Advertisement

The Role of Glia in Sleep Regulation and Function

Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 253)

Abstract

The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.

Keywords

Astrocyte Glia Homeostasis Neural Sleep 

Notes

Acknowledgments

This research was supported by a Sleep Research Society Elliot Weitzman Award and NIH MH099544.

References

  1. Achariyar TM, Li B, Peng W et al (2016) Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 11:74.  https://doi.org/10.1186/s13024-016-0138-8 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amzica F (2002) In vivo electrophysiological evidences for cortical neuron-glia interactions during slow (<1 Hz) and paroxysmal sleep oscillations. J Physiol Paris 96:209–219PubMedCrossRefGoogle Scholar
  3. Amzica F, Massimini M (2002) Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cereb Cortex 12:1101–1113PubMedCrossRefGoogle Scholar
  4. Amzica F, Neckelmann D (1999) Membrane capacitance of cortical neurons and glia during sleep oscillations and spike-wave seizures. J Neurophysiol 82:2731–2746PubMedCrossRefGoogle Scholar
  5. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19:182–189.  https://doi.org/10.1038/nn.4201 PubMedCrossRefGoogle Scholar
  6. Bazargani N, Attwell D (2017) Amines, astrocytes, and arousal. Neuron 94:228–231.  https://doi.org/10.1016/j.neuron.2017.03.035 PubMedCrossRefGoogle Scholar
  7. Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C (2013) Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 33:14288–14300PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bellesi M, de Vivo L, Tononi G, Cirelli C (2015) Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:66.  https://doi.org/10.1186/s12915-015-0176-7 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci 37:5263PubMedPubMedCentralCrossRefGoogle Scholar
  10. Benington J, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360PubMedCrossRefGoogle Scholar
  11. Borbély AA, Achermann P (2000) Sleep homeostasis and models of sleep regulation. In: Kryger M, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. Saunders, Philadelphia, pp 377–390Google Scholar
  12. Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG (2017) Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95:1365–1380.e1365.  https://doi.org/10.1016/j.neuron.2017.08.022 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Clegern WC, Moore ME, Schmidt MA, Wisor J (2012) Simultaneous electroencephalography, real-time measurement of lactate concentration and optogenetic manipulation of neuronal activity in the rodent cerebral cortex. J Vis Exp 70:e4328.  https://doi.org/10.3791/4328 CrossRefGoogle Scholar
  14. Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13:9–17.  https://doi.org/10.1038/nn.2445 CrossRefGoogle Scholar
  15. Crunelli V, Blethyn KL, Cope DW et al (2002) Novel neuronal and astrocytic mechanisms in thalamocortical loop dynamics. Philos Trans R Soc Lond Ser B Biol Sci 357:1675–1693.  https://doi.org/10.1098/rstb.2002.1155 CrossRefGoogle Scholar
  16. Crunelli V, Errington AC, Hughes SW, Tóth TI (2011) The thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Philos Trans R Soc A Math Phys Eng Sci 369:3820–3839CrossRefGoogle Scholar
  17. Dale E, Staal RGW, Eder C, Möller T (2016) KCa3.1 – a microglial target ready for drug repurposing? Glia 64:1733–1741.  https://doi.org/10.1002/glia.22992 PubMedCrossRefGoogle Scholar
  18. Dash MB, Tononi G, Cirelli C (2012) Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex. Sleep 35:909–919.  https://doi.org/10.5665/sleep.1950 PubMedPubMedCentralCrossRefGoogle Scholar
  19. De Roo M, Klauser P, Garcia PM, Poglia L, Muller D (2008) Spine dynamics and synapse remodeling during LTP and memory processes. Prog Brain Res 169:199–207PubMedCrossRefGoogle Scholar
  20. Dijk DJ, Lockley SW (2002) Integration of human sleep-wake regulation and circadian rhythmicity. J Appl Physiol 92:852–862PubMedCrossRefGoogle Scholar
  21. Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R (2010) Sleep and brain energy levels: ATP changes during sleep. J Neurosci 30:9007–9016PubMedPubMedCentralCrossRefGoogle Scholar
  22. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28:4088–4095PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fellin T, Halassa MM, Terunuma M et al (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc Natl Acad Sci U S A 106:15037–15042.  https://doi.org/10.1073/pnas.0906419106 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fiacco TA, Agulhon C, McCarthy KD (2009) Sorting out astrocyte physiology from pharmacology. Annu Rev Pharmacol Toxicol 49:151–174.  https://doi.org/10.1146/annurev.pharmtox.011008.145602 PubMedCrossRefGoogle Scholar
  25. Frank MG (2006) The mystery of sleep function: current perspectives and future directions. Rev Neurosci 17:375–392PubMedCrossRefGoogle Scholar
  26. Frank MG (2010) The functions of sleep. In: Winkelman JW, Plante DT (eds) Foundations of psychiatric sleep medicine. Cambridge University Press, Cambridge, pp 59–78CrossRefGoogle Scholar
  27. Frank M (2015) Sleep and synaptic plasticity in the developing and adult brain. Curr Top Behav Neurosci 25:123–149.  https://doi.org/10.1007/7854_2014_305 PubMedCrossRefGoogle Scholar
  28. Franken P, Gip P, Hagiwara G, Ruby NF, Heller HC (2003) Changes in brain glycogen after sleep deprivation vary with genotype. Am J Physiol Regul Integr Comp Physiol 285:R413–R419PubMedCrossRefGoogle Scholar
  29. Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519:933–956.  https://doi.org/10.1002/cne.22559 PubMedPubMedCentralCrossRefGoogle Scholar
  30. García-Marín V, García-López P, Freire M (2007) Cajal’s contributions to glia research. Trends Neurosci 30:479–487PubMedCrossRefGoogle Scholar
  31. Gerstner JR, Vanderheyden WM, LaVaute T et al (2012) Time of day regulates subcellular trafficking, tripartite synaptic localization, and polyadenylation of the astrocytic Fabp7 mRNA. J Neurosci 32:1383PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gerstner JR, Perron IJ, Riedy S et al (2017) Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7. Sci Adv 3(4):e1602663PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gip P, Hagiwara G, Ruby NF, Heller HC (2002) Sleep deprivation decreases glycogen in the cerebellum but not in the cortex of young rats. Am J Physiol Regul Integr Comp Physiol 283:R54–R59PubMedCrossRefGoogle Scholar
  34. Gip P, Hagiwara G, Sapolsky RM, Cao VH, Heller HC, Ruby NF (2004) Glucocorticoids influence brain glycogen levels during sleep deprivation. Am J Physiol Regul Integr Comp Physiol 286:R1057–R1062PubMedCrossRefGoogle Scholar
  35. Greene RW, Bjorness TE, Suzuki A (2017) The adenosine-mediated, neuronal-glial, homeostatic sleep response. Curr Opin Neurobiol 44:236–242.  https://doi.org/10.1016/j.conb.2017.05.015 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gyoneva S, Orr AG, Traynelis SF (2009) Differential regulation of microglial motility by ATP/ADP and adenosine. Parkinsonism Relat Disord 15(Suppl 3):S195–S199PubMedCrossRefGoogle Scholar
  37. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355.  https://doi.org/10.1146/annurev-physiol-021909-135843 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Halassa MM, Fellin T, Haydon PG (2009a) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57:343–346.  https://doi.org/10.1016/j.neuropharm.2009.06.031 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Halassa MM, Florian C, Fellin T et al (2009b) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219.  https://doi.org/10.1016/j.neuron.2008.11.024 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hamilton NB, Atwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238PubMedCrossRefGoogle Scholar
  41. Hayaishi O (2002) Functional genomics of sleep and circadian rhythm: invited review: molecular genetic studies on sleep-wake regulation, with special emphasis on the prostaglandin D2 system. J Appl Physiol 92:863–868PubMedCrossRefGoogle Scholar
  42. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan W-B, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519PubMedCrossRefGoogle Scholar
  43. Huang Z-L, Qu W-M, Eguchi N et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859PubMedCrossRefGoogle Scholar
  44. Huang Z-L, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38PubMedCrossRefGoogle Scholar
  45. Hyden H, Lange PW (1965) Rhythmic enzyme changes in neurons and glia during sleep. Science 149:654–656PubMedCrossRefGoogle Scholar
  46. Hyder F, Fulbright RK, Shulman RG, Rothman DL (2013) Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J Cereb Blood Flow Metab 33(3):339–347PubMedPubMedCentralCrossRefGoogle Scholar
  47. Imamura K, Mataga N, Watanabe Y (1993) Gliotoxin-induced suppression of ocular dominance plasticity in kitten visual cortex. Neurosci Res 16:117–124PubMedCrossRefGoogle Scholar
  48. Inagaki N, Wada H (1994) Histamine and prostanoid receptors on glial cells. Glia 11:102–109PubMedCrossRefGoogle Scholar
  49. Inoue S, Honda K, Komoda Y (1995) Sleep as neuronal detoxification and restitution. Behav Brain Res 69:91–96PubMedCrossRefGoogle Scholar
  50. Ishimori K (1909) True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi 23:429–457Google Scholar
  51. Kjaerby C, Rasmussen R, Andersen M, Nedergaard M (2017) Does global astrocytic calcium signaling participate in awake brain state transitions and neuronal circuit function? Neurochem Res 42:1810–1822.  https://doi.org/10.1007/s11064-017-2195-y PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22:5581–5587PubMedCrossRefGoogle Scholar
  53. Kreft M, Bak LK, Waagepetersen HS, Schousboe A (2012) Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro 4:e00086PubMedPubMedCentralCrossRefGoogle Scholar
  54. Krueger JM (2008) The role of cytokines in sleep regulation. Curr Pharm Des 14:3408–3416PubMedPubMedCentralCrossRefGoogle Scholar
  55. Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J (2008) Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9:910–919.  https://doi.org/10.1038/nrn2521 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Krueger JM, Taishi P, De A et al (2010) ATP and the purine type 2 X7 receptor affect sleep. J Appl Physiol 109:1318–1327PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kushikata T, Fang J, Krueger JM (1999) Brain-derived neurotrophic factor enhances spontaneous sleep in rats and rabbits. Am J Physiol Regul Integr Comp Physiol 276:R1334–R1338CrossRefGoogle Scholar
  58. Losi G, Mariotti L, Sessolo M, Carmignoto G (2017) New tools to study astrocyte Ca2+ signal dynamics in brain networks in vivo. Front Cell Neurosci 11:134PubMedPubMedCentralCrossRefGoogle Scholar
  59. Madhusudanan P, Reade S, Shankarappa SA (2017) Neuroglia as targets for drug delivery systems: a review. Nanomedicine 13:667–679.  https://doi.org/10.1016/j.nano.2016.08.013 PubMedCrossRefGoogle Scholar
  60. Magistretti PJ (2011) Neuronal-glia metabolic coupling and plasticity. Exp Physiol 96:407–410PubMedCrossRefGoogle Scholar
  61. Matsui T, Svensson CI, Hirata Y, Mizobata K, Hua X-Y, Yaksh TL (2010) Release of prostaglandin E2 and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase. Anesth Analg 111:554–560PubMedCrossRefGoogle Scholar
  62. Möller T, Boddeke HWGM (2016) Glial cells as drug targets: what does it take? Glia 64:1742–1754.  https://doi.org/10.1002/glia.22993 PubMedCrossRefGoogle Scholar
  63. Morozov A, Kellendonk C, Simpson E, Tronche F (2003) Using conditional mutagenesis to study the brain. Biol Psychiatry 54:1125–1133PubMedCrossRefGoogle Scholar
  64. Naylor E, Aillon DV, Barrett BS et al (2012) Lactate as a biomarker for sleep. Sleep 35:1209–1222.  https://doi.org/10.5665/sleep.2072 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nedergaard M, Verkhratsky A (2012) Artifact versus reality – how astrocytes contribute to synaptic events. Glia 60:1013–1023.  https://doi.org/10.1002/glia.22288 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92PubMedCrossRefGoogle Scholar
  67. Pascual O, Casper KB, Kubera C et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116CrossRefGoogle Scholar
  68. Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ (2016) Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 43:1298–1306.  https://doi.org/10.1111/ejn.13074 PubMedCrossRefGoogle Scholar
  69. Petit J-M, Tobler I, Allaman I, Borbely AA, Magistretti PJ (2002) Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur J Neurosci 16:1163–1167PubMedCrossRefGoogle Scholar
  70. Petit JM, Tobler I, Kopp C, Morgenthaler F, Borbely AA, Magistretti PJ (2010) Metabolic response of the cerebral cortex following gentle sleep deprivation and modafinil administration. Sleep 33:901–908PubMedPubMedCentralCrossRefGoogle Scholar
  71. Petit JM, Gyger J, Burlet-Godinot S, Fiumelli H, Martin J-M, Magistretti PJ (2013) Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice. Sleep 36:1445–1458PubMedPubMedCentralCrossRefGoogle Scholar
  72. Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci 113:E2675–E2684PubMedCrossRefGoogle Scholar
  73. Ramm P, Smith CT (1990) Rates of cerebral protein synthesis are linked to slow-wave sleep in the rat. Physiol Behav 48:749–753PubMedCrossRefGoogle Scholar
  74. Reimund E (1994) The free radical theory of sleep. Med Hypotheses 43:231–233PubMedCrossRefGoogle Scholar
  75. Sala C, Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 94:141–188PubMedCrossRefGoogle Scholar
  76. Scales SJ, Bock JB, Scheller RH (2000) The specifics of membrane fusion. Nature 407:144–146.  https://doi.org/10.1038/35025176 PubMedCrossRefGoogle Scholar
  77. Schmitt LI, Sims RE, Dale N, Haydon PG (2012) Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci 32:4417–4425PubMedPubMedCentralCrossRefGoogle Scholar
  78. Schulze G (2004) Sleep protects excitatory cortical circuits against oxidative damage. Med Hypotheses 63:203–207PubMedCrossRefGoogle Scholar
  79. Seibt J, Dumoulin M, Aton SJ, Naidoo J, Watson A, Coleman T, Frank MG (2012) Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22:676–682PubMedPubMedCentralCrossRefGoogle Scholar
  80. Shannon BJ, Dosenbach RA, Su Y et al (2012) Morning-evening variation in human brain metabolism and memory circuits. J Neurophysiol 109:1444–1456PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sipe GO, Lowery RL, Tremblay MÈ, Kelly EA, Lamantia CE, Majewska AK (2016) Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun 7:10905.  https://doi.org/10.1038/ncomms10905. https://www.nature.com/articles/ncomms10905#supplementary-information PubMedPubMedCentralCrossRefGoogle Scholar
  82. Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8.  https://doi.org/10.1016/j.conb.2016.09.016 PubMedCrossRefGoogle Scholar
  83. Strecker RE, Morairty S, Thakkar MM et al (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115:183–204PubMedCrossRefGoogle Scholar
  84. Szabó Z, Héja L, Szalay G et al (2017) Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Sci Rep 7:6018.  https://doi.org/10.1038/s41598-017-06073-7 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Szymusiak R, Gvilia I, McGinty D (2007) Hypothalamic control of sleep. Sleep Med 8:291–301PubMedCrossRefGoogle Scholar
  86. Takano T, Tian G-F, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267CrossRefGoogle Scholar
  87. Tobler I, Borbély AA, Schwyzer M, Fontana A (1984) Interleukin-1 derived from astrocytes enhances slow wave activity in sleep EEG of the rat. Eur J Pharmacol 104:191–192PubMedCrossRefGoogle Scholar
  88. Urade Y, Hayaishi O (2011) Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 15:411–418PubMedCrossRefGoogle Scholar
  89. Verkhratsky A, Rodriguez J, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56PubMedCrossRefGoogle Scholar
  90. Verkman AS, Smith AJ, Phuan P-W, Tradtrantip L, Anderson MO (2017) The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets 21:1161–1170.  https://doi.org/10.1080/14728222.2017.1398236 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Volterra A (2013) Astrocytes: modulation of synaptic function and network activity. In: Kettenmann H, Ransom B (eds) Neuroglia. Oxford University Press, New York, pp 481–493Google Scholar
  92. Wisor JP, Clegern WC (2011) Quantification of short-term slow wave sleep homeostasis and its disruption by minocycline in the laboratory mouse. Neurosci Lett 490:165–169.  https://doi.org/10.1016/j.neulet.2010.11.034 PubMedCrossRefGoogle Scholar
  93. Wisor JP, Clegern WC, Schmidt MA (2011a) Toll-like receptor 4 is a regulator of monocyte and electroencephalographic responses to sleep loss. Sleep 34:1335–1345.  https://doi.org/10.5665/SLEEP.1274 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wisor JP, Schmidt MA, Clegern WC (2011b) Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep 34:261–272PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wisor JP, Rempe MJ, Schmidt MA, Moore ME, Clegern WC (2012) Sleep slow-wave activity regulates cerebral glycolytic metabolism. Cereb Cortex 23:1978–1987PubMedPubMedCentralCrossRefGoogle Scholar
  96. Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377.  https://doi.org/10.1126/science.1241224 CrossRefGoogle Scholar
  97. Yamamoto K, Miwa T, Ueno R, Hayaishi O (1988) Muramyl dipeptide-elicited production of PGD2 from astrocytes in culture. Biochem Biophys Res Commun 156:882–888PubMedCrossRefGoogle Scholar
  98. Yulug B, Hanoglu L, Kilic E (2017) Does sleep disturbance affect the amyloid clearance mechanisms in Alzheimer’s disease? Psychiatry Clin Neurosc 71(10):673–677.  https://doi.org/10.1111/pcn.12539 CrossRefGoogle Scholar
  99. Zhang Q, Haydon PG (2005) Roles for gliotransmission in the nervous system. J Neural Transm 112:121–125PubMedCrossRefGoogle Scholar
  100. Zimmerman JE, Mackiewicz M, Galante RJ et al (2004) Glycogen in the brain of Drosophila melanogaster: diurnal rhythm and the effect of rest deprivation. J Neurochem 88:32–40PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesElson S. Floyd College of Medicine, Washington State University SpokaneSpokaneUSA

Personalised recommendations