Advertisement

pp 1-39 | Cite as

Metabolite Clearance During Wakefulness and Sleep

  • Stephen B. Hladky
  • Margery A. Barrand
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

Mechanisms for elimination of metabolites from ISF include metabolism, blood–brain barrier transport and non-selective, perivascular efflux, this last being assessed by measuring the clearance of markers like inulin. Clearance describes elimination. Clearance of a metabolite generated within the brain is determined as its elimination rate divided by its concentration in interstitial fluid (ISF). However, the more frequently measured parameter is the rate constant for elimination determined as elimination rate divided by amount present, which thus depends on both the elimination processes and the distribution of the metabolite in the brain. The relative importance of the various elimination mechanisms depends on the particular metabolite. Little is known about the effects of sleep on clearance via metabolism or blood–brain barrier transport, but studies with inulin in mice comparing perivascular effluxes during sleep and wakefulness reveal a 4.2-fold increase in clearance. Amongst the important brain metabolites considered, CO2 is eliminated so rapidly across the blood–brain barrier that clearance is blood flow limited and elimination quickly balances production. Glutamate is removed from ISF primarily by uptake into astrocytes and conversion to glutamine, but also by transport across the blood–brain barrier. Both lactate and amyloid-β are eliminated by metabolism, blood–brain barrier transport and perivascular efflux and both show decreased production, decreased ISF concentration and increased perivascular clearance during sleep. Taken altogether available data indicate that sleep increases perivascular and non-perivascular clearances for amyloid-β which reduces its concentration and may have long-term consequences for the formation of plaques and cerebral arterial deposits.

Keywords

Amyloid-beta Blood—brain barrier transport Brain interstitial fluid volume Carbon dioxide Cerebrospinal fluid Clearance Glutamate Glymphatic circulation Inulin Lactate Metabolite elimination mechanisms Perivascular efflux Perivascular spaces Rate constant for elimination Volume of distribution 

Notes

Acknowledgements

We would like to thank Vartan Kurtcuoglu for providing a preprint of Asgari et al. (2016) and Berislav Zlokovic and Abhay Sagare for constructive criticism of a draft of Sect. 3.4 and further explanation of the calculations in Shibata et al. (2000) and Bell et al. (2007).

References

  1. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25PubMedCrossRefGoogle Scholar
  2. Arbel-Ornath M, Hudry E, Eikermann-Haerter K et al (2013) Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol 126:353–364PubMedCrossRefGoogle Scholar
  3. Asgari M, de Zélicourt DA, Kurtcuoglu V (2016) Glymphatic solute transport does not require bulk flow. Sci Rep 6:38635. doi: 10.1038/srep38635 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  4. Aspelund A, Antila S, Proulx ST et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999. doi: 10.1084/jem.20142290 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bakker ENTP, Bacskai BJ, Arbel-Ornath M et al (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194. doi: 10.1007/s10571-015-0273-8 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 85:3267–3283. doi: 10.1002/jnr.21376 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ball KK, Cruz NF, Mrak RE, Dienel GA (2010) Trafficking of glucose, lactate, and amyloid-beta from the inferior colliculus through perivascular routes. J Cereb Blood Flow Metab 30:162–176PubMedCrossRefGoogle Scholar
  8. Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM (2006) Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12:856–861. doi: 10.1038/nm1438 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bedussi B, van Lier MGJTB, Bartstra JW, de Vos J, Siebes M, VanBavel E, Bakker ENTP (2015) Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS 12:23. doi: 10.1186/s12987-015-0019-5 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bedussi B, van der Wel NN, de Vos J, van Veen H, Siebes M, VanBavel E, Bakker ENTP (2017) Paravascular channels, cisterns, and the subarachnoid space in the rat brain: a single compartment with preferential pathways. J Cereb Blood Flow Metab 37:1374–1385. doi: 10.1177/0271678x16655550 PubMedCrossRefGoogle Scholar
  11. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27:909–918PubMedCrossRefGoogle Scholar
  12. Benedict C, Byberg L, Cedernaes J et al (2015) Self-reported sleep disturbance is associated with Alzheimer’s disease risk in men. Alzheimers Dement 11:1090–1097. doi: 10.1016/j.jalz.2014.08.104 PubMedCrossRefGoogle Scholar
  13. Bradbury MWB (1979) The concept of a blood-brain barrier. Wiley, ChichesterGoogle Scholar
  14. Bradbury MWB, Westrop RJ (1983) Factors influencing exit of substances from cerebrospinal-fluid into deep cervical lymph of the rabbit. J Physiol Lond 339:519–534PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336PubMedGoogle Scholar
  16. Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344. doi: 10.1038/nrn2620 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144PubMedCrossRefGoogle Scholar
  18. Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO (2013a) Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 39:593–611PubMedCrossRefGoogle Scholar
  19. Carare RO, Teeling JL, Hawkes CA, Puntener U, Weller RO, Nicoll JAR, Perry VH (2013b) Immune complex formation impairs the elimination of solutes from the brain: implications for immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun 1:48. doi: 10.1186/2051-5960-1-48 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cedernaes J, Osorio RS, Varga AW, Kam K, Schioth HB, Benedict C (2017) Candidate mechanisms underlying the association between sleep-wake disruptions and Alzheimer’s disease. Sleep Med Rev 31:102–111. doi: 10.1016/j.smrv.2016.02.002. (in press)
  21. Cirrito JR, May PC, O’Dell MA et al (2003) In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-β metabolism and half-life. J Neurosci 23:8844–8853PubMedGoogle Scholar
  22. Cirrito JR, Deane R, Fagan AM et al (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Investig 115:3285–3290PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cruz NF, Adachi K, Dienel GA (1999) Rapid efflux of lactate from cerebral cortex during K+-induced spreading cortical depression. J Cereb Blood Flow Metab 19:380–392PubMedCrossRefGoogle Scholar
  24. Cserr HF, Ostrach LH (1974) Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp Neurol 45:50–60PubMedCrossRefGoogle Scholar
  25. Cserr HF, Patlak CS (1992) Secretion and bulk flow of interstitial fluid. In: Bradbury MWB (ed) Physiology and pharmacology of the blood-brain barrier. Springer-Verlag, Berlin, pp 245–261CrossRefGoogle Scholar
  26. Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by removal of extracellular markers from rat caudate-nucleus. Exp Eye Res 25:461–473PubMedCrossRefGoogle Scholar
  27. Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240:F319–F328PubMedGoogle Scholar
  28. Daniel PM, Love ER, Moorhouse SR, Pratt OE (1972) The movement of ketone bodies, glucose, pyruvate and lactate between blood and brain of rats. J Physiol Lond 221:P22–P23Google Scholar
  29. Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G (2009) Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 29:620–629. doi: 10.1523/jneurosci.5486-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dash MB, Tononi G, Cirelli C (2012) Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex. Sleep 35:909–919. doi: 10.5665/sleep.1950 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Davson H, Segal MB (1996) Physiology of the CSF and blood-brain barriers. CRC Press, Boca RatonGoogle Scholar
  32. Deane R, Wu ZH, Sagare A et al (2004) LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43:333–344PubMedCrossRefGoogle Scholar
  33. Deane R, Sagare A, Hamm K et al (2008) apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Investig 118:4002–4013. doi: 10.1172/jci36663 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138. doi: 10.1038/jcbfm.2011.175 PubMedCrossRefGoogle Scholar
  35. Dienel GA, Cruz NF (2003) Neighborly interactions of metabolically-activated astrocytes in vivo. Neurochem Int 43:339–354PubMedCrossRefGoogle Scholar
  36. Dienel GA, Cruz NF (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 45:321–351. doi: 10.1016/j.neuint.2003.10.011 PubMedCrossRefGoogle Scholar
  37. Dienel GA, Cruz NF (2008) Imaging brain activation: simple pictures of complex biology. Ann N Y Acad Sci 1147:139–170. doi: 10.1196/annals.1427.011 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  38. Dienel GA, Cruz NF (2016) Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 138:14–52. doi: 10.1111/jnc.13630 PubMedCrossRefGoogle Scholar
  39. Drewes LR, Gilboe DD (1973) Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery. J Biol Chem 248:2489–2496PubMedGoogle Scholar
  40. Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132:317–338. doi: 10.1007/s00401-016-1606-5. (in press)
  41. Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fagan AM, Mintun MA, Mach RH et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519. doi: 10.1002/ana.20730 PubMedCrossRefGoogle Scholar
  43. Farris W, Schutz SG, Cirrito JR et al (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171:241–251. doi: 10.2353/ajpath.2007.070105 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009a) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536. doi: 10.1111/j.1471-4159.2009.06333.x PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gandhi GK, Cruz NF, Ball KK, Theus SA, Dienel GA (2009b) Selective astrocytic gap junctional trafficking of molecules involved in the glycolytic pathway: impact on cellular brain imaging. J Neurochem 110:857–869. doi: 10.1111/j.1471-4159.2009.06173.x PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ghiso J, Shayo M, Calero M et al (2004) Systemic catabolism of Alzheimer’s Abeta40 and Abeta42. J Biol Chem 279:45897–45908. doi: 10.1074/jbc.M407668200 PubMedCrossRefGoogle Scholar
  47. Groothuis DR, Vavra MW, Schlageter KE et al (2007) Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab 27:43–56. doi: 10.1038/sj.jcbfm.9600315 PubMedCrossRefGoogle Scholar
  48. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112. doi: 10.1038/nrm2101 PubMedCrossRefGoogle Scholar
  49. Haass C, Kaether C, Thinakaran G, Sisodia SS (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. doi: 10.1101/cshperspect.a006270 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407. doi: 10.1146/annurev.biochem.66.1.385 PubMedCrossRefGoogle Scholar
  51. Hartz AMS, Miller DS, Bauer B (2010) Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Mol Pharmacol 77:715–723. doi: 10.1124/mol.109.061754 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443PubMedCrossRefGoogle Scholar
  53. Hawkes CA, Sullivan PM, Hands S, Weller RO, Nicoll JAR, Carare RO (2012) Disruption of arterial perivascular drainage of amyloid-beta from the brains of mice expressing the human APOE epsilon 4 allele. PLoS One 7:e41636. doi: 10.1371/journal.pone.0041636 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  54. Hawkins RA (2009) The blood-brain barrier and glutamate. Am J Clin Nutr 90:867S–874SPubMedPubMedCentralCrossRefGoogle Scholar
  55. Hawkins RA, Miller AL, Nielsen RC, Veech RL (1973) The acute action of ammonia on rat brain metabolism in vivo. Biochem J 134:1001–1008PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hawkins RA, O’Kane RL, Simpson IA, Viña JR (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136:218S–226SPubMedGoogle Scholar
  57. Hawkins RA, Viña JR, Mokashi A et al (2013) Synergism between the two membranes of the blood-brain barrier: glucose and amino acid transport. Am J Neurosci Res 1:201300168Google Scholar
  58. Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11:26. doi: 10.1186/2045-8118-11-26 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hladky SB, Barrand MA (2016) Fluid and ion transfer across the blood–brain and blood–cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 13:19PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fandrich M (2005) The aggregation kinetics of Alzheimer’s beta-amyloid peptide is controlled by stochastic nucleation. Protein Sci 14:1753–1759. doi: 10.1110/ps.041266605 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hulse BK, Landsness EC, Sarasso S, Ferrarelli F, Guokas JJ, Wanger T, Tononi G (2011) A postsleep decline in auditory evoked potential amplitude reflects sleep homeostasis. Clin Neurophysiol 122:1549–1555. doi: 10.1016/j.clinph.2011.01.041 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ichimura T, Fraser PA, Cserr HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 545:103–113PubMedCrossRefGoogle Scholar
  63. Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. doi: 10.1126/scitranslmed.3003748 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Iliff JJ, Wang MH, Zeppenfeld DM et al (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199. doi: 10.1523/jneurosci.1592-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ito S, Matsumiya K, Ohtsuki S, Kamiie J, Terasaki T (2013) Contributions of degradation and brain-to-blood elimination across the blood-brain barrier to cerebral clearance of human amyloid-beta peptide(1-40) in mouse brain. J Cereb Blood Flow Metab 33:1770–1777. doi: 10.1038/jcbfm.2013.125 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Iwata N, Tsubuki S, Takaki Y et al (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150. doi: 10.1038/72237 PubMedCrossRefGoogle Scholar
  67. Iwata N, Tsubuki S, Takaki Y et al (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292:1550–1552. doi: 10.1126/science.1059946 ADSPubMedCrossRefGoogle Scholar
  68. Iwata N, Higuchi M, Saido TC (2005) Metabolism of amyloid-beta peptide and Alzheimer’s disease. Pharmacol Ther 108:129–148. doi: 10.1016/j.pharmthera.2005.03.010 PubMedCrossRefGoogle Scholar
  69. Jaeger LB, Dohgu S, Hwang MC et al (2009) Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. J Alzheimers Dis 17:553–570. doi: 10.3233/jad-2009-1074 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jin B-J, Smith AJ, Verkman AS (2016) Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J Gen Physiol 148:489–501. doi: 10.1085/jgp.201611684 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ju Y-ES, Lucey BP, Holtzman DM (2014) Sleep and Alzheimer disease pathology – a bidirectional relationship. Nat Rev Neurol 10:115–119. doi: 10.1038/nrneurol.2013.269 PubMedCrossRefGoogle Scholar
  72. Kandimalla KK, Curran GL, Holasek SS, Gilles EJ, Wengenack TM, Poduslo JF (2005) Pharmacokinetic analysis of the blood-brain barrier transport of 125I-amyloid beta protein 40 in wild-type and Alzheimer’s disease transgenic mice (APP,PS1) and its implications for amyloid plaque formation. J Pharmacol Exp Ther 313:1370–1378. doi: 10.1124/jpet.104.081901 PubMedCrossRefGoogle Scholar
  73. Kanekiyo T, Bu G (2014) The low-density lipoprotein receptor-related protein 1 and amyloid-beta clearance in Alzheimer’s disease. Front Aging Neurosci 6:93. doi: 10.3389/fnagi.2014.00093 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kanekiyo T, Liu CC, Shinohara M, Li J, Bu GJ (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer’s amyloid-β. J Neurosci 32:16458–16465PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kanekiyo T, Cirrito JR, Liu C-C et al (2013) Neuronal clearance of amyloid-β by endocytic receptor LRP1. J Neurosci 33:19276–19283. doi: 10.1523/jneurosci.3487-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Keable A, Fenna K, Yuen HM et al (2016) Deposition of amyloid beta in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. BBA-Mol Basis Dis 1862:1037–1046. doi: 10.1016/j.bbadis.2015.08.024 CrossRefGoogle Scholar
  77. Kennedy C, Gillin JC, Mendelson W et al (1981) Local cerebral glucose utilization in slow-wave sleep. Trans Am Neurol Assoc 106:25–28PubMedGoogle Scholar
  78. Kervezee L, Hartman R, van den Berg DJ, Shimizu S, Emoto-Yamamoto Y, Meijer JH, de Lange ECM (2014) Diurnal variation in p-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain. AAPS J 16:1029–1037. doi: 10.1208/s12248-014-9625-4 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Knudsen GM, Paulson OB, Hertz MM (1991) Kinetic analysis of the human blood-brain barrier transport of lactate and its influence by hypercapnia. J Cereb Blood Flow Metab 11:581–586PubMedCrossRefGoogle Scholar
  80. Kress BT, Iliff JJ, Xia M et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861. doi: 10.1002/ana.24271 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453ADSPubMedPubMedCentralCrossRefGoogle Scholar
  82. Lante F, Toledo-Salas J-C, Ondrejcak T, Rowan MJ, Ulrich D (2011) Removal of synaptic Ca(2)+-permeable AMPA receptors during sleep. J Neurosci 31:3953–3961. doi: 10.1523/jneurosci.3210-10.2011 PubMedCrossRefGoogle Scholar
  83. Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22:9785–9793PubMedGoogle Scholar
  84. Lee W-J, Hawkins RA, Vina JR, Peterson DR (1998) Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am J Phys Cell Phys 274:C1101–C1107Google Scholar
  85. Leissring MA, Farris W, Chang AY et al (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093PubMedCrossRefGoogle Scholar
  86. Levick JR (1987) Flow through interstitium and other fibrous matrices. Q J Exp Physiol 72:409–437PubMedCrossRefGoogle Scholar
  87. Liu Z-W, Faraguna U, Cirelli C, Tononi G, Gao X-B (2010) Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J Neurosci 30:8671–8675. doi: 10.1523/jneurosci.1409-10.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloidβ-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A 93:1125–1129ADSPubMedPubMedCentralCrossRefGoogle Scholar
  89. Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. doi: 10.1038/nature14432 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  90. Lucey BP, Bateman RJ (2014) Amyloid-beta diurnal pattern: possible role of sleep in Alzheimer’s disease pathogenesis. Neurobiol Aging 35(Suppl 2):S29–S34. doi: 10.1016/j.neurobiolaging.2014.03.035 PubMedCrossRefGoogle Scholar
  91. Lundgaard I, Lu ML, Yang E et al (2016) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37:2112–2124. doi: 10.1177/0271678x16661202. (in press)
  92. Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19:393–400. doi: 10.1097/00004647-199904000-00005 PubMedCrossRefGoogle Scholar
  93. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103PubMedCrossRefGoogle Scholar
  94. Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. doi: 10.1126/science.1197623 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  95. McIntee FL, Giannoni P, Blais S, Sommer G, Neubert TA, Rostagno A, Ghiso J (2016) In vivo differential brain clearance and catabolism of monomeric and oligomeric Alzheimer’s Abeta protein. Front Aging Neurosci 8:223. doi: 10.3389/fnagi.2016.00223 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Miners JS, Barua N, Kehoe PG, Gill S, Love S (2011) Abeta-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 70:944–959. doi: 10.1097/NEN.0b013e3182345e46 PubMedCrossRefGoogle Scholar
  97. Morris AWJ, Sharp MM, Albargothy NJ et al (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 131:725–736. doi: 10.1007/s00401-016-1555-z PubMedPubMedCentralCrossRefGoogle Scholar
  98. Naylor E, Aillon DV, Barrett BS et al (2012) Lactate as a biomarker for sleep. Sleep 35:1209–1222. doi: 10.5665/sleep.2072 PubMedPubMedCentralGoogle Scholar
  99. Nedergaard M (2013) Neuroscience. Garbage truck of the brain. Science 340:1529–1530. doi: 10.1126/science.1240514 ADSPubMedPubMedCentralCrossRefGoogle Scholar
  100. Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV (2016) Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. BBA-Mol Basis Dis 1862:887–900. doi: 10.1016/j.bbadis.2015.12.016 CrossRefGoogle Scholar
  101. Netchiporouk L, Shram N, Salvert D, Cespuglio R (2001) Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle. Eur J Neurosci 13:1429–1434PubMedCrossRefGoogle Scholar
  102. Nicholson C (1980) Dynamics of the brain cell microenvironment. Neurosci Res Program Bull 18:175–322PubMedGoogle Scholar
  103. Nicholson C (2001) Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys 64:815–884ADSCrossRefGoogle Scholar
  104. Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215PubMedCrossRefGoogle Scholar
  105. Nisbet RM, Polanco J-C, Ittner LM, Gotz J (2015) Tau aggregation and its interplay with amyloid-beta. Acta Neuropathol 129:207–220. doi: 10.1007/s00401-014-1371-2 PubMedCrossRefGoogle Scholar
  106. Ohtsuki S, Ito S, Terasaki T (2010) Is P-glycoprotein involved in amyloid-β elimination across the blood-brain barrier in Alzheimer’s disease? Clin Pharmacol Ther 88:443–445. doi: 10.1038/clpt.2010.160 PubMedCrossRefGoogle Scholar
  107. Pan WH, Kastin AJ (2014) Can sleep apnea cause Alzheimer’s disease? Neurosci Biobehav Rev 47:656–669. doi: 10.1016/j.neubiorev.2014.10.019 PubMedCrossRefGoogle Scholar
  108. Pan W, Kastin AJ (2016) The blood-brain barrier: regulatory roles in wakefulness and sleep. Neuroscientist:1–13. doi: 10.1177/1073858416639005
  109. Pappolla M, Sambamurti K, Vidal R, Pacheco-Quinto J, Poeggeler B, Matsubara E (2014) Evidence for lymphatic Abeta clearance in Alzheimer’s transgenic mice. Neurobiol Dis 71:215–219. doi: 10.1016/j.nbd.2014.07.012 PubMedCrossRefGoogle Scholar
  110. Patlak CS, Fenstermacher JD (1975) Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol 229:877–884PubMedGoogle Scholar
  111. Peng W, Achariyar TM, Li B et al (2016) Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 93:215–224. doi: 10.1016/j.nbd.2016.05.015 PubMedCrossRefGoogle Scholar
  112. Petit JM, Magistretti PJ (2016) Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle. Neuroscience 323:135–156. doi: 10.1016/j.neuroscience.2015.12.007 PubMedCrossRefGoogle Scholar
  113. Pflanzner T, Janko MC, Andre-Dohmen B et al (2011) LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood-brain barrier. Neurobiol Aging 32(2323):e2321–e2311. doi: 10.1016/j.neurobiolaging.2010.05.025 Google Scholar
  114. Plog BA, Dashnaw ML, Hitomi E et al (2015) Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci 35:518–526. doi: 10.1523/jneurosci.3742-14.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9. doi: 10.1186/1743-8454-7-9 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135. doi: 10.1016/j.smrv.2010.06.005 PubMedCrossRefGoogle Scholar
  117. Potter R, Patterson BW, Elbert DL et al (2013) Increased in vivo amyloid-beta42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med 5:189ra177. doi: 10.1126/scitranslmed.3005615 CrossRefGoogle Scholar
  118. Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV (2015) Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: the role, regulation and restoration of LRP1. Front Aging Neurosci 7:136. doi: 10.3389/fnagi.2015.00136 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439PubMedGoogle Scholar
  120. Ries M, Sastre M (2016) Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 8:160. doi: 10.3389/fnagi.2016.00160 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Roberts KF, Elbert DL, Kasten TP et al (2014) Amyloid-beta efflux from the central nervous system into the plasma. Ann Neurol 76:837–844. doi: 10.1002/ana.24270 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM (2012) Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4:150ra122. doi: 10.1126/scitranslmed.3004291 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Roh JH, Jiang H, Finn MB et al (2014) Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J Exp Med 211:2487–2496. doi: 10.1084/jem.20141788 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Saido TC, Iwata N (2006) Metabolism of amyloid beta peptide and pathogenesis of Alzheimer’s disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci Res 54:235–253. doi: 10.1016/j.neures.2005.12.015 PubMedCrossRefGoogle Scholar
  125. Saido T, Leissring MA (2012) Proteolytic degradation of amyloidβ-protein. Cold Spring Harb Perspect Med 2:a006379. doi: 10.1101/cshperspect.a006379 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180PubMedCrossRefGoogle Scholar
  127. Sharma VK, Sharma P, Deshmukh R, Singh R (2015) Age associated sleep loss: a trigger for Alzheimer’s disease. Bull Clin Psychopharmacol 25:78–88. doi: 10.5455/bcp.20140909070449 CrossRefGoogle Scholar
  128. Sherpa AD, Xiao F, Joseph N, Aoki C, Hrabetova S (2016) Activation of beta-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume. Synapse 70:307–316. doi: 10.1002/syn.21908 PubMedCrossRefGoogle Scholar
  129. Shibata M, Yamada S, Kumar SR et al (2000) Clearance of Alzheimer’s amyloid-β(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Investig 106:1489–1499PubMedPubMedCentralCrossRefGoogle Scholar
  130. Shiiki T, Ohtsuki S, Kurihara A et al (2004) Brain insulin impairs amyloid-beta(1-40) clearance from the brain. J Neurosci 24:9632–9637PubMedCrossRefGoogle Scholar
  131. Shirotani K, Tsubuki S, Iwata N et al (2001) Neprilysin degrades both amyloid β peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 276:21895–21901. doi: 10.1074/jbc.M008511200 PubMedCrossRefGoogle Scholar
  132. Siesjö BK (1978) Brain energy metabolism. Wiley, ChichesterGoogle Scholar
  133. Simon MJ, Iliff JJ (2016) Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. BBA-Mol Basis Dis 1862:442–451. doi: 10.1016/j.bbadis.2015.10.014 CrossRefGoogle Scholar
  134. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation – where do all the carbons go? J Neurochem 131:399–406. doi: 10.1111/jnc.12812 PubMedCrossRefGoogle Scholar
  135. Spira AP, Chen-Edinboro LP, Wu MN, Yaffe K (2014) Impact of sleep on the risk of cognitive decline and dementia. Curr Opin Psychiatry 27:478–483. doi: 10.1097/YCO.0000000000000106 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sprecher KE, Bendlin BB, Racine AM et al (2015) Amyloid burden is associated with self-reported sleep in nondemented late middle-aged adults. Neurobiol Aging 36:2568–2576. doi: 10.1016/j.neurobiolaging.2015.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Storck SE, Meister S, Nahrath J et al (2016) Endothelial LRP1 transports amyloid-beta(1-42) across the blood-brain barrier. J Clin Investig 126:123–136. doi: 10.1172/JCI81108 PubMedCrossRefGoogle Scholar
  138. Strazielle N, Ghersi-Egea JF (2013) Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10:1473–1491PubMedCrossRefGoogle Scholar
  139. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340. doi: 10.1152/physrev.00027.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844PubMedGoogle Scholar
  141. Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer’s Aβ peptide: the many roads to perdition. Neuron 43:605–608. doi: 10.1016/j.neuron.2004.08.024 PubMedGoogle Scholar
  142. Tarasoff-Conway JM, Carare RO, Osorio RS et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470. doi: 10.1038/nrneurol.2015.119 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81:12–34. doi: 10.1016/j.neuron.2013.12.025 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Van Uden E, Mallory M, Veinbergs I, Alford M, Rockenstein E, Masliah E (2002) Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein. J Neurosci 22:9298–9304PubMedGoogle Scholar
  145. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008a) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11:200–208. doi: 10.1038/nn2035 PubMedCrossRefGoogle Scholar
  146. Vyazovskiy VV, Cirelli C, Tononi G, Tobler I (2008b) Cortical metabolic rates as measured by 2-deoxyglucose-uptake are increased after waking and decreased after sleep in mice. Brain Res Bull 75:591–597. doi: 10.1016/j.brainresbull.2007.10.040 PubMedCrossRefGoogle Scholar
  147. Vyazovskiy VV, Olcese U, Lazimy YM et al (2009) Cortical firing and sleep homeostasis. Neuron 63:865–878. doi: 10.1016/j.neuron.2009.08.024 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733PubMedPubMedCentralCrossRefGoogle Scholar
  149. Weller RO, Massey A, Kuo YM, Roher AE (2000) Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer’s disease. Ann N Y Acad Sci 903:110–117ADSPubMedCrossRefGoogle Scholar
  150. Weller RO, Djuanda E, Yow H-Y, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14. doi: 10.1007/s00401-008-0457-0 PubMedCrossRefGoogle Scholar
  151. Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. doi: 10.1126/science.1241224 ADSPubMedCrossRefGoogle Scholar
  152. Yaffe K, Falvey CM, Hoang T (2014) Connections between sleep and cognition in older adults. Lancet Neurol 13:1017–1028. doi: 10.1016/s1474-4422(14)70172-3 PubMedCrossRefGoogle Scholar
  153. Yamada S, DePasquale M, Patlak CS, Cserr HF (1991) Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol 261:H1197–H1204PubMedGoogle Scholar
  154. Yamaguchi H, Yamazaki T, Lemere CA, Frosch MP, Selkoe DJ (1992) Beta amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer’s disease. An immunoelectron microscopic study. Am J Pathol 141:249–259PubMedPubMedCentralGoogle Scholar
  155. Yan P, Bero AW, Cirrito JR et al (2009) Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J Neurosci 29:10706–10714. doi: 10.1523/jneurosci.2637-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Ye L, Fritschi SK, Schelle J et al (2015) Persistence of Abeta seeds in APP null mouse brain. Nat Neurosci 18:1559–1561. doi: 10.1038/nn.4117 PubMedCrossRefGoogle Scholar
  157. Yin K-J, Cirrito JR, Yan P et al (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26:10939–10948. doi: 10.1523/jneurosci.2085-06.2006 PubMedCrossRefGoogle Scholar
  158. Zekonyte J, Sakai K, Nicoll JAR, Weller RO, Carare RO (2016) Quantification of molecular interactions between ApoE, amyloid-beta (A beta) and laminin: relevance to accumulation of A beta in Alzheimer’s disease. BBA-Mol Basis Dis 1862:1047–1053. doi: 10.1016/j.bbadis.2015.08.025 CrossRefGoogle Scholar
  159. Zerbinatti CV, Wozniak DF, Cirrito J et al (2004) Increased soluble amyloid-beta peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A 101:1075–1080ADSPubMedPubMedCentralCrossRefGoogle Scholar
  160. Zervas NT, Liszczak TM, Mayberg MR, Black PM (1982) Cerebrospinal fluid may nourish cerebral vessels through pathways in the adventitia that may be analogous to systemic vasa vasorum. J Neurosurg 56:475–481. doi: 10.3171/jns.1982.56.4.0475 PubMedCrossRefGoogle Scholar
  161. Zhao Z, Sagare AP, Ma Q et al (2015) Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 18:978–987. doi: 10.1038/nn.4025 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeUK

Personalised recommendations