:138–153

    CAS  PubMed  Google Scholar 

  • Sellers EM, Zilm DH, Degani NC (1977) Comparative efficacy of propranolol and chlordiazepoxide in alcohol withdrawal. J Stud Alcohol 38:2096–2108

    CAS  PubMed  Google Scholar 

  • Selvage D (2012) Roles of the locus coeruleus and adrenergic receptors in brain-mediated hypothalamic-pituitary-adrenal axis responses to intracerebroventricular alcohol. Alcohol Clin Exp Res 36:1084–1090

    CAS  PubMed  Google Scholar 

  • Shefner SA, Tabakoff B (1985) Basal firing rate of rat locus coeruleus neurons affects sensitivity to ethanol. Alcohol 2:239–243

    CAS  PubMed  Google Scholar 

  • Shields AD, Wang Q, Winder DG (2009) alpha2A-adrenergic receptors heterosynaptically regulate glutamatergic transmission in the bed nucleus of the stria terminalis. Neuroscience 163:339–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson TL, Saxon AJ, Meredith CW, Malte CA, McBride B, Ferguson LC, Gross CA, Hart KL, Raskind M (2009) A pilot trial of the alpha-1 adrenergic antagonist, prazosin, for alcohol dependence. Alcohol Clin Exp Res 33:255–263

    CAS  PubMed  Google Scholar 

  • Simpson TL, Malte CA, Dietel B, Tell D, Pocock I, Lyons R, Varon D, Raskind M, Saxon AJ (2015) A pilot trial of prazosin, an alpha-1 adrenergic antagonist, for comorbid alcohol dependence and posttraumatic stress disorder. Alcohol Clin Exp Res 39:808–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skelly MJ, Weiner JL (2014) Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use. Brain Behav 4:468–483

    PubMed  PubMed Central  Google Scholar 

  • Smith RJ, Aston-Jones G (2008) Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct 213:43–61

    PubMed  PubMed Central  Google Scholar 

  • Sofuoglu M, Sewell RA (2009) Norepinephrine and stimulant addiction. Addict Biol 14:119–129

    CAS  PubMed  Google Scholar 

  • Steenen SA, van Wijk AJ, van der Heijden GJ, van Westrhenen R, de Lange J, de Jongh A (2016) Propranolol for the treatment of anxiety disorders: systematic review and meta-analysis. J Psychopharmacol 30:128–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stornetta RL, Sevigny CP, Schreihofer AM, Rosin DL, Guyenet PG (2002) Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J Comp Neurol 444:207–220

    CAS  PubMed  Google Scholar 

  • Strahlendorf HK, Strahlendorf JC (1983) Ethanol suppression of locus coeruleus neurons: relevancy to the fetal alcohol syndrome. Neurobehav Toxicol Teratol 5:221–224

    CAS  PubMed  Google Scholar 

  • Swanson LW (1976) The locus coeruleus: a cytoarchitectonic, Golgi and immunohistochemical study in the albino rat. Brain Res 110:39–56

    CAS  PubMed  Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol 163:467–505

    CAS  PubMed  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, Smith CC, Fernandez G, Deisseroth K, Greene RW, Morris RG (2016) Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537:357–362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takigawa M, Mogenson GJ (1977) A study of inputs to antidromically identified neurons of the locus coeruleus. Brain Res 135:217–230

    CAS  PubMed  Google Scholar 

  • Thiele TE, van Dijk G, Bernstein IL (1997) Ethanol-induced c-Fos expression in rat lines selected for low and high alcohol consumption. Brain Res 756:278–282

    CAS  PubMed  Google Scholar 

  • Thiele TE, Cubero I, van Dijk G, Mediavilla C, Bernstein IL (2000) Ethanol-induced c-fos expression in catecholamine- and neuropeptide Y-producing neurons in rat brainstem. Alcohol Clin Exp Res 24:802–809

    CAS  PubMed  Google Scholar 

  • Tjoumakaris SI, Rudoy C, Peoples J, Valentino RJ, Van Bockstaele EJ (2003) Cellular interactions between axon terminals containing endogenous opioid peptides or corticotropin-releasing factor in the rat locus coeruleus and surrounding dorsal pontine tegmentum. J Comp Neurol 466:445–456

    CAS  PubMed  Google Scholar 

  • Valentino RJ, Foote SL (1988) Corticotropin-releasing hormone increases tonic but not sensory-evoked activity of noradrenergic locus coeruleus neurons in unanesthetized rats. J Neurosci 8:1016–1025

    CAS  PubMed  Google Scholar 

  • Valentino RJ, Van Bockstaele E (2008) Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 583:194–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bockstaele EJ, Bajic D, Proudfit H, Valentino RJ (2001) Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav 73:273–283

    PubMed  Google Scholar 

  • Ventura R, De Carolis D, Alcaro A, Puglisi-Allegra S (2006) Ethanol consumption and reward depend on norepinephrine in the prefrontal cortex. Neuroreport 17:1813–1817

    CAS  PubMed  Google Scholar 

  • Verbanck P, Seutin V, Dresse A, Scuvee J, Massotte L, Giesbers I, Kornreich C (1990) Electrophysiological effects of ethanol on monoaminergic neurons: an in vivo and in vitro study. Alcohol Clin Exp Res 14:728–735

    CAS  PubMed  Google Scholar 

  • Verplaetse TL, Rasmussen DD, Froehlich JC, Czachowski CL (2012) Effects of prazosin, an alpha1-adrenergic receptor antagonist, on the seeking and intake of alcohol and sucrose in alcohol-preferring (P) rats. Alcohol Clin Exp Res 36:881–886

    CAS  PubMed  Google Scholar 

  • Vilpoux C, Warnault V, Pierrefiche O, Daoust M, Naassila M (2009) Ethanol-sensitive brain regions in rat and mouse: a cartographic review, using immediate early gene expression. Alcohol Clin Exp Res 33:945–969

    CAS  PubMed  Google Scholar 

  • Walker BM, Rasmussen DD, Raskind MA, Koob GF (2008) alpha1-noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol. Alcohol 42:91–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZJ, Rao ZR, Shi JW (1992) Tyrosine hydroxylase-, neurotensin-, or cholecystokinin-containing neurons in the nucleus tractus solitarii send projection fibers to the nucleus accumbens in the rat. Brain Res 578:347–350

    CAS  PubMed  Google Scholar 

  • Waterhouse BD, Moises HC, Woodward DJ (1980) Noradrenergic modulation of somatosensory cortical neuronal responses to iontophoretically applied putative neurotransmitters. Exp Neurol 69:30–49

    CAS  PubMed  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    CAS  PubMed  Google Scholar 

  • Weinshenker D, Rust NC, Miller NS, Palmiter RD (2000) Ethanol-associated behaviors of mice lacking norepinephrine. J Neurosci 20:3157–3164

    CAS  PubMed  Google Scholar 

  • Wellman PJ (2000) Norepinephrine and the control of food intake. Nutrition 16:837–842

    CAS  PubMed  Google Scholar 

  • Zaniewska M, Filip M, Przegalinski E (2015) The involvement of norepinephrine in behaviors related to psychostimulant addiction. Curr Neuropharmacol 13:407–418

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants AA024571 (EMV/DEM) and AA025481 (DEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena M. Vazey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vazey, E.M., den Hartog, C.R., Moorman, D.E. (2018). Central Noradrenergic Interactions with Alcohol and Regulation of Alcohol-Related Behaviors. In: Grant, K., Lovinger, D. (eds) The Neuropharmacology of Alcohol . Handbook of Experimental Pharmacology, vol 248. Springer, Cham. https://doi.org/10.1007/164_2018_108

Download citation

Publish with us

Policies and ethics