Presynaptic Ethanol Actions: Potential Roles in Ethanol Seeking

  • David M. LovingerEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 248)


Ethanol produces intoxication through actions on numerous molecular and cellular targets. Adaptations involving these and other targets contribute to chronic drug actions that underlie continued and problematic drinking. Among the mechanisms involved in these ethanol actions are alterations in presynaptic mechanisms of synaptic transmission, including presynaptic protein function and excitation-secretion coupling. At synapses in the central nervous system (CNS), excitation-secretion coupling involves ion channel activation followed by vesicle fusion and neurotransmitter release. These mechanisms are altered by presynaptic neurotransmitter receptors and prominently by G protein-coupled receptors (GPCRs). Studies over the last 20–25 years have revealed that acute ethanol exposure alters neurotransmitter secretion, with especially robust effects on synapses that use the neurotransmitter gamma-aminobutyric acid (GABA). Intracellular signaling pathways involving second messengers such as cyclic AMP and calcium are implicated in these acute ethanol actions. Ethanol-induced release of neuropeptides and small molecule neurotransmitters that act on presynaptic GPCRs also contribute to presynaptic potentiation at synapses in the amygdala and hippocampus and inhibition of GABA release in the striatum. Prolonged exposure to ethanol alters neurotransmitter release at many CNS GABAergic and glutamatergic synapses, and changes in GPCR function are implicated in many of these neuroadaptations. These presynaptic neuroadaptations appear to involve compensation for acute drug effects at some synapses, but “allostatic” effects that result in long-term resetting of synaptic efficacy occur at others. Current investigations are determining how presynaptic neuroadaptations contribute to behavioral changes at different stages of alcohol drinking, with increasing focus on circuit adaptations underlying these behaviors. This chapter will discuss the acute and chronic presynaptic effects of ethanol in the CNS, as well as some of the consequences of these effects in amygdala and corticostriatal circuits that are related to excessive seeking/drinking and ethanol abuse.


Addiction Alcohol Amygdala Cortex Endocannabinoid GABA Glutamate Long-term depression Striatum Synaptic plasticity Synaptic transmission 



This work was supported by the Division of Intramural Clinical and Biological Research of the National Institute on Alcohol Abuse and Alcoholism, project ZIA AA000407.


  1. Abrahao K, Salinas A, Lovinger DM (2017) Alcohol and the brain: molecular targets, synapses and circuit. Neuron. (in press)Google Scholar
  2. Adermark L, Talani G, Lovinger DM (2009) Endocannabinoid-dependent plasticity at GABAergic and glutamatergic synapses in the striatum is regulated by synaptic activity. Eur J Neurosci 29(1):32–41PubMedPubMedCentralGoogle Scholar
  3. Adermark L, Clarke RB, Soderpalm B, Ericson M (2011a) Ethanol-induced modulation of synaptic output from the dorsolateral striatum in rat is regulated by cholinergic interneurons. Neurochem Int 58:693–699PubMedGoogle Scholar
  4. Adermark L, Jonsson S, Ericson M, Soderpalm B (2011b) Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat. Neuropharmacology 61:1160–1165PubMedGoogle Scholar
  5. Agabio R, Colombo G (2014) GABAB receptor ligands for the treatment of alcohol use disorder: preclinical and clinical evidence. Front Neurosci 8:140PubMedPubMedCentralGoogle Scholar
  6. Anderson RI, Moorman DE, Becker HC (2017) Contribution of dynorphin and orexin neuropeptide systems to alcohol reward and motivation. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  7. Araque A, Castillo PE, Manzoni OJ, Tonini R (2017) Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 124:13–24PubMedPubMedCentralGoogle Scholar
  8. Ariwodola OJ, Weiner JL (2004) Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: role of presynaptic GABA(B) receptors. J Neurosci 24:10679–10686PubMedGoogle Scholar
  9. Atwood BK, Lovinger DM, Mathur BN (2014) Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 37(11):663–673PubMedPubMedCentralGoogle Scholar
  10. Backstrom P, Hyytia P (2005) Suppression of alcohol self-administration and cue-induced reinstatement of alcohol seeking by the mGlu2/3 receptor agonist LY379268 and the mGlu8 receptor agonist (S)-3,4-DCPG. Eur J Pharmacol 528:110–118PubMedGoogle Scholar
  11. Bajo M, Cruz MT, Siggins GR, Messing R, Roberto M (2008) Protein kinase C epsilon mediation of CRF- and ethanol-induced GABA release in central amygdala. Proc Natl Acad Sci U S A 105:8410–8415PubMedPubMedCentralGoogle Scholar
  12. Baker DA, Shen H, Kalivas PW (2002) Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids 23(13):161–162PubMedGoogle Scholar
  13. Barker JM, Torregrossa MM, Arnold AP, Taylor JR (2010) Dissociation of genetic and hormonal influences on sex differences in alcoholism-related behaviors. J Neurosci 30(27):9140–9144PubMedPubMedCentralGoogle Scholar
  14. Barker JM, Corbit LH, Robinson DL, Gremel CM, Gonzales RA, Chandler LJ (2015) Corticostriatal circuitry and habitual ethanol seeking. Alcohol 49(8):817–824PubMedPubMedCentralGoogle Scholar
  15. Basavarajappa BS, Cooper TB, Hungund BL (1998) Chronic ethanol administration down-regulates cannabinoid receptors in mouse brain synaptic plasma membrane. Brain Res 793(1–2):212–218PubMedGoogle Scholar
  16. Basavarajappa BS, Ninan I, Arancio O (2008) Acute ethanol suppresses glutamatergic neurotransmission through endocannabinoids in hippocampal neurons. J Neurochem 107:1001–1013PubMedPubMedCentralGoogle Scholar
  17. Berry RB, Chandra D, Diaz-Granados JL, Homanics GE, Matthews DB (2009) Investigation of ethanol-induced impairment of spatial memory in gamma2 heterozygous knockout mice. Neurosci Lett 455(2):84–87PubMedPubMedCentralGoogle Scholar
  18. Betke KM, Wells CA, Hamm HE (2012) GPCR mediated regulation of synaptic transmission. Prog Neurobiol 96:304–321PubMedPubMedCentralGoogle Scholar
  19. Blackmer T, Larsen EC, Takahashi M, Martin TF, Alford S, Hamm HE (2001) G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292:293–297PubMedGoogle Scholar
  20. Brown DA, Sihra TS (2008) Presynaptic signaling by heterotrimeric G-proteins. In: Sudhof TC, Starke K (eds) Pharmacology of neurotransmitter release, Handbook of experimental pharmacology, vol 184. Springer, Heidelberg, pp 207–260Google Scholar
  21. Budygin EA, Phillips PE, Wightman RM, Jones SR (2001) Terminal effects of ethanol on dopamine dynamics in rat nucleus accumbens: an in vitro voltammetric study. Synapse 42:77–79PubMedGoogle Scholar
  22. Cagetti E, Liang J, Spigelman I, Olsen RW (2003) Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol Pharmacol 63(1):53–64PubMedGoogle Scholar
  23. Cannady R, Rinker JA, Woodward JJ, Mulholland PJ (2017) Chronic alcohol, intrinsic excitability, and potassium channels: neuroadaptations and drinking behavior. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  24. Carta M, Mameli M, Valenzuela CF (2004) Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci 24(15):3746–3751PubMedGoogle Scholar
  25. Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901PubMedPubMedCentralGoogle Scholar
  26. Chandler CM, Overton JS, Ruedi-Bettschen D, Platt DM (2017) GABAA receptor subtype mechanisms and the abuse-related effects of ethanol. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  27. Cheng Y, Huang CCY, Ma T, Wei X, Wang X, Lu J, Wang J (2017) Distinct synaptic strengthening of the striatal direct and indirect pathways drives alcohol consumption. Biol Psychiatry 81:918–929PubMedGoogle Scholar
  28. Coleman LG, Crews FT (2017) Innate immune signaling and alcohol use disorders. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  29. Colwill RM, Rescorla RA (1990) Effect of reinforcer devaluation on discriminative control of instrumental behavior. J Exp Psychol Anim Behav Process 16(1):40–47PubMedGoogle Scholar
  30. Corbit LH, Janak PH (2016) Habitual alcohol seeking: neural bases and possible relations to alcohol use disorders. Alcohol Clin Exp Res 40(7):1380–1389. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Corbit LH, Nie H, Janak PH (2012) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72(5):389–395. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Criswell HE, Ming Z, Kelm MK, Breese GR (2008) Brain regional differences in the effect of ethanol on GABA release from presynaptic terminals. J Pharmacol Exp Ther 326:596–603PubMedPubMedCentralGoogle Scholar
  33. Cuzon Carlson VC (2017) GABA and glutamate synaptic co-adaptations to chronic ethanol in the striatum. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  34. Cuzon Carlson VC, Seabold GK, Helms CM, Garg N, Odagiri M, Rau AR, Daunais J, Alvarez VA, Lovinger DM, Grant KA (2011) Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36:2513–2528PubMedPubMedCentralGoogle Scholar
  35. Cuzon Carlson VC, Grant KA, Lovinger DM (2017) Synaptic adaptations to ethanol intake in male rhesus monkey dorsal striatum depend on age of drinking onset. (submitted for publication)Google Scholar
  36. Dahchour A, De Witte P (1999) Effect of repeated ethanol withdrawal on glutamate microdialysate in the hippocampus. Alcohol Clin Exp Res 23:1698–1703PubMedGoogle Scholar
  37. Dahchour A, De Witte P (2003) Excitatory and inhibitory amino acid changes during repeated episodes of ethanol withdrawal: an in vivo microdialysis study. Eur J Pharmacol 459:171–178PubMedGoogle Scholar
  38. Deng C, Li KY, Zhou C, Ye JH (2009) Ethanol enhances glutamate transmission by retrograde dopamine signaling in a postsynaptic neuron/synaptic bouton preparation from the ventral tegmental area. Neuropsychopharmacology 34(5):1233–1244. CrossRefPubMedGoogle Scholar
  39. DePoy L, Daut R, Brigman JL, MacPherson K, Crowley N, Gunduz-Cinar O, Pickens CL, Cinar R, Saksida LM, Kunos G, Lovinger DM, Bussey TJ, Camp MC, Holmes A (2013) Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc Natl Acad Sci U S A 110:14783–14788PubMedPubMedCentralGoogle Scholar
  40. Diaz MR, Christian DT, Anderson NJ, McCool BA (2011) Chronic ethanol and withdrawal differentially modulate lateral/basolateral amygdala paracapsular and local GABAergic synapses. J Pharmacol Exp Ther 337(1):162–170PubMedPubMedCentralGoogle Scholar
  41. Dickinson A (1985) Actions and habits: the development of behavioural autonomy. Philos Trans R Soc Lond Ser B Biol Sci 308:67–78Google Scholar
  42. Dickinson A, Wood N, Smith JW (2002) Alcohol seeking by rats: action or habit? Q J Exp Psychol B 55(4):331–348PubMedGoogle Scholar
  43. Dopico AM, Bukiya AN, Bettinger JC (2017) Voltage-sensitive potassium channels: BK. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  44. Engelman HS, MacDermott AB (2004) Presynaptic ionotropic receptors and control of transmitter release. Nat Rev Neurosci 5(2):135–145PubMedGoogle Scholar
  45. Evans GJ, Morgan A (2003) Regulation of the exocytotic machinery by cAMP-dependent protein kinase: implications for presynaptic plasticity. Biochem Soc Trans 31(Pt 4):824–827PubMedGoogle Scholar
  46. Evstratova A, Tóth K (2014) Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci 8:28. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Finn DA, Jimenez VA (2017) Dynamic adaptation in neurosteroid networks in response to alcohol. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  48. Gibson WE (1985) Effects of alcohol on radial maze performance in rats. Physiol Behav 35(6):1003–1005PubMedGoogle Scholar
  49. Gioia DA, McCool B (2017) Strain-dependent effects of acute alcohol on synaptic vesicle recycling and post-tetanic potentiation in medial glutamate inputs to the mouse basolateral amygdala. Alcohol Clin Exp Res 41:735–746PubMedPubMedCentralGoogle Scholar
  50. Gioia DA, Alexander N, McCool BA (2017) Ethanol mediated inhibition of synaptic vesicle recycling at amygdala glutamate synapses is dependent upon Munc13-2. Front Neurosci 11:424. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Givens B (1995) Low doses of ethanol impair spatial working memory and reduce hippocampal theta activity. Alcohol Clin Exp Res 19:763–767PubMedGoogle Scholar
  52. Gladwin TE, Wiers RW (2012) Alcohol-related effects on automaticity due to experimentally manipulated conditioning. Alcohol Clin Exp Res 36(5):895–899. CrossRefPubMedGoogle Scholar
  53. Gremel CM, Lovinger DM (2017) Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs. Genes Brain Behav 16(1):71–85PubMedGoogle Scholar
  54. Griffin WC 3rd, Haun HL, Hazelbaker CL, Ramachandra VS, Becker HC (2014) Increased extracellular glutamate in the nucleus accumbens promotes excessive ethanol drinking in ethanol dependent mice. Neuropsychopharmacology 39:707–717PubMedGoogle Scholar
  55. Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13(12):1519–1525. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26:8368–8376. CrossRefPubMedGoogle Scholar
  57. Harris RA, Trudell JR, Mihic SJ (2008) Ethanol’s molecular targets. Sci Signal 1:re7PubMedPubMedCentralGoogle Scholar
  58. Hay RA, Jennings JH, Zitzman DL, Hodge CW, Robinson DL (2013) Specific and nonspecific effects of naltrexone on goal-directed and habitual models of alcohol seeking and drinking. Alcohol Clin Exp Res 37(7):1100–1110. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Heifets BD, Castillo PE (2009) Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 71:283–306PubMedPubMedCentralGoogle Scholar
  60. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262PubMedGoogle Scholar
  61. Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, Yamashita S, Bienkowski MS, Zingg B, Zhu M, Yang XW, Shih JC, Toga AW, Dong HW (2016) The mouse cortico-striatal projectome. Nat Neurosci 19:1100–1114. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hirono M, Yamada M, Obata K (2009) Ethanol enhances both action potential dependent and action potential-independent GABAergic transmission onto cerebellar Purkinje cells. Neuropharmacology 57:109–120PubMedGoogle Scholar
  63. Hirth N, Meinhardt MW, Noori HR, Salgado H, Torres-Ramirez O, Uhrig S, Broccoli L, Vengeliene V, Rossmanith M, Perreau-Lenz S, Kohr G, Sommer WH, Spanagel R, Hansson AC (2016) Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence. Proc Natl Acad Sci U S A 113:3024–3029PubMedPubMedCentralGoogle Scholar
  64. Hogarth L, Attwood AS, Bate HA, Munafò MR (2012) Acute alcohol impairs human goal-directed action. Biol Psychol 90(2):154–160. CrossRefPubMedGoogle Scholar
  65. Hopf FW, Mangieri RA (2017) Do alcohol-related AMPA-type glutamate receptor adaptations promote intake? In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  66. Howerton TC, Collins AC (1984) Ethanol-induced inhibition of GABA release from LS and SS mouse brain slices. Alcohol 1(6):471–477PubMedGoogle Scholar
  67. Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T (2016) A comprehensive excitatory input map of the striatum reveals novel functional organization. elife 5:e19103. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hunt PS, Levillain ME, Spector BM, Kostelnik LA (2009) Post-training ethanol disrupts trace conditioned fear in rats: effects of timing of ethanol, dose and trace interval duration. Neurobiol Learn Mem 91:73–80PubMedGoogle Scholar
  69. Ikeda SR (1996) Voltage-dependent modulation of N-type Ca2+ channels by G-protein beta gamma subunits. Nature 380:255–258PubMedGoogle Scholar
  70. Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147(3):509–524PubMedPubMedCentralGoogle Scholar
  71. Jun SB, Cuzon Carlson V, Ikeda S, Lovinger D (2011) Vibrodissociation of neurons from rodent brain slices to study synaptic transmission and image presynaptic terminals. J Vis Exp 51:2752. CrossRefGoogle Scholar
  72. Karkhanis AN, Rose JH, Huggins KN, Konstantopoulos JK, Jones SR (2015) Chronic intermittent ethanol exposure reduces presynaptic dopamine neurotransmission in the mouse nucleus accumbens. Drug Alcohol Depend 150:24–30PubMedPubMedCentralGoogle Scholar
  73. Karkhanis AN, Huggins KN, Rose JH, Jones SR (2016) Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: role of kappa opioid receptors. Neuropharmacology 110:190–197PubMedPubMedCentralGoogle Scholar
  74. Kavalali ET (2015) The mechanisms and function of spontaneous neurotransmitter release. Nat Rev Neurosci 16:5–16PubMedGoogle Scholar
  75. Kelm MK, Criswell HE, Breese GR (2007) Calcium release from presynaptic internal stores is required for ethanol to increase spontaneous gamma-aminobutyric acid release onto cerebellum Purkinje neurons. J Pharmacol Exp Ther 323:356–364PubMedGoogle Scholar
  76. Kelm MK, Criswell HE, Breese GR (2008) The role of protein kinase A in the ethanol-induced increase in spontaneous GABA release onto cerebellar Purkinje neurons. J Neurophysiol 100(6):3417–3428. CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kirson D, Oleata CS, Parsons LH, Ciccocioppo R, Roberto M (2017) CB1 and ethanol effects on glutamatergic transmission in the central amygdala of male and female msP and Wistar rats. Addict Biol.
  78. Klenowski PM, Tapper AR (2017) Molecular, neuronal and behavioral effects of ethanol and nicotine interactions. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  79. Knackstedt LA, Kalivas PW (2009) Glutamate and reinstatement. Curr Opin Pharmacol 9(1):59–64PubMedPubMedCentralGoogle Scholar
  80. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3:760–773PubMedPubMedCentralGoogle Scholar
  81. Lack AK, Diaz MR, Chappell A, DuBois DW, McCool BA (2007) Chronic ethanol and withdrawal differentially modulate pre- and postsynaptic function at glutamatergic synapses in rat basolateral amygdala. J Neurophysiol 98:3185–3196PubMedPubMedCentralGoogle Scholar
  82. Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S (2012) G protein-coupled receptors – recent advances. Acta Biochim Pol 59:515–529PubMedPubMedCentralGoogle Scholar
  83. Li C, McCall NM, Lopez AJ, Kash TL (2013) Alcohol effects on synaptic transmission in periaqueductal gray dopamine neurons. Alcohol 47(4):279–287. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lovinger DM, Alvarez VA (2017) Alcohol and basal ganglia circuitry: animal models. Neuropharmacology 122:46–55PubMedPubMedCentralGoogle Scholar
  85. Lovinger DM, McCool BA (1995) Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. J Neurophys 73(3):1076–1083Google Scholar
  86. Lovinger DM, Roberto M (2013) Synaptic effects induced by alcohol. Curr Top Behav Neurosci 13:31–86PubMedPubMedCentralGoogle Scholar
  87. Lowery-Gionta EG, Marcinkiewcz CA, Kash TL (2015) Functional alterations in the dorsal raphe nucleus following acute and chronic ethanol exposure. Neuropsychopharmacology 40(3):590–600. CrossRefPubMedGoogle Scholar
  88. Ma T, Barbee B, Wang X, Wang J (2017) Alcohol induces input-specific aberrant synaptic plasticity in the rat dorsomedial striatum. Neuropharmacology 123:46–54PubMedPubMedCentralGoogle Scholar
  89. Maldve RE, Chen X, Zhang TA, Morrisett RA (2004) Ethanol selectively inhibits enhanced vesicular release at excitatory synapses: real-time visualization in intact hippocampal slices. Alcohol Clin Exp Res 28:143–152PubMedGoogle Scholar
  90. Mangieri RA, Cofresí RU, Gonzales RA (2012) Ethanol seeking by Long Evans rats is not always a goal-directed behavior. PLoS One 7(8):e42886. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Manzoni O, Michel JM, Bockaert J (1997) Metabotropic glutamate receptors in the rat nucleus accumbens. Eur J Neurosci 9(7):1514–1523PubMedGoogle Scholar
  92. Matthews DB, Morrow AL, Tokunaga S, McDaniel JR (2002) Acute ethanol administration and acute allopregnanolone administration impair spatial memory in the Morris water task. Alcohol Clin Exp Res 26:1747–1751PubMedGoogle Scholar
  93. Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stahlin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH (2013) Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci 33:2794–2806PubMedPubMedCentralGoogle Scholar
  94. Melchior JR, Jones SR (2017) Chronic ethanol exposure increases inhibition of optically targeted phasic dopamine release in the nucleus accumbens core and medial shell ex vivo. Mol Cell Neurosci 85:93–104PubMedPubMedCentralGoogle Scholar
  95. Melendez RI, Hicks MP, Cagle SS, Kalivas PW (2005) Ethanol exposure decreases glutamate uptake in the nucleus accumbens. Alcohol Clin Exp Res 29(3):326–333PubMedGoogle Scholar
  96. Melis M, Camarini R, Ungless MA, Bonci A (2002) Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci 22:2074–2082PubMedGoogle Scholar
  97. Merlo Pich E, Lorang M, Yeganeh M, Rodriguez de Fonseca F, Raber J, Koob GF, Weiss F (1995) Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J Neurosci 15:5439–5447PubMedGoogle Scholar
  98. Mihic SJ, Harris RA (2011) Hypnotics and sedatives. In: Goodman & Gilman’s pharmacological basis of therapeutics, 12th edn. McGraw Hill, New York, pp 457–480Google Scholar
  99. Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201–227PubMedGoogle Scholar
  100. N’Gouemo P (2017) Voltage-sensitive calcium channels. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  101. Nam HW, Hinton DJ, Kang NY, Kim T, Lee MR, Oliveros A, Adams C, Ruby CL, Choi DS (2013) Adenosine transporter ENT1 regulates the acquisition of goal-directed behavior and ethanol drinking through A2A receptor in the dorsomedial striatum. J Neurosci 33(10):4329–4338PubMedPubMedCentralGoogle Scholar
  102. Nie Z, Schweitzer P, Roberts AJ, Madamba SG, Moore SD, Siggins GR (2004) Ethanol augments GABAergic transmission in the central amygdala via CRF1 receptors. Science 303:1512–1514PubMedGoogle Scholar
  103. Oldham WM, Hamm HE (2006) Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 39:117–166PubMedGoogle Scholar
  104. Olive MF, Koenig HN, Nannini MA, Hodge CW (2002) Elevated extracellular CRF levels in the bed nucleus of the stria terminalis during ethanol withdrawal and reduction by subsequent ethanol intake. Pharmacol Biochem Behav 72:213–220PubMedGoogle Scholar
  105. Ostlund SB, Maidment NT, Balleine BW (2010) Alcohol-paired contextual cues produce an immediate and selective loss of goal-directed action in rats. Front Integr Neurosci 19:4. eCollection 2010CrossRefGoogle Scholar
  106. Patton MH, Roberts BM, Lovinger DM, Mathur BN (2016) Ethanol disinhibits dorsolateral striatal medium spiny neurons through activation of a presynaptic delta opioid receptor. Neuropsychopharmacology 41:1831–1840PubMedPubMedCentralGoogle Scholar
  107. Pava MJ, Woodward JJ (2012) A review of the interactions between alcohol and the endocannabinoid system: implications for alcohol dependence and future directions for research. Alcohol 46(3):185–204. CrossRefPubMedPubMedCentralGoogle Scholar
  108. Pelkey KA, Topolnik L, Yuan XQ, Lacaille JC, McBain CJ (2008) State-dependent cAMP sensitivity of presynaptic function underlies metaplasticity in a hippocampal feedforward inhibitory circuit. Neuron 60:980–987PubMedPubMedCentralGoogle Scholar
  109. Peris J, Coleman-Hardee M, Burry J, Pecins-Thompson M (1992) Selective changes in GABAergic transmission in substantia nigra and superior colliculus caused by ethanol and ethanol withdrawal. Alcohol Clin Exp Res 16(2):311–319PubMedGoogle Scholar
  110. Peris J, Eppler B, Hu M, Walker DW, Hunter BE, Mason K, Anderson KJ (1997) Effects of chronic ethanol exposure on GABA receptors and GABAB receptor modulation of 3H-GABA release in the hippocampus. Alcohol Clin Exp Res 21:1047–1052PubMedGoogle Scholar
  111. Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9(6):423–436PubMedGoogle Scholar
  112. Pleil KE, Lowery-Gionta EG, Crowley NA, Li C, Marcinkiewcz CA, Rose JH, McCall NM, Maldonado-Devincci AM, Morrow AL, Jones SR, Kash TL (2015) Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala. Neuropharmacology 99:735–749PubMedPubMedCentralGoogle Scholar
  113. Richardson BD, Rossi DJ (2017) Recreational concentrations of alcohol enhance synaptic inhibition of cerebellar unipolar brush cells via pre- and postsynaptic mechanisms. J Neurophysiol 118(1):267–279PubMedPubMedCentralGoogle Scholar
  114. Roberto M, Siggins GR (2006) Nociceptin/orphanin FQ presynaptically decreases GABAergic transmission and blocks the ethanol-induced increase of GABA release in central amygdala. Proc Natl Acad Sci U S A 103(25):9715–9720PubMedPubMedCentralGoogle Scholar
  115. Roberto M, Varodayan FP (2017) Synaptic targets: chronic alcohol actions. Neuropharmacology 122:85–99PubMedPubMedCentralGoogle Scholar
  116. Roberto M, Madamba SG, Moore SD, Tallent MK, Siggins GR (2003) Ethanol increases GABAergic transmission at both pre- and postsynaptic sites in rat central amygdala neurons. Proc Natl Acad Sci U S A 100:2053–2058PubMedPubMedCentralGoogle Scholar
  117. Roberto M, Madamba SG, Stouffer DG, Parsons LH, Siggins GR (2004a) Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci 24:10159–10166PubMedGoogle Scholar
  118. Roberto M, Schweitzer P, Madamba SG, Stouffer DG, Parsons LH, Siggins GR (2004b) Acute and chronic ethanol alter glutamatergic transmission in rat central amygdala: an in vitro and in vivo analysis. J Neurosci 24:1594–1603PubMedGoogle Scholar
  119. Roberto M, Gilpin NW, O’Dell LE, Cruz MT, Morse AC, Siggins GR, Koob GF (2008) Cellular and behavioral interactions of gabapentin with alcohol dependence. J Neurosci 28:5762–5771PubMedGoogle Scholar
  120. Roberto M, Cruz M, Bajo M, Siggins GR, Parsons LH, Schweitzer P (2010) The endocannabinoid system tonically regulates inhibitory transmission and depresses the effect of ethanol in central amygdala. Neuropsychopharmacology 35:1962–1972PubMedPubMedCentralGoogle Scholar
  121. Roberto M, Patel RR, Bajo M (2017) Cytokines in the CNS. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  122. Rodd ZA, McKinzie DL, Bell RL, McQueen VK, Murphy JM, Schoepp DD, McBride WJ (2006) The metabotropic glutamate 2/3 receptor agonist LY404039 reduces alcohol-seeking but not alcohol self-administration in alcohol-preferring (P) rats. Behav Brain Res 171:207–215PubMedGoogle Scholar
  123. Rose JH, Karkhanis AN, Chen R, Gioia D, Lopez MF, Becker HC, McCool BA, Jones SR (2016) Supersensitive kappa opioid receptors promotes ethanol withdrawal-related behaviors and reduce dopamine signaling in the nucleus accumbens. Int J Neuropsychopharmacol 19(5).
  124. Rossetti ZL, Carboni S (1995) Ethanol withdrawal is associated with increased extracellular glutamate in the rat striatum. Eur J Pharmacol 283:177–183PubMedGoogle Scholar
  125. Ryabinin AE (1998) Role of hippocampus in alcohol-induced memory impairment: implications from behavioral and immediate early gene studies. Psychopharmacology 139:34–43PubMedGoogle Scholar
  126. Ryabinin AE, Miller MN, Durrant S (2002) Effects of acute alcohol administration on object recognition learning in C57BL/6J mice. Pharmacol Biochem Behav 71(1–2):307–312. CrossRefPubMedGoogle Scholar
  127. Sanna E, Talani F, Busonero MG, Pisu RH, Purdy M, Serra M, Biggio G (2004) Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J Neurosci 24:6521–6530PubMedGoogle Scholar
  128. Schreiber AL, Gilpin NW (2017) Corticotrophin-releasing factor (CRF) neurocircuitry and alcohol drinking. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  129. Sebold M, Deserno L, Nebe S, Schad DJ, Garbusow M, Hägele C, Keller J, Jünger E, Kathmann N, Smolka MN, Rapp MA, Schlagenhauf F, Heinz A, Huys QJ (2014) Model-based and model-free decisions in alcohol dependence. Neuropsychobiology 70(2):122–131. CrossRefPubMedGoogle Scholar
  130. Sebold M, Nebe S, Garbusow M, Guggenmos M, Schad DJ, Beck A, Kuitunen-Paul S, Sommer C, Frank R, Neu P, Zimmermann US, Rapp MA, Smolka MN, Huys QJM, Schlagenhauf F, Heinz A (2017) When habits are dangerous: alcohol expectancies and habitual decision making predict relapse in alcohol dependence. Biol Psychiatry 82(11):847–856. CrossRefPubMedGoogle Scholar
  131. Seilicovich A, Duvilanski BH, Lasaga M, Debeljuk L, Díaz MC (1988) Effect of ethanol on GABA uptake and release from hypothalamic fragments. Psychopharmacology 95(3):418–422PubMedGoogle Scholar
  132. Seino S, Shibasaki T (2005) PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 85:1303–1342PubMedGoogle Scholar
  133. Siciliano CA, Calipari ES, Cuzon Carlson VC, Helms CM, Lovinger DM, Grant KA, Jones SR (2015) Voluntary ethanol intake predicts kappa-opioid receptor supersensitivity and regionally distinct dopaminergic adaptations in macaques. J Neurosci 35:5959–5968PubMedPubMedCentralGoogle Scholar
  134. Siciliano CA, Calipari ES, Yorgason JT, Lovinger DM, Mateo Y, Jimenez VA, Helms CM, Grant KA, Jones SR (2016) Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques. Psychopharmacology 233:1435–1443PubMedPubMedCentralGoogle Scholar
  135. Siciliano CA, Karkhanis A, Holleran KM, Melchior JR, Jones SR (2017) Cross-species alterations in synaptic dopamine regulation after chronic alcohol exposure. In: Grant KA (ed) Neuropharmacology of alcohol, Handbook of experimental pharmacology. Springer, HeidelbergGoogle Scholar
  136. Sidhpura N, Weiss F, Martin-Fardon R (2010) Effects of the mGlu2/3 agonist LY379268 and the mGlu5 antagonist MTEP on ethanol seeking and reinforcement are differentially altered in rats with a history of ethanol dependence. Biol Psychiatry 67:804–811PubMedPubMedCentralGoogle Scholar
  137. Silberman Y, Shi L, Brunso-Bechtold JK, Weiner JL (2008) Distinct mechanisms of ethanol potentiation of local and paracapsular GABAergic synapses in the rat basolateral amygdala. J Pharmacol Exp Ther 324(1):251–260PubMedGoogle Scholar
  138. Silberman Y, Ariwodola OJ, Weiner JL (2012) β1-adrenoceptor activation is required for ethanol enhancement of lateral paracapsular GABAergic synapses in the rat basolateral amygdala. J Pharmacol Exp Ther 343(2):451–459PubMedPubMedCentralGoogle Scholar
  139. Silberman Y, Fetterly TL, Awad EK, Milano EJ, Usdin TB, Winder DG (2015) Ethanol produces corticotropin-releasing factor receptor-dependent enhancement of spontaneous glutamatergic transmission in the mouse central amygdala. Alcohol Clin Exp Res 39:2154–2162PubMedPubMedCentralGoogle Scholar
  140. Sjoerds Z, de Wit S, van den Brink W, Robbins TW, Beekman AT, Penninx BW, Veltman DJ (2013) Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent patients. Transl Psychiatry 3:e337. CrossRefPubMedPubMedCentralGoogle Scholar
  141. Squeglia LM, Rinker DA, Bartsch H, Castro N, Chung Y, Dale AM, Jernigan TL, Tapert SF (2014) Brain volume reductions in adolescent heavy drinkers. Dev Cogn Neurosci 9:117–125. CrossRefPubMedPubMedCentralGoogle Scholar
  142. Strong R, Wood WG (1984) Membrane properties and aging: in vivo and in vitro effects of ethanol on synaptosomal gamma-aminobutyric acid (GABA) release. J Pharmacol Exp Ther 229(3):726–730PubMedGoogle Scholar
  143. Sullivan EV, Pfefferbaum A (2005) Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology 180:583–594PubMedGoogle Scholar
  144. Talani G, Lovinger DM (2015) Interactions between ethanol and the endocannabinoid system at GABAergic synapses on basolateral amygdala principal neurons. Alcohol 49:781–794PubMedPubMedCentralGoogle Scholar
  145. Theile JW, Morikawa H, Gonzales RA, Morrisett RA (2008) Ethanol enhances GABAergic transmission onto dopamine neurons in the ventral tegmental area of the rat. Alcohol Clin Exp Res 32:1040–1048PubMedPubMedCentralGoogle Scholar
  146. Theile JW, Morikawa H, Gonzales RA, Morrisett RA (2009) Role of 5-hydroxytryptamine2C receptors in Ca2+-dependent ethanol potentiation of GABA release onto ventral tegmental area dopamine neurons. J Pharmacol Exp Ther 329:625–633PubMedPubMedCentralGoogle Scholar
  147. Varodayan FP, Soni N, Bajo M, Luu G, Madamba SG, Schweitzer P, Parsons LH, Roberto M (2016) Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala. Addict Biol 21(4):788–801PubMedGoogle Scholar
  148. Varodayan FP, Logrip ML, Roberto M (2017) P/Q-type voltage-gated calcium channels mediate the ethanol and CRF sensitivity of central amygdala GABAergic synapses. Neuropharmacology 125:197–206. CrossRefPubMedPubMedCentralGoogle Scholar
  149. Waltereit R, Weller M (2003) Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27(1):99–106PubMedGoogle Scholar
  150. Wan FJ, Berton F, Madamba SG, Francesconi W, Siggins GR (1996) Low ethanol concentrations enhance GABAergic inhibitory postsynaptic potentials in hippocampal pyramidal neurons only after block of GABAB receptors. Proc Natl Acad Sci U S A 93(10):5049–5054PubMedPubMedCentralGoogle Scholar
  151. Wanat MJ, Sparta DR, Hopf FW, Bowers MS, Melis M, Bonci A (2009) Strain specific synaptic modifications on ventral tegmental area dopamine neurons after ethanol exposure. Biol Psychiatry 65:646–653PubMedGoogle Scholar
  152. Wang J, Ben Hamida S, Darcq E, Zhu W, Gibb SL, Lanfranco MF, Carnicella S, Ron D (2012) Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: implications for alcohol drinking behavior. J Neurosci 32:15124–15132Google Scholar
  153. Wassum KM, Izquierdo A (2015) The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 57:271–283PubMedPubMedCentralGoogle Scholar
  154. Weiner JL, Gu C, Dunwiddie TV (1997) Differential ethanol sensitivity of subpopulations of GABAA synapses onto rat hippocampal CA1 pyramidal neurons. J Neurophysiol 77:1306–1312PubMedGoogle Scholar
  155. Weiner JL, Ariwodola OJ, Bates WH, Bryant V, Silberman Y, Daunais JB, Grant KA (2005) Presynaptic mechanisms underlying ethanol actions at GABAergic synapses in rat and monkey hippocampus. Alcohol Clin Exp Res 29(Suppl):187AGoogle Scholar
  156. Wilcox MV, Cuzon Carlson VC, Sherazee N, Sprow GM, Bock R, Thiele TE, Lovinger DM, Alvarez VA (2014) Repeated binge-like ethanol drinking alters ethanol drinking patterns and depresses striatal GABAergic transmission. Neuropsychopharmacology 39:579–594PubMedGoogle Scholar
  157. Wood CM, Nicolas CS, Choi SL, Roman E, Nylander I, Fernandez-Teruel A, Kiianmaa K, Bienkowski P, de Jong TR, Colombo G, Chastagnier D, Wafford KA, Collingridge GL, Wildt SJ, Conway-Campbell BL, Robinson ES, Lodge D (2017) Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology 115:128–138PubMedGoogle Scholar
  158. Xia JX, Li J, Zhou R, Zhang XH, Ge YB, Ru Yuan X (2006) Alterations of rat corticostriatal synaptic plasticity after chronic ethanol exposure and withdrawal. Alcohol Clin Exp Res 30:819–824PubMedGoogle Scholar
  159. Xiao C, Shao XM, Olive MF, Griffin WC 3rd, Li KY, Krnjevic K, Zhou C, Ye JH (2009) Ethanol facilitates glutamatergic transmission to dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 34:307–318PubMedGoogle Scholar
  160. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476PubMedGoogle Scholar
  161. Yin HH, Ronesi J, Davis M, Lovinger DM (2006) The role of protein synthesis in striatal long-term depression. J Neurosci 26(46):11811–11820PubMedGoogle Scholar
  162. Yin HH, Park BS, Adermark L, Lovinger DM (2007) Ethanol reverses the direction of long-term synaptic plasticity in the dorsomedial striatum. Eur J Neurosci 25:3226–3232PubMedGoogle Scholar
  163. Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA, Katona I, Castillo PE (2017) Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92(2):479–492Google Scholar
  164. Zhao Y, Dayas CV, Aujla H, Baptista MA, Martin-Fardon R, Weiss F (2006) Activation of group II metabotropic glutamate receptors attenuates both stress and cue-induced ethanol-seeking and modulates c-fos expression in the hippocampus and amygdala. J Neurosci 26:9967–9974PubMedGoogle Scholar
  165. Zhou Z, Karlsson C, Liang T, Xiong W, Kimura M, Tapocik JD, Yuan Q, Barbier E, Feng A, Flanigan M, Augier E, Enoch MA, Hodgkinson CA, Shen PH, Lovinger DM, Edenberg HJ, Heilig M, Goldman D (2013) Loss of metabotropic glutamate receptor 2 escalates alcohol consumption. Proc Natl Acad Sci U S A 110(42):16963–16968. CrossRefPubMedPubMedCentralGoogle Scholar
  166. Zhu PJ, Lovinger DM (2006) Ethanol potentiates GABAergic synaptic transmission in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala. J Neurophysiol 96(1):433–441PubMedGoogle Scholar
  167. Zhu W, Bie B, Pan ZZ (2007) Involvement of non-NMDA glutamate receptors in central amygdala in synaptic actions of ethanol and ethanol-induced reward behavior. J Neurosci 27(2):289–298PubMedGoogle Scholar
  168. Ziskind-Conhaim L, Gao BX, Hinckley C (2003) Ethanol dual modulatory actions on spontaneous postsynaptic currents in spinal motoneurons. J Neurophysiol 89(2):806–813PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological ResearchNational Institute on Alcohol Abuse and AlcoholismBethesdaUSA

Personalised recommendations