Advertisement

Leber Hereditary Optic Neuropathy: Exemplar of an mtDNA Disease

  • Douglas C. Wallace
  • Marie T. Lott
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 240)

Abstract

The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1–2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.

Keywords

Animal models Estrogen receptor beta Gene therapy Haplogroup Leber’s hereditary optic neuropathy LHON Mitochondrial disease Mitochondrial DNA Mitochondrial physiology mtDNA copy number Oxidative stress Retinal ganglion cells Transmitochondrial cybrids 

Notes

Acknowledgements

This work was supported by NIH grant 5R01-NS021328-30 awarded to DCW.

References

  1. Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, Bruno C, Moraes CT, Enriquez JA (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13(6):805–815. PubMed PMID: 15053874PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexander C, Votruba M, Pesch UEA, Thiselton DL, Mayer S, Moore A, Rodriquez M, Kellner U, Leo-Kottler B, Auburger G, Bhattcharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215. PubMed PMID: 11017080PubMedCrossRefGoogle Scholar
  3. Amado D, Mingozzi F, Hui D, Bennicelli JL, Wei Z, Chen Y, Bote E, Grant RL, Golden JA, Narfstrom K, Syed NA, Orlin SE, High KA, Maguire AM, Bennett J (2010) Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2(21):21ra16. Epub 2010/04/09. doi:  10.1126/scitranslmed.3000659. PubMed PMID: 20374996PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amaral-Fernandes MS, Marcondes AM, Miranda PM, Maciel-Guerra AT, Sartorato EL (2011) Mutations for Leber hereditary optic neuropathy in patients with alcohol and tobacco optic neuropathy. Mol Vis 17:3175–3179. http://www.molvis.org/molvis/v17/a342/. Epub 2011/12/24. PubMed PMID: 22194643
  5. Angebault C, Gueguen N, Desquiret-Dumas V, Chevrollier A, Guillet V, Verny C, Cassereau J, Ferre M, Milea D, Amati-Bonneau P, Bonneau D, Procaccio V, Reynier P, Loiseau D (2011) Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res Notes 4(1):557. doi: 10.1186/1756-0500-4-557. Epub 2011/12/24. PubMed PMID: 22192149PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bacman SR, Williams SL, Hernandez D, Moraes CT (2007) Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a “differential multiple cleavage-site” model. Gene Ther 14(18):1309–1318. PubMed PMID: 17597792PubMedPubMedCentralGoogle Scholar
  7. Bacman SR, Williams SL, Garcia S, Moraes CT (2010) Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 17(6):713–720. doi: 10.1038/gt.2010.25. Epub 2010/03/12. PubMed PMID: 20220783PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT (2013) Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 19(9):1111–1113. Epub Aug 4. doi:  10.1038/nm.3261. PubMed PMID: 23913125
  9. Baracca A, Solaini G, Sgarbi G, Lenaz G, Baruzzi A, Schapira AH, Martinuzzi A, Carelli V (2005) Severe impairment of complex I-driven adenosine triphosphate synthesis in Leber hereditary optic neuropathy cybrids. Arch Neurol 62(5):730–736. doi: 10.1001/archneur.62.5.730. Epub 2005/05/11. PubMed PMID: 15883259PubMedCrossRefGoogle Scholar
  10. Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC, McCague S, Pierce EA, Chen Y, Bennicelli JL, Zhu X, Ying GS, Sun J, Wright JF, Auricchio A, Simonelli F, Shindler KS, Mingozzi F, High KA, Maguire AM (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4(120):120ra15. doi: 10.1126/scitranslmed.3002865. Epub 2012/02/11. PubMed PMID: 22323828PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bennicelli J, Wright JF, Komaromy A, Jacobs JB, Hauck B, Zelenaia O, Mingozzi F, Hui D, Chung D, Rex TS, Wei Z, Qu G, Zhou S, Zeiss C, Arruda VR, Acland GM, Dell’Osso LF, High KA, Maguire AM, Bennett J (2008) Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 16(3):458–465. doi: 10.1038/sj.mt.6300389. Epub 2008/01/23. PubMed PMID: 18209734PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beretta S, Mattavelli L, Sala G, Tremolizzo L, Schapira AH, Martinuzzi A, Carelli V, Ferrarese C (2004) Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain 127(Pt 10):2183–2192. doi: 10.1093/brain/awh258. Epub 2004/09/03. PubMed PMID: 15342361PubMedCrossRefGoogle Scholar
  13. Beretta S, Wood JP, Derham B, Sala G, Tremolizzo L, Ferrarese C, Osborne NN (2006) Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber hereditary optic neuropathy (LHON). Neurobiol Dis 24(2):308–317. doi: 10.1016/j.nbd.2006.07.016. Epub 2006/09/09. PubMed PMID: 16959493PubMedCrossRefGoogle Scholar
  14. Bonnet C, Kaltimbacher V, Ellouze S, Augustin S, Benit P, Forster V, Rustin P, Sahel JA, Corral-Debrinski M (2007) Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or v subunits. Rejuvenation Res 10(2):127–144. PubMed PMID: 17518546PubMedCrossRefGoogle Scholar
  15. Bonnet C, Augustin S, Ellouze S, Benit P, Bouaita A, Rustin P, Sahel JA, Corral-Debrinski M (2008) The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harboring mutations in these genes. Biochim Biophys Acta 1783(10):1707–1717. PubMed PMID: 18513491PubMedCrossRefGoogle Scholar
  16. Bouaita A, Augustin S, Lechauve C, Cwerman-Thibault H, Benit P, Simonutti M, Paques M, Rustin P, Sahel JA, Corral-Debrinski M (2012) Downregulation of apoptosis-inducing factor in Harlequin mice induces progressive and severe optic atrophy which is durably prevented by AAV2-AIF1 gene therapy. Brain 135(Pt 1):35–52. doi: 10.1093/brain/awr290. Epub 2011/11/29. PubMed PMID: 22120150PubMedCrossRefGoogle Scholar
  17. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472. doi: 10.1016/j.exger.2010.01.003. Epub 2010/01/13. PubMed PMID: 20064600PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brown MD, Torroni A, Reckord CL, Wallace DC (1995) Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Hum Mutat 6(4):311–325. doi: 10.1002/humu.1380060405. PubMed PMID: 8680405PubMedCrossRefGoogle Scholar
  19. Brown MD, Sun F, Wallace DC (1997) Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage. Am J Hum Genet 60(2):381–387. PubMed PMID: 9012411PubMedPubMedCentralGoogle Scholar
  20. Brown MD, Hosseini SH, Torroni A, Bandelt HJ, Allen JC, Schurr TG, Scozzari R, Cruciani F, Wallace DC (1998) mtDNA Haplogroup X: an ancient link between Europe/Western Asia and North America? Am J Hum Genet 63(6):1852–1861. PubMed PMID: 9837837PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brown MD, Trounce IA, Jun AS, Allen JC, Wallace DC (2000) Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mtDNA mutation. J Biol Chem 275(51):39831–39836. PubMed PMID: 10976107PubMedCrossRefGoogle Scholar
  22. Brown MD, Allen JC, Van Stavern GP, Newman NJ, Wallace DC (2001) Clinical, genetic, and biochemical characterization of a Leber hereditary optic neuropathy family containing both the 11778 and 14484 primary mutations. Am J Med Genet 104(4):331–338. PubMed PMID: 11754070PubMedCrossRefGoogle Scholar
  23. Brown MD, Starikovskaya E, Derbeneva O, Hosseini S, Allen JC, Mikhailovskaya IE, Sukernik RI, Wallace DC (2002) The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup. J Hum Genet 110(2):130–138. PubMed PMID: 11935318CrossRefGoogle Scholar
  24. Bunn CL, Wallace DC, Eisenstadt JM (1974) Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc Natl Acad Sci U S A 71(5):1681–1685. PubMed PMID: 4525288PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325(6099):31–36. PubMed PMID: 3025745PubMedCrossRefGoogle Scholar
  26. Carelli V, Ghelli A, Ratta M, Bacchilega E, Sangiorgi S, Mancini R, Leuzzi V, Cortelli P, Montagna P, Lugaresi E, Degli EM (1997) Leber’s hereditary optic neuropathy: biochemical effect of 11778/ND4 and 3460/ND1 mutations and correlation with the mitochondrial genotype. Neurology 48(6):1623–1632PubMedCrossRefGoogle Scholar
  27. Carelli V, Ghelli A, Bucchi L, Montagna P, De Negri A, Leuzzi V, Carducci C, Lenaz G, Lugaresi E, Degli Esposti M (1999) Biochemical features of mtDNA 14484 (ND6/M64V) point mutation associated with Leber’s hereditary optic neuropathy. Ann Neurol 45(3):320–328PubMedCrossRefGoogle Scholar
  28. Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23(1):53–89. PubMed PMID: 14766317PubMedCrossRefGoogle Scholar
  29. Carelli V, Achilli A, Valentino ML, Rengo C, Semino O, Pala M, Olivieri A, Mattiazzi M, Pallotti F, Carrara F, Zeviani M, Leuzzi V, Carducci C, Valle G, Simionati B, Mendieta L, Salomao S, Belfort R, Sadun AA, Torroni A (2006) Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am J Hum Genet 78(4):564–574. PubMed PMID: 16532388PubMedPubMedCentralCrossRefGoogle Scholar
  30. Carelli V, La Morgia C, Valentino ML, Rizzo G, Carbonelli M, De Negri AM, Sadun F, Carta A, Guerriero S, Simonelli F, Sadun AA, Aggarwal D, Liguori R, Avoni P, Baruzzi A, Zeviani M, Montagna P, Barboni P (2011) Idebenone treatment In Leber’s hereditary optic neuropathy. Brain 134(9):e188. doi: 10.1093/brain/awr180. Epub 2011/08/04. PubMed PMID: 21810891PubMedCrossRefGoogle Scholar
  31. Carelli V, d'Adamo P, Valentino ML, La Morgia C, Ross-Cisneros FN, Caporali L, Maresca A, Loguercio Polosa P, Barboni P, De Negri A, Sadun F, Karanjia R, Salomao SR, Berezovsky A, Chicani F, Moraes M, Moraes Filho M, Belfort R Jr, Sadun AA (2016) Parsing the differences in affected with LHON: genetic versus environmental triggers of disease conversion. Brain 139(Pt 3):e17. doi: 10.1093/brain/awv339. PubMed PMID: 26657166PubMedCrossRefGoogle Scholar
  32. Chadderton N, Palfi A, Millington-Ward S, Gobbo O, Overlack N, Carrigan M, O’Reilly M, Campbell M, Ehrhardt C, Wolfrum U, Humphries P, Kenna PF, Farrar GJ (2013) Intravitreal delivery of AAV-NDI1 provides functional benefit in a murine model of Leber hereditary optic neuropathy. Eur J Hum Genet 21(1):62–68. doi: 10.1038/ejhg.2012.112. PubMed PMID: 22669418; PMCID: PMC3522193PubMedCrossRefGoogle Scholar
  33. Chalmers RM, Davis MB, Sweeney MG, Wood NW, Harding AE (1996) Evidence against an X-linked visual loss susceptibility locus in Leber hereditary optic neuropathy. Am J Hum Genet 59(1):103–108PubMedPubMedCentralGoogle Scholar
  34. Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM (2000) The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48(2):188–193. PubMed PMID: 10939569PubMedCrossRefGoogle Scholar
  35. Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa AS, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435. doi: 10.1038/nature13909. PubMed PMID: 25383517PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, Krieg T, Murphy MP (2016) A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab 23(2):254–263. doi: 10.1016/j.cmet.2015.12.009. PubMed PMID: 26777689PubMedCrossRefGoogle Scholar
  37. Chrysostomou V, Rezania F, Trounce IA, Crowston JG (2013) Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol 13(1):12–15. doi: 10.1016/j.coph.2012.09.008. PubMed PMID: 23069478PubMedCrossRefGoogle Scholar
  38. Cock HR, Cooper JM, Schapira AH (1999) Functional consequences of the 3460-bp mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. J Neurol Sci 165(1):10–17. PubMed PMID: 0010426140PubMedCrossRefGoogle Scholar
  39. Collins DW, Gudiseva HV, Trachtman B, Bowman AS, Sagaser A, Sankar P, Miller-Ellis E, Lehman A, Addis V, O’Brien JM (2016) Association of primary open-angle glaucoma with mitochondrial variants and haplogroups common in African Americans. Mol Vis 22:454–471. PubMed PMID: 27217714; PMCID: PMC4872278Google Scholar
  40. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2(4):324–329. PubMed PMID: 1303288PubMedCrossRefGoogle Scholar
  41. Craven L, Elson JL, Irving L, Tuppen HA, Lister LM, Greggains GD, Byerley S, Murdoch AP, Herbert M, Turnbull D (2011) Mitochondrial DNA disease: new options for prevention. Hum Mol Genet 20(R2):R168–R174. doi: 10.1093/hmg/ddr373. Epub 2011/08/20. PubMed PMID: 21852248PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cree LM, Samuels DC, Chinnery PF (2009) The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta 1792(12):1097–1102. doi: 10.1016/j.bbadis.2009.03.002. PubMed PMID: 19303927PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cwerman-Thibault H, Sahel JA, Corral-Debrinski M (2011) Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations. J Inherit Metab Dis 34(2):327–344. doi: 10.1007/s10545-010-9131-5. Epub 2010/06/24. PubMed PMID: 20571866PubMedCrossRefGoogle Scholar
  44. Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AHV, Cortopassi GA (2002) Cells bearing mutation causing Leber’s hereditary optic neuropathy are sensitized to Fas-induced apoptosis. J Biol Chem 277(8):5810–5815. PubMed PMID: 11741983PubMedCrossRefGoogle Scholar
  45. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210. PubMed PMID: 11017079PubMedCrossRefGoogle Scholar
  46. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators, Centers for Disease Control and Prevention (CDC) (2014) Prevalence of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 63(2):1–21. doi: 00000-open online access at http://www.cdc.gov/mmwr/preview/mmwrhtml/ss6302a1.htm. PubMed PMID: 24670961
  47. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83(2):254–260. PubMed PMID: 18674747PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ellouze S, Augustin S, Bouaita A, Bonnet C, Simonutti M, Forster V, Picaud S, Sahel JA, Corral-Debrinski M (2008) Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet 83(3):373–387. PubMed PMID: 18771762PubMedPubMedCentralCrossRefGoogle Scholar
  49. Enns GM, Kinsman SL, Perlman SL, Spicer KM, Abdenur JE, Cohen BH, Amagata A, Barnes A, Kheifets V, Shrader WD, Thoolen M, Blankenberg F, Miller G (2012) Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 105(1):91–102. doi: 10.1016/j.ymgme.2011.10.009. Epub 2011/11/26. PubMed PMID: 22115768PubMedCrossRefGoogle Scholar
  50. Ferrington DA, Kapphahn RJ, Leary MM, Atilano SR, Terluk MR, Karunadharma P, Chen GK, Ratnapriya R, Swaroop A, Montezuma SR, Kenney MC (2016) Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration. Exp Eye Res 145:269–277. doi:  10.1016/j.exer.2016.01.018. PubMed PMID: 26854823; PMCID: PMC4842097
  51. Figueroa-Martinez F, Vazquez-Acevedo M, Cortes-Hernandez P, Garcia-Trejo JJ, Davidson E, King MP, Gonzalez-Halphen D (2011) What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes. Mitochondrion 11(1):147–154. doi: 10.1016/j.mito.2010.09.003. Epub 2010/09/22. PubMed PMID: 20854934PubMedCrossRefGoogle Scholar
  52. Floreani M, Napoli E, Martinuzzi A, Pantano G, De Riva V, Trevisan R, Bisetto E, Valente L, Carelli V, Dabbeni-Sala F (2005) Antioxidant defences in cybrids harboring mtDNA mutations associated with Leber’s hereditary optic neuropathy. FEBS J 272(5):1124–1135. doi: 10.1111/j.1742-4658.2004.04542.x. Epub 2005/02/22. PubMed PMID: 15720387PubMedCrossRefGoogle Scholar
  53. Ghelli A, Porcelli AM, Zanna C, Martinuzzi A, Carelli V, Rugolo M (2008) Protection against oxidant-induced apoptosis by exogenous glutathione in Leber hereditary optic neuropathy cybrids. Invest Ophthalmol Vis Sci 49(2):671–676. doi: 10.1167/iovs.07-0880. Epub 2008/02/01. PubMed PMID: 18235013PubMedCrossRefGoogle Scholar
  54. Giordano C, Iommarini L, Giordano L, Maresca A, Pisano A, Valentino ML, Caporali L, Liguori R, Deceglie S, Roberti M, Fanelli F, Fracasso F, Ross-Cisneros FN, D’Adamo P, Hudson G, Pyle A, Yu-Wai-Man P, Chinnery PF, Zeviani M, Salomao SR, Berezovsky A, Belfort R Jr, Ventura DF, Moraes M, Moraes Filho M, Barboni P, Sadun F, De Negri A, Sadun AA, Tancredi A, Mancini M, d’Amati G, Loguercio Polosa P, Cantatore P, Carelli V (2014) Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy. Brain 137(Pt 2):335–353. doi: 10.1093/brain/awt343. Epub 2013/12/27. PubMed PMID: 24369379PubMedCrossRefGoogle Scholar
  55. Giordano L, Deceglie S, d’Adamo P, Valentino ML, La Morgia C, Fracasso F, Roberti M, Cappellari M, Petrosillo G, Ciaravolo S, Parente D, Giordano C, Maresca A, Iommarini L, Del Dotto V, Ghelli AM, Salomao SR, Berezovsky A, Belfort R Jr, Sadun AA, Carelli V, Loguercio Polosa P, Cantatore P (2015) Cigarette toxicity triggers Leber’s hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death Dis 6:e2021. doi: 10.1038/cddis.2015.364. PubMed PMID: 26673666; PMCID: PMC4720897PubMedPubMedCentralCrossRefGoogle Scholar
  56. Giorgio V, Petronilli V, Ghelli A, Carelli V, Rugolo M, Lenaz G, Bernardi P (2012) The effects of idebenone on mitochondrial bioenergetics. Biochim Biophys Acta 1817(2):363–369. doi: 10.1016/j.bbabio.2011.10.012. Epub 2011/11/17. PubMed PMID: 22086148PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gomez-Duran A, Pacheu-Grau D, Lopez-Gallardo E, Diez-Sanchez C, Montoya J, Lopez-Perez MJ, Ruiz-Pesini E (2010) Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet 19(17):3343–3353. doi: 10.1093/hmg/ddq246. Epub 2010/06/23. PubMed PMID: 20566709PubMedCrossRefGoogle Scholar
  58. Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348(6302):651–653. PubMed PMID: 2102678PubMedCrossRefGoogle Scholar
  59. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS (2002) Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol 52(5):534–542. PubMed PMID: 12402249PubMedCrossRefGoogle Scholar
  60. Guy J, Qi X, Koilkonda RD, Arguello T, Chou TH, Ruggeri M, Porciatti V, Lewin AS, Hauswirth WW (2009) Efficiency and safety of AAV-mediated gene delivery of the human ND4 complex I subunit in the mouse visual system. Invest Ophthalmol Vis Sci 50(9):4205–4214. doi: 10.1167/iovs.08-3214. Epub 2009/04/24. PubMed PMID: 19387075PubMedPubMedCentralCrossRefGoogle Scholar
  61. Handoko HY, Wirapati PJ, Sudoyo HA, Sitepu M, Marzuki S (1998) Meiotic breakpoint mapping of a proposed X linked visual loss susceptibility locus in Leber’s hereditary optic neuropathy. J Med Genet 35(8):668–671. Epub 1998/08/27. PubMed PMID: 9719375PubMedPubMedCentralCrossRefGoogle Scholar
  62. Harding AE, Sweeney MG, Miller DH, Mumford CJ, Kellar-Wood H, Menard D, McDonald WI, Compston DAS (1992) Occurrence of a multiple sclerosis-like illness in women who have a Leber’s heditary optic neuropathy mitochondrial DNA mutation. Brain 115:979–989PubMedCrossRefGoogle Scholar
  63. Hashimoto M, Bacman SR, Peralta S, Falk MJ, Chomyn A, Chan DC, Williams SL, Moraes CT (2015) MitoTALEN: a general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Mol Ther 23(10):1592–1599. doi: 10.1038/mt.2015.126. PubMed PMID: 26159306; PMCID: PMC4817924PubMedPubMedCentralCrossRefGoogle Scholar
  64. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497(7450):451–457. doi: 10.1038/nature12188. Epub 2013/05/24. PubMed PMID: 23698443PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hudson G, Keers S, Yu Wai Man P, Griffiths P, Huoponen K, Savontaus ML, Nikoskelainen E, Zeviani M, Carrara F, Horvath R, Karcagi V, Spruijt L, de Coo IF, Smeets HJ, Chinnery PF (2005) Identification of an X-chromosomal locus and haplotype modulating the phenotype of a mitochondrial DNA disorder. Am J Hum Genet 77(6):1086–1091. PubMed PMID: 16380918PubMedPubMedCentralCrossRefGoogle Scholar
  66. Huoponen K, Vilkki J, Aula P, Nikoskelainen EK, Savontaus ML (1991) A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. Am J Hum Genet 48(6):1147–1153. PubMed PMID: 1674640PubMedPubMedCentralGoogle Scholar
  67. Hyslop LA, Blakeley P, Craven L, Richardson J, Fogarty NM, Fragouli E, Lamb M, Wamaitha SE, Prathalingam N, Zhang Q, O’Keefe H, Takeda Y, Arizzi L, Alfarawati S, Tuppen HA, Irving L, Kalleas D, Choudhary M, Wells D, Murdoch AP, Turnbull DM, Niakan KK, Herbert M (2016) Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature 534(7607):383–386. doi: 10.1038/nature18303. PubMed PMID: 27281217; PMCID: PMC5131843PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ishikawa K, Funayama T, Ohde H, Inagaki Y, Mashima Y (2005) Genetic variants of TP53 and EPHX1 in Leber’s hereditary optic neuropathy and their relationship to age at onset. Jpn J Ophthalmol 49(2):121–126. PubMed PMID: 15838728PubMedCrossRefGoogle Scholar
  69. Ji Y, Jia X, Li S, Xiao X, Guo X, Zhang Q (2010) Evaluation of the X-linked modifier loci for Leber hereditary optic neuropathy with the G11778A mutation in Chinese. Mol Vis 16:416–424. http://www.molvis.org/molvis/v16/a47/. PubMed PMID: 20300564
  70. Ji F, Sharpley MS, Derbeneva O, Alves LS, Qian P, Wang Y, Chalkia D, Lvova M, Xu J, Yao W, Simon M, Platt J, Xu S, Angelin A, Davila A, Huang T, Wang PH, Chuang LM, Moore LG, Qian G, Wallace DC (2012) Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc Natl Acad Sci U S A 109(19):7391–7396. doi: 10.1073/pnas.1202484109. PubMed PMID: 22517755PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ji Y, Liang M, Zhang J, Zhu L, Zhang Z, Fu R, Liu X, Zhang M, Fu Q, Zhao F, Tong Y, Sun Y, Jiang P, Guan MX (2016) Mitochondrial ND1 variants in 1281 Chinese subjects with Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 57(6):2377–2389. doi: 10.1167/iovs.16-19243. PubMed PMID: 27177320PubMedCrossRefGoogle Scholar
  72. Johns DR, Neufeld MJ, Park RD (1992) An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem Biophys Res Commun 187(3):1551–1557. PubMed PMID: 1417830PubMedCrossRefGoogle Scholar
  73. Johnson MJ, Wallace DC, Ferris SD, Rattazzi MC, Cavalli-Sforza LL (1983) Radiation of human mitochondria DNA types analyzed by restriction endonuclease cleavage patterns. J Mol Evol 19(3–4):255–271. PubMed PMID: 6310133PubMedCrossRefGoogle Scholar
  74. Johri A, Calingasan NY, Hennessey TM, Sharma A, Yang L, Wille E, Chandra A, Beal MF (2012) Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Hum Mol Genet 21(5):1124–1137. doi: 10.1093/hmg/ddr541. Epub 2011/11/19. PubMed PMID: 22095692PubMedCrossRefGoogle Scholar
  75. Jun AS, Brown MD, Wallace DC (1994a) A mitochondrial DNA mutation at np 14459 of the ND6 gene associated with maternally inherited Leber's hereditary optic neuropathy and dystonia. Proc Natl Acad Sci U S A 91(13):6206–6210. PubMed PMID: 8016139PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jun AS, Trounce IA, Brown MD, Shoffner JM, Kim YL, Wallace DC (1994b) Marked complex I deficiency in patients harboring the np14459 ND6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy and dystonia. (Abstract1311). Am J Hum Genet 55(Supplement):A225. PubMed PMID: Not in PubMedGoogle Scholar
  77. Jun AS, Trounce IA, Brown MD, Shoffner JM, Wallace DC (1996) Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia. Mol Cell Biol 16(3):771–777. PubMed PMID: 8622678PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kang E, Wu J, Gutierrez NM, Koski A, Tippner-Hedges R, Agaronyan K, Platero-Luengo A, Martinez-Redondo P, Ma H, Lee Y, Hayama T, Van Dyken C, Wang X, Luo S, Ahmed R, Li Y, Ji D, Kayali R, Cinnioglu C, Olson S, Jensen J, Battaglia D, Lee D, Wu D, Huang T, Wolf DP, Temiakov D, Belmonte JC, Amato P, Mitalipov S (2016) Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 540(7632):270–275. doi: 10.1038/nature20592. PubMed PMID: 27919073PubMedCrossRefGoogle Scholar
  79. Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, Kato N, Miyawaki A, Kato T (2006) Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2(8):e128. PubMed PMID: 16895436PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kenney MC, Hertzog D, Chak G, Atilano SR, Khatibi N, Soe K, Nobe A, Yang E, Chwa M, Zhu F, Memarzadeh M, King J, Langberg J, Small K, Nesburn AB, Boyer DS, Udar N (2013a) Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration: a case control study. BMC Med Genet 14:4. doi: 10.1186/1471-2350-14-4. PubMed PMID: 23302509PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kenney MC, Chwa M, Atilano SR, Pavlis JM, Falatoonzadeh P, Ramirez C, Malik D, Hsu T, Woo G, Soe K, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N (2013b) Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration. PLoS One 8(1):e54339. doi: 10.1371/journal.pone.0054339. PubMed PMID: 23365660PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Caceres-Del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Vawter M, Michal Jazwinski S, Miceli M, Wallace DC, Udar N (2014) Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum Mol Genet 23(13):3537–3551. doi: 10.1093/hmg/ddu065. Epub 2014/03/04. PubMed PMID: 24584571  http://dx.doi.org/10.1093/hmg/ddu065 PubMedCrossRefGoogle Scholar
  83. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246(4929):500–503. PubMed PMID: 2814477PubMedCrossRefGoogle Scholar
  84. Klopstock T, Yu-Wai-Man P, Dimitriadis K, Rouleau J, Heck S, Bailie M, Atawan A, Chattopadhyay S, Schubert M, Garip A, Kernt M, Petraki D, Rummey C, Leinonen M, Metz G, Griffiths PG, Meier T, Chinnery PF (2011) A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 134(9):2677–2686. doi: 10.1093/brain/awr170. Epub 2011/07/27. PubMed PMID: 21788663PubMedPubMedCentralCrossRefGoogle Scholar
  85. Koilkonda RD, Guy J (2011) Leber’s hereditary optic neuropathy – gene therapy: from benchtop to bedside. J Ophthalmol 2011:179412. doi: 10.1155/2011/179412. Epub 2011/01/22. PubMed PMID: 21253496PubMedCrossRefGoogle Scholar
  86. Koilkonda RD, Hauswirth WW, Guy J (2009) Efficient expression of self-complementary AAV in ganglion cells of the ex vivo primate retina. Mol Vis 15:2796–2802. doi: 00000 – open online access at http://www.molvis.org/molvis/v15/a295/. Epub 2009/12/19. PubMed PMID: 20019878
  87. Koilkonda RD, Chou TH, Porciatti V, Hauswirth WW, Guy J (2010) Induction of rapid and highly efficient expression of the human ND4 complex I subunit in the mouse visual system by self-complementary adeno-associated virus. Arch Ophthalmol 128(7):876–883. doi: 10.1001/archophthalmol.2010.135. Epub 2010/07/14. PubMed PMID: 20625049PubMedPubMedCentralCrossRefGoogle Scholar
  88. Koopman WJ, Willems PH, Smeitink JA (2012) Monogenic mitochondrial disorders. N Engl J Med 366(12):1132–1141. doi: 10.1056/NEJMra1012478. Epub 2012/03/23. PubMed PMID: 22435372PubMedCrossRefGoogle Scholar
  89. Lam BL, Feuer WJ, Abukhalil F, Porciatti V, Hauswirth WW, Guy J (2010) Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Arch Ophthalmol 128(9):1129–1135. doi: 10.1001/archophthalmol.2010.201. Epub 2010/09/15. PubMed PMID: 20837795PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lee HS, Ma H, Juanes RC, Tachibana M, Sparman M, Woodward J, Ramsey C, Xu J, Kang EJ, Amato P, Mair G, Steinborn R, Mitalipov S (2012) Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. Cell Rep 1(5):506–515. doi: 10.1016/j.celrep.2012.03.011. Epub 2012/06/16. PubMed PMID: 22701816PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liang M, Guan M, Zhao F, Zhou X, Yuan M, Tong Y, Yang L, Wei QP, Sun YH, Lu F, Qu J, Guan MX (2009) Leber’s hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation. Biochem Biophys Res Commun 383(3):286–292. doi: 10.1016/j.bbrc.2009.03.097. Epub 2009/03/28. PubMed PMID: 19324017PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun A, Carelli V, Ross-Cisneros FN, Baciu P, Sung E, McManus MJ, Pan BX, Gil DW, MacGregor GR, Wallace DC (2012) A mouse mtDNA mutant model of Leber’s hereditary optic neuropathy. Proc Natl Acad Sci U S A 109(49):20065–20070. doi: 10.1073/pnas.1217113109. PubMed PMID: 23129651PubMedPubMedCentralCrossRefGoogle Scholar
  93. Lopez Sanchez MI, Crowston JG, Mackey DA, Trounce IA (2016) Emerging mitochondrial therapeutic targets in optic neuropathies. Pharmacol Ther 165:132–152. doi: 10.1016/j.pharmthera.2016.06.004. PubMed PMID: 27288727PubMedCrossRefGoogle Scholar
  94. MacGregor GR, Fan WW, Waymire KG, Wallace DC (2006) Generating animal models of human mitochondrial genetic disease using mouse ES cells. In: Notarianni E, Evans MJ (eds) Embryonic stem cells. Oxford University Press, New York, NY, pp 72–104Google Scholar
  95. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248. doi: 10.1056/NEJMoa0802315. Epub 2008/04/29. PubMed PMID: 18441370PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A, Marshall KA, Banfi S, Chung DC, Morgan JI, Hauck B, Zelenaia O, Zhu X, Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, McDonnell JW, Leroy BP, Simonelli F, Bennett J (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374(9701):1597–1605. doi: 10.1016/S0140-6736(09)61836-5. PubMed PMID: 19854499. Epub 2009/10/27PubMedPubMedCentralCrossRefGoogle Scholar
  97. Malfatti E, Bugiani M, Invernizzi F, de Souza CF, Farina L, Carrara F, Lamantea E, Antozzi C, Confalonieri P, Sanseverino MT, Giugliani R, Uziel G, Zeviani M (2007) Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy. Brain 130(Pt 7):1894–1904. PubMed PMID: 17535832PubMedCrossRefGoogle Scholar
  98. Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA (2002) Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 30(4):394–399. PubMed PMID: 11925565PubMedCrossRefGoogle Scholar
  99. Mansergh FC, Chadderton N, Kenna PF, Gobbo OL, Farrar GJ (2014) Cell therapy using retinal progenitor cells shows therapeutic effect in a chemically-induced rotenone mouse model of Leber hereditary optic neuropathy. Eur J Hum Genet 22(11):1314–1320. doi: 10.1038/ejhg.2014.26. PubMed PMID: 24569607; PMCID: PMC4200438PubMedPubMedCentralCrossRefGoogle Scholar
  100. Marella M, Seo BB, Nakamaru-Ogiso E, Greenamyre JT, Matsuno-Yagi A, Yagi T (2008) Protection by the NDI1 gene against neurodegeneration in a rotenone rat model of Parkinson’s disease. PLoS One 3(1):e1433. PubMed PMID: 18197244PubMedPubMedCentralCrossRefGoogle Scholar
  101. Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T (2010) Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS One 5(7):e11472. doi: 10.1371/journal.pone.0011472. Epub 2010/07/16. PubMed PMID: 20628600PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mashima Y, Kigasawa K, Wakakura M, Oguchi Y (2000) Do idebenone and vitamin therapy shorten the time to achieve visual recovery in Leber hereditary optic neuropathy? J Neuroophthalmol 20(3):166–170. Epub 2000/09/23. PubMed PMID: 11001192PubMedCrossRefGoogle Scholar
  103. Matthews L, Enzinger C, Fazekas F, Rovira A, Ciccarelli O, Dotti MT, Filippi M, Frederiksen JL, Giorgio A, Kuker W, Lukas C, Rocca MA, De Stefano N, Toosy A, Yousry T, Palace J, on behalf of the Magnims network (2015) MRI in Leber’s hereditary optic neuropathy: the relationship to multiple sclerosis. J Neurol Neurosurg Psychiatry 86(5):537–542. doi: 10.1136/jnnp-2014-308186. PubMed PMID: 25053773PubMedCrossRefGoogle Scholar
  104. Merriwether DA, Clark AG, Ballinger SW, Schurr TG, Soodyall H, Jenkins T, Sherry ST, Wallace DC (1991) The structure of human mitochondrial DNA variation. J Mol Evol 33(6):543–555. PubMed PMID: 1685753PubMedCrossRefGoogle Scholar
  105. Mishmar D, Ruiz-Pesini E, Mondragon-Palomino M, Procaccio V, Gaut B, Wallace DC (2006) Adaptive selection of mitochondrial complex I subunits during primate radiation. Gene 378:11–18. PubMed PMID: 16828987PubMedCrossRefGoogle Scholar
  106. MITOMAP (2017) A human mitochondrial genome database. http://www.mitomap.org
  107. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13. doi: 10.1042/BJ20081386. Epub 2008/12/09. PubMed PMID: 19061483PubMedCrossRefGoogle Scholar
  108. Nashine S, Chwa M, Kazemian M, Thaker K, Lu S, Nesburn A, Kuppermann BD, Kenney MC (2016) Differential expression of complement markers in normal and AMD transmitochondrial cybrids. PLoS One 11(8):e0159828. doi:  10.1371/journal.pone.0159828. PubMed PMID: 27486856; PMCID: PMC4972370
  109. Newman NJ, Biousse V, David R, Bhatti MT, Hamilton SR, Farris BK, Lesser RL, Newman SA, Turbin RE, Chen K, Keaney RP (2005) Prophylaxis for second eye involvement in leber hereditary optic neuropathy: an open-labeled, nonrandomized multicenter trial of topical brimonidine purite. Am J Ophthalmol 140(3):407–415. doi: 10.1016/j.ajo.2005.03.058. Epub 2005/08/09. PubMed PMID: 16083844PubMedGoogle Scholar
  110. Nicoletti A, Vasta R, Mostile G, Nicoletti G, Arabia G, Iliceto G, Lamberti P, Marconi R, Morgante L, Barone P, Quattrone A, Zappia M (2016) Gender effect on non-motor symptoms in Parkinson’s disease: are men more at risk? Parkinsonism Relat Disord. ePub ahead of print.  http://dx.doi.org/10.1016/j.parkreldis.2016.12.008 doi:  10.1016/j.parkreldis.2016.12.008. PubMed PMID: 28017549
  111. Oca-Cossio J, Kenyon L, Hao H, Moraes CT (2003) Limitations of allotopic expression of mitochondrial genes in mammalian cells. Genetics 165(2):707–720. PubMed PMID: 14573482PubMedPubMedCentralGoogle Scholar
  112. Ortiz RG, Newman NJ, Shoffner JM, Kaufman AE, Koontz DA, Wallace DC (1993) Variable retinal and neurologic manifestations in patients harboring the mitochondrial DNA 8993 mutation. Arch Ophthalmol 111(11):1525–1530. PubMed PMID: 8240109PubMedCrossRefGoogle Scholar
  113. Palace J (2009) Multiple sclerosis associated with Leber’s hereditary optic neuropathy. J Neurol Sci 286(1–2):24–27. doi: 10.1016/j.jns.2009.09.009. Epub 2009/10/06. PubMed PMID: 19800080PubMedCrossRefGoogle Scholar
  114. Park JS, Li YF, Bai Y (2007) Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber’s hereditary optic neuropathy mutation. Biochim Biophys Acta 1772(5):533–542. Epub 2007/02/27. PubMed PMID: 17320357. doi: S0925-4439(07)00029-4 [pii] 10.1016/j.bbadis.2007.01.009PubMedPubMedCentralCrossRefGoogle Scholar
  115. Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA, Prosser R, Hirano M, Sauer MV, Egli D (2013) Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 493(7434):632–637. doi: 10.1038/nature11800. Epub 2012/12/21. PubMed PMID: 23254936PubMedCrossRefGoogle Scholar
  116. Pedram A, Razandi M, Wallace DC, Levin ER (2006) Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell 17(5):2125–2137. PubMed PMID: 16495339PubMedPubMedCentralCrossRefGoogle Scholar
  117. Perales-Clemente E, Fernandez-Silva P, Acin-Perez R, Perez-Martos A, Enriquez JA (2011) Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task? Nucleic Acids Res 39(1):225–234. doi: 10.1093/nar/gkq769. Epub 2010/09/09. PubMed PMID: 20823090PubMedCrossRefGoogle Scholar
  118. Petruzzella V, Tessa A, Torraco A, Fattori F, Dotti MT, Bruno C, Cardaioli E, Papa S, Federico A, Santorelli FM (2007) The NDUFB11 gene is not a modifier in Leber hereditary optic neuropathy. Biochem Biophys Res Commun 355(1):181–187. PubMed PMID: 17292333PubMedCrossRefGoogle Scholar
  119. Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012) Treatment for mitochondrial disorders. Cochrane Database Syst Rev 4:CD004426. doi: 10.1002/14651858.CD004426.pub3. PubMed PMID: 22513923Google Scholar
  120. Pfeffer G, Burke A, Yu-Wai-Man P, Compston DA, Chinnery PF (2013) Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology 81(24):2073–2781. doi: 10.1212/01.wnl.0000437308.22603.43. PubMed PMID: 24198293; PMCID: PMC3863351PubMedPubMedCentralCrossRefGoogle Scholar
  121. Phasukkijwatana N, Kunhapan B, Stankovich J, Chuenkongkaew WL, Thomson R, Thornton T, Bahlo M, Mushiroda T, Nakamura Y, Mahasirimongkol S, Tun AW, Srisawat C, Limwongse C, Peerapittayamongkol C, Sura T, Suthammarak W, Lertrit P (2010) Genome-wide linkage scan and association study of PARL to the expression of LHON families in Thailand. Hum Genet 128(1):39–49. doi: 10.1007/s00439-010-0821-8. PubMed PMID: 20407791PubMedCrossRefGoogle Scholar
  122. Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, Golik P, O'Hearn S, Levy S, Potluri P, Lvova M, Davila A, Lin CS, Perin JC, Rappaport EF, Hakonarson H, Trounce IA, Procaccio V, Wallace DC (2014) Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc Natl Acad Sci U S A 111(38):E4033–E4E42. doi: 10.1073/pnas.1414028111. PubMed PMID: 25192935PubMedPubMedCentralCrossRefGoogle Scholar
  123. Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion 30:105–116. doi: 10.1016/j.mito.2016.07.003. PubMed PMID: 27423788; PMCID: PMC5023480PubMedPubMedCentralCrossRefGoogle Scholar
  124. Pisano A, Preziuso C, Iommarini L, Perli E, Grazioli P, Campese AF, Maresca A, Montopoli M, Masuelli L, Sadun AA, d’Amati G, Carelli V, Ghelli A, Giordano C (2015) Targeting estrogen receptor beta as preventive therapeutic strategy for Leber’s hereditary optic neuropathy. Hum Mol Genet 24(24):6921–6931. doi: 10.1093/hmg/ddv396. PubMed PMID: 26410888PubMedGoogle Scholar
  125. Pryde KR, Hirst J (2011) Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J Biol Chem 286(20):18056–18065. doi: 10.1074/jbc.M110.186841. Epub 2011/03/12. PubMed PMID: 21393237PubMedPubMedCentralCrossRefGoogle Scholar
  126. Puomila A, Hamalainen P, Kivioja S, Savontaus ML, Koivumaki S, Huoponen K, Nikoskelainen E (2007) Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet 15(10):1079–1089. PubMed PMID: 17406640PubMedCrossRefGoogle Scholar
  127. Qi X, Lewin AS, Hauswirth WW, Guy J (2003a) Suppression of complex I gene expression induces optic neuropathy. Ann Neurol 53(2):198–205. PubMed PMID: 12557286PubMedCrossRefGoogle Scholar
  128. Qi X, Lewin AS, Hauswirth WW, Guy J (2003b) Optic neuropathy induced by reductions in mitochondrial superoxide dismutase. Invest Ophthalmol Vis Sci 44(3):1088–1096. PubMed PMID: 12601034PubMedCrossRefGoogle Scholar
  129. Qi X, Sun L, Hauswirth WW, Lewin AS, Guy J (2007a) Use of mitochondrial antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation. Arch Ophthalmol 125(2):268–272. doi: 10.1001/archopht.125.2.268. Epub 2007/02/14. PubMed PMID: 17296905PubMedCrossRefGoogle Scholar
  130. Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J (2007b) The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Invest Ophthalmol Vis Sci 48(1):1–10. doi: 10.1167/iovs.06-0789. Epub 2007/01/02. PubMed PMID: 17197509PubMedCrossRefGoogle Scholar
  131. Qu J, Wang Y, Tong Y, Zhou X, Zhao F, Yang L, Zhang S, Zhang J, West CE, Guan MX (2010) Leber’s hereditary optic neuropathy affects only female matrilineal relatives in two Chinese families. Invest Ophthalmol Vis Sci 51(10):4906–4912. doi: 10.1167/iovs.09-5027. Epub 2010/05/04. PubMed PMID: 20435583PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ramos CVF, Bellusci C, Savini G, Carbonelli M, Berezovsky A, Tamaki C, Cinoto R, Sacai PY, Moraes-Filho MN, Miura HM, Valentino ML, Iommarini L, De Negri AM, Sadun F, Cortelli P, Montagna P, Salomao SR, Sadun AA, Carelli V, Barboni P (2009) Association of optic disc size with development and prognosis of Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 50(4):1666–1674. doi: 10.1167/iovs.08-2695. Epub 2008/12/23. PubMed PMID: 19098324PubMedCrossRefGoogle Scholar
  133. Reddy P, Ocampo A, Suzuki K, Luo J, Bacman SR, Williams SL, Sugawara A, Okamura D, Tsunekawa Y, Wu J, Lam D, Xiong X, Montserrat N, Esteban CR, Liu GH, Sancho-Martinez I, Manau D, Civico S, Cardellach F, Del Mar O'CM, Campistol J, Zhao H, Campistol JM, Moraes CT, Izpisua Belmonte JC (2015) Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161(3):459–469. doi: 10.1016/j.cell.2015.03.051. PubMed PMID: 25910206; PMCID: PMC4505837PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ruiz-Pesini E, Wallace DC (2006) Evidence for adaptive selection acting on the tRNA and rRNA genes of the human mitochondrial DNA. Hum Mutat 27(11):1072–1081. PubMed PMID: 16947981PubMedCrossRefGoogle Scholar
  135. Sadun AA, Carelli V, Salomao SR, Berezovsky A, Quiros PA, Sadun F, DeNegri AM, Andrade R, Moraes M, Passos A, Kjaer P, Pereira J, Valentino ML, Schein S, Belfort R (2003) Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol 136(2):231–238. Epub 2003/07/31. PubMed PMID: 12888043PubMedCrossRefGoogle Scholar
  136. Sadun AA, Salomao SR, Berezovsky A, Sadun F, Denegri AM, Quiros PA, Chicani F, Ventura D, Barboni P, Sherman J, Sutter E, Belfort R Jr, Carelli V (2006) Subclinical carriers and conversions in Leber hereditary optic neuropathy: a prospective psychophysical study. Trans Am Ophthalmol Soc 104:51–61. Epub 2007/05/02. PubMed PMID: 17471325PubMedPubMedCentralGoogle Scholar
  137. Sadun AA, La Morgia C, Carelli V (2011) Leber’s hereditary optic neuropathy. Curr Treat Options Neurol 13(1):109–117. doi: 10.1007/s11940-010-0100-y. Epub 2010/11/11. PubMed PMID: 21063922PubMedCrossRefGoogle Scholar
  138. Sadun AA, Chicani CF, Ross-Cisneros FN, Barboni P, Thoolen M, Shrader WD, Kubis K, Carelli V, Miller G (2012) Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol 69(3):331–338. doi: 10.1001/archneurol.2011.2972. PubMed PMID: 22410442PubMedCrossRefGoogle Scholar
  139. Sala G, Trombin F, Beretta S, Tremolizzo L, Presutto P, Montopoli M, Fantin M, Martinuzzi A, Carelli V, Ferrarese C (2008) Antioxidants partially restore glutamate transport defect in Leber hereditary optic neuropathy cybrids. J Neurosci Res 86(15):3331–3337. doi: 10.1002/jnr.21773. Epub 2008/07/11. PubMed PMID: 18615737PubMedCrossRefGoogle Scholar
  140. Salomao SR, Berezovsky A, Andrade RE, Belfort R Jr, Carelli V, Sadun AA (2004) Visual electrophysiologic findings in patients from an extensive Brazilian family with Leber’s hereditary optic neuropathy. Doc Ophthalmol 108(2):147–155. Epub 2004/10/01. PubMed PMID: 15455797PubMedCrossRefGoogle Scholar
  141. Santra S, Gilkerson RW, Davidson M, Schon EA (2004) Ketogenic treatment reduces deleted mitochondrial DNAs in cultured human cells. Ann Neurol 56(5):662–669. PubMed PMID: 15389892PubMedCrossRefGoogle Scholar
  142. Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM (2008) Prevalence of mitochondrial DNA disease in adults. Ann Neurol 63(1):35–39. doi: 10.1002/ana.21217. PubMed PMID: 17886296PubMedCrossRefGoogle Scholar
  143. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911. PubMed PMID: 15879174PubMedCrossRefGoogle Scholar
  144. Seo BB, Kitajima-Ihara T, Chan EK, Scheffler IE, Matsuno-Yagi A, Yagi T (1998) Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl Acad Sci U S A 95(16):9167–9171. PubMed PMID: 9689052PubMedPubMedCentralCrossRefGoogle Scholar
  145. Seo BB, Wang J, Flotte TR, Yagi T, Matsuno-Yagi A (2000) Use of the NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae as a possible cure for complex I defects in human cells. J Biol Chem 275(48):37774–37778. PubMed PMID: 10982813PubMedCrossRefGoogle Scholar
  146. Seo BB, Nakamaru-Ogiso E, Flotte TR, Yagi T, Matsuno-Yagi A (2002) A single-subunit NADH-quinone oxidoreductase renders resistance to mammalian nerve cells against complex I inhibition. Mol Ther 6(3):336–341. PubMed PMID: 12231169PubMedCrossRefGoogle Scholar
  147. Seo BB, Nakamaru-Ogiso E, Cruz P, Flotte TR, Yagi T, Matsuno-Yagi A (2004) Functional expression of the single subunit NADH dehydrogenase in mitochondria in vivo: a potential therapy for complex I deficiencies. Hum Gene Ther 15(9):887–895. PubMed PMID: 15353043PubMedCrossRefGoogle Scholar
  148. Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T (2006) In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. J Biol Chem 281(20):14250–14255. PubMed PMID: 16543240PubMedCrossRefGoogle Scholar
  149. Shankar SP, Fingert JH, Carelli V, Valentino ML, King TM, Daiger SP, Salomao SR, Berezovsky A, Belfort R Jr, Braun TA, Sheffield VC, Sadun AA, Stone EM (2008) Evidence for a novel X-linked modifier locus for Leber hereditary optic neuropathy. Ophthalmic Genet 29(1):17–24. PubMed PMID: 18363168PubMedCrossRefGoogle Scholar
  150. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus MJ, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor GR, Sassone-Corsi P, Wallace DC (2012) Heteroplasmy of mouse mtDNA Is genetically unstable and results in altered behavior and cognition. Cell 151(2):333–343. doi: 10.1016/j.cell.2012.09.004. PubMed PMID: 23063123PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shibata K, Shibagaki Y, Nagai C, Iwata M (1999) Visual evoked potentials and electroretinograms in an early stage of Leber’s hereditary optic neuropathy. J Neurol 246(9):847–849. doi: 10.1007/s004150050468. Epub 1999/10/20. PubMed PMID: 10525988PubMedCrossRefGoogle Scholar
  152. Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G, Oda H, Ohta S (2005) Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65(5):1655–1663. doi: 10.1158/0008-5472.CAN-04-2012. Epub 2005/03/09. PubMed PMID: 15753359PubMedCrossRefGoogle Scholar
  153. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61(6):931–937. PubMed PMID: 2112427PubMedCrossRefGoogle Scholar
  154. Silva JM, Wong A, Carelli V, Cortopassi GA (2009) Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol Dis 34(2):357–365. doi: 10.1016/j.nbd.2009.02.005. Epub 2009/02/24. PubMed PMID: 19233273PubMedCrossRefGoogle Scholar
  155. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, Rossi S, Marshall K, Banfi S, Surace EM, Sun J, Redmond TM, Zhu X, Shindler KS, Ying GS, Ziviello C, Acerra C, Wright JF, McDonnell JW, High KA, Bennett J, Auricchio A (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18(3):643–650. doi: 10.1038/mt.2009.277. Epub 2009/12/03. PubMed PMID: 19953081PubMedCrossRefGoogle Scholar
  156. Srivastava S, Moraes CT (2001) Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 10(26):3093–3099. Epub 2001/12/26. PubMed PMID: 11751691PubMedCrossRefGoogle Scholar
  157. Strauss KA, Dubiner L, Simon M, Zaragoza M, Sengupta PP, Li P, Narula N, Dreike S, Platt J, Procaccio V, Ortiz-Gonzalez XR, Puffenberger EG, Kelley RI, Morton DH, Narula J, Wallace DC (2013) Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proc Natl Acad Sci U S A 110(9):3253–3458. doi: 10.1073/pnas.1300690110. Epub 2013/02/13. PubMed PMID: 23401503CrossRefGoogle Scholar
  158. Sweeney MG, Davis MB, Lashwood A, Brockington M, Toscano A, Harding AE (1992) Evidence against an X-linked locus close to DXS7 determining visual loss susceptibility in British and Italian families with Leber hereditary optic neuropathy. Am J Hum Genet 51(4):741–748. Epub 1992/10/01. PubMed PMID: 1415219PubMedPubMedCentralGoogle Scholar
  159. Sylvestre J, Margeot A, Jacq C, Dujardin G, Corral-Debrinski M (2003a) The role of the 3′ untranslated region in mRNA sorting to the vicinity of mitochondria is conserved from yeast to human cells. Mol Biol Cell 14(9):3848–3856. doi: 10.1091/mbc.E03-02-0074. Epub 2003/09/16. PubMed PMID: 12972568Google Scholar
  160. Sylvestre J, Vialette S, Corral Debrinski M, Jacq C (2003b) Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biol 4(7):R44. doi: 10.1186/gb-2003-4-7-r44. Epub 2003/07/08. PubMed PMID: 12844360PubMedPubMedCentralCrossRefGoogle Scholar
  161. Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H, Gutierrez NM, Tippner-Hedges R, Kang E, Lee HS, Ramsey C, Masterson K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer R, Mitalipov S (2013) Towards germline gene therapy of inherited mitochondrial diseases. Nature 493(7434):627–631. doi: 10.1038/nature11647. Epub 2012/10/30. PubMed PMID: 23103867PubMedCrossRefGoogle Scholar
  162. Titov DV, Cracan V, Goodman RP, Peng J, Grabarek Z, Mootha VK (2016) Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352(6282):231–235. doi: 10.1126/science.aad4017. PubMed PMID: 27124460; PMCID: PMC4850741PubMedPubMedCentralCrossRefGoogle Scholar
  163. Torroni A, Petrozzi M, D'Urbano L, Sellitto D, Zeviani M, Carrara F, Carducci C, Leuzzi V, Carelli V, Barboni P, De Negri A, Scozzari R (1997) Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am J Hum Genet 60(5):1107–1121. PubMed PMID: 9150158PubMedPubMedCentralGoogle Scholar
  164. Towheed A, Markantone DM, Crain AT, Celotto AM, Palladino MJ (2014) Small mitochondrial-targeted RNAs modulate endogenous mitochondrial protein expression in vivo. Neurobiol Dis 69:15–22PubMedPubMedCentralCrossRefGoogle Scholar
  165. Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509. PubMed PMID: 8965721PubMedCrossRefGoogle Scholar
  166. Udar N, Atilano SR, Memarzadeh M, Boyer DS, Chwa M, Lu S, Maguen B, Langberg J, Coskun P, Wallace DC, Nesburn AB, Khatibi N, Hertzog D, Le K, Hwang D, Kenney MC (2009) Mitochondrial DNA haplogroups associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50(6):2966–2974. PubMed PMID: 19151382PubMedCrossRefGoogle Scholar
  167. Van Bergen NJ, Crowston JG, Craig JE, Burdon KP, Kearns LS, Sharma S, Hewitt AW, Mackey DA, Trounce IA (2015) Measurement of systemic mitochondrial function in advanced primary open-angle glaucoma and Leber hereditary optic neuropathy. PLoS One 10(10):e0140919. doi: 10.1371/journal.pone.0140919. PubMed PMID: 26496696; PMCID: PMC4619697PubMedPubMedCentralCrossRefGoogle Scholar
  168. Ventura DF, Gualtieri M, Oliveira AG, Costa MF, Quiros P, Sadun F, de Negri AM, Salomao SR, Berezovsky A, Sherman J, Sadun AA, Carelli V (2007) Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 48(5):2362–2370. PubMed PMID: 17460303PubMedCrossRefGoogle Scholar
  169. Vergani L, Martinuzzi A, Carelli V, Cortelli P, Montagna P, Schievano G, Carrozzo R, Angelini C, Lugaresi E (1995) MtDNA mutations associated with Leber’s hereditary optic neuropathy: studies on cytoplasmic hybrid (cybrid) cells. Biochem Biophys Res Commun 210(3):880–888. PubMed PMID: 7763260PubMedCrossRefGoogle Scholar
  170. Vilkki J, Ott J, Savontaus ML, Aula P, Nikoskelainen EK (1991) Optic atrophy in Leber hereditary optic neuroretinopathy is probably determined by an X-chromosomal gene closely linked to DXS7. Am J Hum Genet 48(3):486–491. PubMed PMID: 1998335PubMedPubMedCentralGoogle Scholar
  171. Wallace DC (1981) Assignment of the chloramphenicol resistance gene to mitochondrial deoxyribonucelic acid and analysis of its expression in cultured human cells. Mol Cell Biol 1(8):697–710. PubMed PMID: 9279383PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wallace DC (1982a) Cytoplasmic inheritance of chloramphenicol resistance in mammalian cells. Chapter 12. In: Shay JW (ed) Techniques in somatic cell genetics. Plenum Press, New York, pp 159–187Google Scholar
  173. Wallace DC (1982b) Structure and evolution of organelle genomes. Microbiol Rev 46(2):208–240. PubMed PMID: 6750346PubMedPubMedCentralGoogle Scholar
  174. Wallace DC (1987) Maternal genes: mitochondrial diseases. In: McKusick VA, Roderick TH, Mori J, Paul MW (eds) Medical and experimental mammalian genetics: a perspective. A.R. Liss, Inc., for the March of Dimes Foundation, New York, pp 137–190Google Scholar
  175. Wallace DC (2013a) Mitochondrial bioenergetic etiology of disease. J Clin Invest 123(4):1405–1412. doi: 10.1172/JCI61398. PubMed PMID: 23543062PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wallace DC (2013b) Bioenergetics in human evolution and disease:Implications for the origins of biological complexity and the missing genetic variation of common diseases. Philos Trans R Soc Lond B Biol Sci 368(1622):20120267. doi: 10.1098/rstb.2012.0267. PubMed PMID: 23754818PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wallace DC (2015) Mitochondrial DNA variation in human radiation and disease. Cell 163(1):33–38. doi: 10.1016/j.cell.2015.08.067. PubMed PMID: 26406369PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wallace DC (2016) Genetics: mitochondrial DNA in evolution and disease. Nature 535(7613):498–500. doi: 10.1038/nature18902. PubMed PMID: 27383787PubMedCrossRefGoogle Scholar
  179. Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10(1):12–31. doi: 10.1016/j.mito.2009.09.006. PubMed PMID: 19796712PubMedCrossRefGoogle Scholar
  180. Wallace DC, Bunn CL, Eisenstadt JM (1975) Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J Cell Biol 67(1):174–188. PubMed PMID: 1176530PubMedCrossRefGoogle Scholar
  181. Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nikoskelainen EK (1988a) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884):1427–1430. PubMed PMID: 3201231PubMedCrossRefGoogle Scholar
  182. Wallace DC, Zheng X, Lott MT, Shoffner JM, Hodge JA, Kelley RI, Epstein CM, Hopkins LC (1988b) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55(4):601–610. PubMed PMID: 3180221PubMedCrossRefGoogle Scholar
  183. Wallace DC, Lott MT, Procaccio V (2007) Mitochondrial genes in degenerative diseases, cancer and aging. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR (eds) Emery and Rimoin’s principles and practice of medical genetics, 5th edn. Churchill Livingstone Elsevier, Philadelphia, pp 194–298Google Scholar
  184. Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Path 5:297–348. doi: 10.1146/annurev.pathol.4.110807.092314. PubMed PMID: 20078222CrossRefGoogle Scholar
  185. Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC 3rd, Koehler CM, Teitell MA (2010) PNPASE regulates RNA import into mitochondria. Cell 142(3):456–467. doi: 10.1016/j.cell.2010.06.035. Epub 2010/08/10. PubMed PMID: 20691904PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wang G, Shimada E, Koehler CM, Teitell MA (2012a) PNPASE and RNA trafficking into mitochondria. Biochim Biophys Acta 1819(9–10):998–1007. doi: 10.1016/j.bbagrm.2011.10.001. Epub 2011/10/26. PubMed PMID: 22023881PubMedCrossRefGoogle Scholar
  187. Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA, Koehler CM (2012b) Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci U S A 109(13):4850–4855. doi: 10.1073/pnas.1116792109. Epub 2012/03/14. PubMed PMID: 22411789Google Scholar
  188. Wenz T, Diaz F, Spiegelman BM, Moraes CT (2008) Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 8(3):249–256. PubMed PMID: 18762025PubMedPubMedCentralCrossRefGoogle Scholar
  189. Wenz T, Diaz F, Spiegelman BM, Moraes CT (2016) Retraction notice to: activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 24(6):889. doi: 10.1016/j.cmet.2016.11.006. PubMed PMID: 27974182; PMCID: PMC5206892PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wong A, Cavelier L, Collins-Schramm HE, Seldin MF, McGrogan M, Savontaus ML, Cortopassi GA (2002) Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Hum Mol Genet 11(4):431–438. PubMed PMID: 11854175PubMedCrossRefGoogle Scholar
  191. Yamada M, Emmanuele V, Sanchez-Quintero MJ, Sun B, Lallos G, Paull D, Zimmer M, Pagett S, Prosser RW, Sauer MV, Hirano M, Egli D (2016) Genetic drift can compromise mitochondrial replacement by nuclear transfer in human oocytes. Cell Stem Cell 18(6):749–754. doi: 10.1016/j.stem.2016.04.001. PubMed PMID: 27212703PubMedCrossRefGoogle Scholar
  192. Yu H, Koilkonda RD, Chou TH, Porciatti V, Ozdemir SS, Chiodo V, Boye SL, Boye SE, Hauswirth WW, Lewin AS, Guy J (2012) Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci U S A 109(20):E1238–E1247. doi: 10.1073/pnas.1119577109. Epub 2012/04/24. PubMed PMID: 22523243PubMedPubMedCentralCrossRefGoogle Scholar
  193. Yu H, Koilkonda RD, Chou TH, Porciatti V, Mehta A, Hentall ID, Chiodo VA, Boye SL, Hauswirth WW, Lewin AS, Guy J (2015) Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice. Proc Natl Acad Sci U S A 112(42):E5689–E5E98. doi: 10.1073/pnas.1506129112. PubMed PMID: 26438859PubMedPubMedCentralCrossRefGoogle Scholar
  194. Yu-Wai-Man P (2015) Therapeutic approaches to inherited optic neuropathies. Semin Neurol 35(5):578–586. doi: 10.1055/s-0035-1563574. PubMed PMID: 26444403PubMedCrossRefGoogle Scholar
  195. Yu-Wai-Man P, Chinnery PF (1993) Leber hereditary optic neuropathy [updated 2016 Jun 23]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews®. Seattle, WAGoogle Scholar
  196. Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30(2):81–114. doi: 10.1016/j.preteyeres.2010.11.002. Epub 2010/11/30. PubMed PMID: 21112411PubMedPubMedCentralCrossRefGoogle Scholar
  197. Yu-Wai-Man P, Spyropoulos A, Duncan HJ, Guadagno JV, Chinnery PF (2016) A multiple sclerosis-like disorder in patients with OPA1 mutations. Ann Clin Transl Neurol 3(9):723–729. doi: 10.1002/acn3.323. PubMed PMID: 27656661; PMCID: PMC5018584PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zhang M, Zhou X, Li C, Zhao F, Zhang J, Yuan M, Sun YH, Wang J, Tong Y, Liang M, Yang L, Cai W, Wang L, Qu J, Guan MX (2010) Mitochondrial haplogroup M9a specific variant ND1 T3394C may have a modifying role in the phenotypic expression of the LHON-associated ND4 G11778A mutation. Mol Genet Metab 101(2–3):192–199. doi: 10.1016/j.ymgme.2010.07.014. Epub 2010/08/24. PubMed PMID: 20728388PubMedCrossRefGoogle Scholar
  199. Zullo SJ, Parks WT, Chloupkova M, Wei B, Weiner H, Fenton WA, Eisenstadt JM, Merril CR (2005) Stable transformation of CHO cells and human NARP cybrids confers oligomycin resistance (oli(r)) following transfer of a mitochondrial DNA-encoded oli(r) ATPase6 gene to the nuclear genome: a model system for mtDNA gene therapy. Rejuvenation Res 8(1):18–28. doi: 10.1089/rej.2005.8.18. Epub 2005/03/31. PubMed PMID: 15798371PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations