Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective

  • Tamer M. Gamal El-DinEmail author
  • Michael J. Lenaeus
  • William A. Catterall
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 246)


Voltage-gated sodium channels initiate and propagate action potentials in excitable cells. They respond to membrane depolarization through opening, followed by fast inactivation that terminates the sodium current. This ON-OFF behavior of voltage-gated sodium channels underlays the coding of information and its transmission from one location in the nervous system to another. In this review, we explore and compare structural and functional data from prokaryotic and eukaryotic channels to infer the effects of evolution on sodium channel structure and function.


Activation mechanisms Bacterial sodium channels Eukaryotic sodium channels Evolution of sodium channels Gating mechanisms Inactivation mechanisms Selectivity of sodium channels 

Supplementary material

443212_1_En_61_MOESM1_ESM.pdf (378 kb)
Supplementary Fig. 1 (PDF 377 kb)


  1. Adelman WJ Jr, Palti Y (1969) The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J Gen Physiol 54:589–606PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahern CA, Horn R (2005) Focused electric field across the voltage sensor of potassium channels. Neuron 48:25–29PubMedCrossRefGoogle Scholar
  3. Ahern CA, Payandeh J, Bosmans F, Chanda B (2016) The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 147:1–24PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arrigoni C, Rohaim A, Shaya D, Findeisen F, Stein RA, Nurva SR, Mishra S, McHaourab HS, Minor DL Jr (2016) Unfolding of a temperature-sensitive domain controls voltage-gated channel activation. Cell 164:922–936PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asamoah OK, Wuskell JP, Loew LM, Bezanilla F (2003) A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 37:85–97PubMedCrossRefGoogle Scholar
  6. Bagneris C, Decaen PG, Hall BA, Naylor CE, Clapham DE, Kay CW, Wallace BA (2013) Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat Commun 4:2465PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balser JR, Nuss HB, Chiamvimonvat N, Pérez-García MT, Marban E, Tomaselli GF (1996) External pore residue mediates slow inactivation in mu-1 rat skeletal muscle sodium channels. J Physiol 494:431–442PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benitah JP, Tomaselli GF, Marban E (1996) Adjacent pore-lining residues within sodium channels identified by paired cysteine mutagenesis. Proc Natl Acad Sci U S A 93:7392–7396PubMedPubMedCentralCrossRefGoogle Scholar
  9. Benitah JP, Ranjan R, Yamagishi T, Janecki M, Tomaselli GF, Marban E (1997) Molecular motions within the pore of voltage-dependent sodium channels. Biophys J 73:603–613PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592PubMedCrossRefGoogle Scholar
  11. Blanchet J, Chahine M (2007) Accessibility of four arginine residues on the S4 segment of the Bacillus halodurans sodium channel. J Membr Biol 215:169–180PubMedCrossRefGoogle Scholar
  12. Capes DL, Goldschen-Ohm MP, Arcisio-Miranda M, Bezanilla F, Chanda B (2013) Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J Gen Physiol 142:101–112PubMedPubMedCentralCrossRefGoogle Scholar
  13. Catterall WA (1986a) Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55:953–985PubMedPubMedCentralCrossRefGoogle Scholar
  14. Catterall WA (1986b) Voltage-dependent gating of sodium channels: correlating structure and function. Trends Neurosci 9:7–10CrossRefGoogle Scholar
  15. Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–928PubMedPubMedCentralCrossRefGoogle Scholar
  16. Catterall WA (2012) Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 590:2577–2589PubMedPubMedCentralCrossRefGoogle Scholar
  17. Catterall WA, Zheng N (2015) Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem Sci 40:526–534PubMedPubMedCentralCrossRefGoogle Scholar
  18. Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chakrabarti N, Ing C, Payandeh J, Zheng N, Catterall WA, Pomes R (2013) Catalysis of Na+ permeation in the bacterial sodium channel NaVAb. Proc Natl Acad Sci U S A 110:11331–11336PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120:629–645PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cormier JW, Rivolta I, Tateyama M, Yang AS, Kass RS (2002) Secondary structure of the human cardiac Na+ channel C terminus: evidence for a role of helical structures in modulation of channel inactivation. J Biol Chem 277:9233–9241Google Scholar
  22. Cuello LG, Romero JG, Cortes DM, Perozo E (1998) pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37:3229–3236PubMedCrossRefGoogle Scholar
  23. DeCaen PG, Yarov-Yarovoy V, Zhao Y, Scheuer T, Catterall WA (2008) Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc Natl Acad Sci U S A 105:15142–15147PubMedPubMedCentralCrossRefGoogle Scholar
  24. DeCaen PG, Yarov-Yarovoy V, Sharp EM, Scheuer T, Catterall WA (2009) Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proc Natl Acad Sci U S A 106:22498–22503PubMedPubMedCentralCrossRefGoogle Scholar
  25. DeCaen PG, Yarov-Yarovoy V, Scheuer T, Catterall WA (2011) Gating charge interactions with the S1 segment during activation of a Na+ channel voltage sensor. Proc Natl Acad Sci U S A 108:18825–18830PubMedPubMedCentralCrossRefGoogle Scholar
  26. Deschenes I, Trottier E, Chahine M (2001) Implication of the C-terminal region of the α-subunit of voltage-gated sodium channels in fast inactivation. J Membr Biol 183:103–114PubMedCrossRefGoogle Scholar
  27. Favre I, Moczydlowski E, Schild L (1996) On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel. Biophys J 71(6):3110–3125Google Scholar
  28. Gabelli SB, Yoder JB, Tomaselli GF, Amzel LM (2016) Calmodulin and Ca(2+) control of voltage gated Na(+) channels. Channels (Austin) 10:45–54Google Scholar
  29. Gamal El-Din TM, Grogler D, Lehmann C, Heldstab H, Greeff NG (2008) More gating charges are needed to open a Shaker K+ channel than are needed to open an rBIIA Na+ channel. Biophys J 95:1165–1175PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gamal El-Din TM, Heldstab H, Lehmann C, Greeff NG (2010) Double gaps along Shaker S4 demonstrate omega currents at three different closed states. Channels (Austin) 4(2):93–100CrossRefGoogle Scholar
  31. Gamal El-Din TM, Martinez GQ, Payandeh J, Scheuer T, Catterall WA (2013) A gating charge interaction required for late slow inactivation in the bacterial sodium channel NaVAb. J Gen Physiol 142:181–190PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gamal El-Din TM, Scheuer T, Catterall WA (2014) Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. J Gen Physiol 144:147–157PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gamal El-Din TM, Lenaeus MJ, Ramanadane K, Zheng N, Catterall WA (2017) Control of slow, use dependent inactivation of NaVAb by its C-terminal tail. Biophys J 112(3, Suppl 1):105a. CrossRefGoogle Scholar
  34. Gosselin-Badaroudine P, Delemotte L, Moreau A, Klein ML, Chahine M (2012) Gating pore currents and the resting state of Nav1.4 voltage sensor domains. Proc Natl Acad Sci U S A 109:19250–19255PubMedPubMedCentralCrossRefGoogle Scholar
  35. Guy HR, Seetharamulu P (1986) Molecular model of the action potential sodium channel. Proc Natl Acad Sci U S A 83(2):508–512PubMedPubMedCentralCrossRefGoogle Scholar
  36. Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hille B (1971) The hydration of sodium ions crossing the nerve membrane. Proc Natl Acad Sci U S A 68:280–282PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hille B (2001) Ionic channels of excitable membranes. Sinauer Associates, Sunderland, MAGoogle Scholar
  39. Hirschberg B, Rovner A, Lieberman M, Patlak J (1995) Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J Gen Physiol 106:1053–1068PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hodgkin AL, Huxley AF (1952b) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116:497–506PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hodgkin AL, Huxley AF (1952c) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hodgkin AL, Huxley AF (1952d) The components of membrane conductance in the giant axon of Loligo. J Physiol 116:473–496PubMedPubMedCentralCrossRefGoogle Scholar
  44. Irie K, Shimomura T, Fujiyoshi Y (2012) The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate. Nat Commun 3:793PubMedPubMedCentralCrossRefGoogle Scholar
  45. Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA (1995) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433–442PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002a) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522PubMedCrossRefGoogle Scholar
  47. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002b) The open pore conformation of potassium channels. Nature 417:523–526PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kellenberger S, West JW, Scheuer T, Catterall WA (1997) Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol 109:589–605PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kuhn FJ, Greeff NG (1999) Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization. J Gen Physiol 114:167–183PubMedPubMedCentralCrossRefGoogle Scholar
  50. Larsson HP, Baker OS, Dhillon DS, Isacoff EY (1996) Transmembrane movement of the Shaker potassium channel S4. Neuron 16:387–397PubMedCrossRefGoogle Scholar
  51. Lee S, Goodchild SJ, Ahern CA (2012) Local anesthetic inhibition of a bacterial sodium channel. J Gen Physiol 139:507–516PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lenaeus MJ, El-Din TMG, Ing C, Ramanadane K, Pomes R, Zheng N, Catterall WA (2017) Structures of closed and open states of a voltage-gated sodium channel. Proc Natl Acad Sci U S A 114:E3051–E3060PubMedPubMedCentralCrossRefGoogle Scholar
  53. Li Q, Wanderling S, Paduch M, Medovoy D, Singharoy A, McGreevy R, Villalba-Galea CA, Hulse RE, Roux B, Schulten K et al (2014) Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nat Struct Mol Biol 21:244–252PubMedPubMedCentralCrossRefGoogle Scholar
  54. Logothetis DE, Movahedi S, Satler C, Lindpaintner K, Nadal-Ginard B (1992) Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron 8:531–540PubMedCrossRefGoogle Scholar
  55. Mantegazza M, Yu FH, Catterall WA, Scheuer T (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci U S A 98:15348–15353PubMedPubMedCentralCrossRefGoogle Scholar
  56. McCusker EC, Bagneris C, Naylor CE, Cole AR, D’Avanzo N, Nichols CG, Wallace BA (2012) Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3:1102PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mio K, Mio M, Arisaka F, Sato M, Sato C (2010) The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog Biophys Mol Biol 103:111–121PubMedCrossRefGoogle Scholar
  58. Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42PubMedCrossRefGoogle Scholar
  59. Naylor CE, Bagneris C, DeCaen PG, Sula A, Scaglione A, Clapham DE, Wallace BA (2016) Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J 35:820–830PubMedPubMedCentralCrossRefGoogle Scholar
  60. Nguyen HM, Goldin AL (2010) Sodium channel carboxy terminal residue regulates fast inactivation. J Biol Chem 285(12):9077–9089PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ong BH, Tomaselli GF, Balser JR (2000) A structural rearrangement in the sodium channel pore linked to slow inactivation and use dependence. J Gen Physiol 116:653–662PubMedPubMedCentralCrossRefGoogle Scholar
  62. Palti Y, Adelman WJ Jr (1969) Measurement of axonal membrane conductances and capacity by means of a varying potential control voltage clamp. J Membr Biol 1:431–458PubMedCrossRefGoogle Scholar
  63. Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305–310PubMedCrossRefGoogle Scholar
  64. Patton DE, West JW, Catterall WA, Goldin AL (1992) Amino acid residues required for fast Na+-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl Acad Sci U S A 89:10905–10909PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pavlov E, Bladen C, Winkfein R, Diao C, Dhaliwal P, French RJ (2005) The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys J 89:232–242PubMedPubMedCentralCrossRefGoogle Scholar
  66. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358PubMedPubMedCentralCrossRefGoogle Scholar
  67. Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA (2012) Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 486:135–139PubMedPubMedCentralCrossRefGoogle Scholar
  68. Perozo E, Cortes DM, Cuello LG (1999) Structural rearrangements underlying K+-channel activation gating. Science 285:73–78PubMedCrossRefGoogle Scholar
  69. Powl AM, O'Reilly AO, Miles AJ, Wallace BA (2010) Synchrotron radiation circular dichroism spectroscopy-defined structure of the C-terminal domain of NaChBac and its role in channel assembly. Proc Natl Acad Sci U S A 107:14064–14069PubMedPubMedCentralCrossRefGoogle Scholar
  70. Qu Y, Isom LL, Westenbroek RE, Rogers JC, Tanada TN, McCormick KA, Scheuer T, Catterall WA (1995) Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J Biol Chem 270:25696–25701PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375PubMedPubMedCentralCrossRefGoogle Scholar
  72. Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J Biol Chem 271:15950–15962PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE (1999) Solution structure of the sodium channel inactivation gate. Biochemistry 38:855–861PubMedCrossRefGoogle Scholar
  74. Rudy B (1975) Proceedings: slow recovery of the inactivation of sodium conductance in Myxicola giant axons. J Physiol 249:22–24Google Scholar
  75. Rudy B (1981) Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena. J Physiol 312:531–549PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159PubMedCrossRefGoogle Scholar
  77. Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL Jr (2014) Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels. J Mol Biol 426:467–483PubMedCrossRefGoogle Scholar
  78. Sheets MF, Kyle JW, Kallen RG, Hanck DA (1999) The Na channel voltage sensor associated with inactivation is localized to the external charged residues of domain IV, S4. Biophys J 77:747–757PubMedPubMedCentralCrossRefGoogle Scholar
  79. Shen HZ, Zhou Q, Pan XJ, Li ZQ, Wu JP, Yan N (2017) Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355(6328). pii: eaal4326Google Scholar
  80. Sokolov S, Scheuer T, Catterall WA (2005) Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations. Neuron 47:183–189PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sokolov S, Scheuer T, Catterall WA (2008) Depolarization-activated gating pore current conducted by mutant sodium channels in potassium-sensitive normokalemic periodic paralysis. Proc Natl Acad Sci U S A 105:19980–19985PubMedPubMedCentralCrossRefGoogle Scholar
  82. Starace DM, Bezanilla F (2001) Histidine scanning mutagenesis of basic residues of the S4 segment of the Shaker K+ channel. J Gen Physiol 117:469–490PubMedPubMedCentralCrossRefGoogle Scholar
  83. Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553PubMedPubMedCentralCrossRefGoogle Scholar
  84. Stephens RF, Guan W, Zhorov BS, Spafford JD (2015) Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels. Front Physiol 6:153PubMedPubMedCentralCrossRefGoogle Scholar
  85. Stuhmer W, Conti F, Suzuki H, Wang X, Noda M, Yahadi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sula A, Booker J, Ng LC, Naylor CE, DeCaen PG, Wallace BA (2017) The complete structure of an activated open sodium channel. Nat Commun 8:14205PubMedPubMedCentralCrossRefGoogle Scholar
  87. Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61PubMedPubMedCentralCrossRefGoogle Scholar
  88. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science 328:67–73PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ulbricht W (2005) Sodium channel inactivation: molecular determinants and modulation. Physiol Rev 85:1271–1301PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ulmschneider MB, Bagneris C, McCusker EC, Decaen PG, Delling M, Clapham DE, Ulmschneider JP, Wallace BA (2013) Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A 110:6364–6369PubMedPubMedCentralCrossRefGoogle Scholar
  91. Vargas E, Yarov-Yarovoy V, Khalili-Araghi F, Catterall WA, Klein ML, Tarek M, Lindahl E, Schulten K, Perozo E, Bezanilla F et al (2012) An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J Gen Physiol 140:587–594PubMedPubMedCentralCrossRefGoogle Scholar
  92. Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661PubMedCrossRefGoogle Scholar
  93. Vassilev P, Scheuer T, Catterall WA (1989) Inhibition of inactivation of single sodium channels by a site-directed antibody. Proc Natl Acad Sci U S A 86:8147–8151PubMedPubMedCentralCrossRefGoogle Scholar
  94. Vilin YY, Ruben PC (2001) Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem Biophys 35:171–190PubMedPubMedCentralCrossRefGoogle Scholar
  95. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc Natl Acad Sci U S A 89:10910–10914PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N (2016) Structure of the voltage-gated calcium channel CaV1.1 at 3.6 a resolution. Nature 537:191–196PubMedCrossRefGoogle Scholar
  97. Xiong W, Li RA, Tian YL, Tomaselli GF (2003) Molecular motions of the outer ring of charge of the sodium channel: do they couple to slow inactivation? J Gen Physiol 122:323–332PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yan Z, Zhou Q, Wang L, Wu J, Zhao Y, Huang G, Peng W, Shen H, Lei J, Yan N (2017) Structure of the Nav1.4-beta1 complex from electric eel. Cell 170(3):470–482.e11PubMedPubMedCentralCrossRefGoogle Scholar
  99. Yang N, Horn R (1995) Evidence for voltage-dependent S4 movement in sodium channels. Neuron 15:213–218PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien RW (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161PubMedCrossRefGoogle Scholar
  101. Yang N, George AL Jr, Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16:113–122PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yarov-Yarovoy V, Decaen PG, Westenbroek RE, Pan CY, Scheuer T, Baker D, Catterall WA (2012) Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc Natl Acad Sci U S A 109:E93–E102PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yue L, Navarro B, Ren D, Ramos A, Clapham DE (2002) The cation selectivity filter of the bacterial sodium channel, NaChBac. J Gen Physiol 120:845–853PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Wang J, Hasegawa K, Kumasaka T, He J et al (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–134PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhao Y, Scheuer T, Catterall WA (2004a) Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc Natl Acad Sci U S A 101:17873–17878PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhao Y, Yarov-Yarovoy V, Scheuer T, Catterall WA (2004b) A gating hinge in Na+ channels; a molecular switch for electrical signaling. Neuron 41:859–865PubMedCrossRefGoogle Scholar
  107. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel- Fab complex at 2.0 a resolution. Nature 414:43–48PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tamer M. Gamal El-Din
    • 1
    Email author
  • Michael J. Lenaeus
    • 1
  • William A. Catterall
    • 1
  1. 1.Department of PharmacologyUniversity of WashingtonSeattleUSA

Personalised recommendations