Mechanisms of Resistance to Targeted Therapies in Chronic Lymphocytic Leukemia

  • Francesca Arruga
  • Silvia Deaglio
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 249)


Even if treatment options for Chronic Lymphocytic Leukemia (CLL) patients have changed dramatically in the past few years, with the approval of targeted therapeutic agents, the disease remains incurable. Beside intrinsic genetic features characterizing the leukemic cell, signals coming from the microenvironment have a key role in promoting cell survival and in protecting CLL cells from the action of drugs. Consequently, the identification of previously unrecognized genetic lesions is important in risk-stratification of CLL patients and is progressively becoming a critical tool for choosing the best therapeutic strategy. Significant efforts have also been dedicated to define microenvironment-dependent mechanisms that sustain leukemic cells favoring survival, proliferation, and accumulation of additional genetic lesions. Furthermore, understanding the molecular and biological mechanisms, potentially driving disease progression and chemoresistance, is the first step to design therapies that could be effective in high-risk patients. Significant progress has been made in the identification of the different mechanisms through which patients relapse after “new” and “old” therapies. These studies have led to the development of targeted strategies to overcome, or even prevent, resistance through the design of novel agents or their combination.

In this chapter we will give an overview of the main therapeutic options for CLL patients and review the mechanisms of resistance responsible for treatment failure. Potential strategies to overcome or prevent resistance will be also discussed.


Chronic lymphocytic leukemia Resistance Target therapy 



Partly supported by the Italian Association for Cancer Research (IG17314), by the Ministry of Health (GR-2011-02346826 and RF-2011-02349712) and by Human Genetics Foundation institutional funds.


  1. Ahn IE, Underbayev C, Albitar A, Herman SE, Tian X, Maric I, Arthur DC, Wake L, Pittaluga S, Yuan CM et al (2017) Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood [Epub ahead of print]. doi: 10.1182/blood-2016-06-719294 PubMedPubMedCentralGoogle Scholar
  2. Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, Vaisitti T, Gizzi K, Vitale N, Garaffo G et al (2016) Mutations in NOTCH1 PEST-domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia [Epub ahead of print]. doi: 10.1038/leu.2016.383 PubMedGoogle Scholar
  3. Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M, Laurenti L, D’Arena G, Jaksic O, Inghirami G et al (2014) Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 28:1060–1070PubMedGoogle Scholar
  4. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, Coscia M, Maffei R, Rossi D, Wang T et al (2015) Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood 125:111–123PubMedGoogle Scholar
  5. Audrito V, Vaisitti T, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S (2013) Targeting the microenvironment in chronic lymphocytic leukemia offers novel therapeutic options. Cancer Lett 328:27–35PubMedGoogle Scholar
  6. Aydin S, Rossi D, Bergui L, D’Arena G, Ferrero E, Bonello L, Omede P, Novero D, Morabito F, Carbone A et al (2008) CD38 gene polymorphism and chronic lymphocytic leukemia: a role in transformation to Richter syndrome? Blood 111:5646–5653PubMedGoogle Scholar
  7. Bagnara D, Kaufman MS, Calissano C, Marsilio S, Patten PE, Simone R, Chum P, Yan XJ, Allen SL, Kolitz JE et al (2011) A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 117:5463–5472PubMedPubMedCentralGoogle Scholar
  8. Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N, Larrayoz M, Kminkova J, Agathangelidis A, Davis Z et al (2015) Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 29:329–336PubMedGoogle Scholar
  9. Barrientos JC (2016) Sequencing of chronic lymphocytic leukemia therapies. Hematology Am Soc Hematol Educ Program 2016:128–136PubMedPubMedCentralGoogle Scholar
  10. Baumann T, Delgado J, Santacruz R, Martinez-Trillos A, Royo C, Navarro A, Pinyol M, Rozman M, Pereira A, Villamor N et al (2014) Chronic lymphocytic leukemia in the elderly: clinico-biological features, outcomes, and proposal of a prognostic model. Haematologica 99:1599–1604PubMedPubMedCentralGoogle Scholar
  11. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, Vaugier G, Potron G, Colona P, Oberling F et al (1981) A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 48:198–206PubMedGoogle Scholar
  12. Brown JR (2016) The PI3K pathway: clinical inhibition in chronic lymphocytic leukemia. Semin Oncol 43:260–264PubMedGoogle Scholar
  13. Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, Jaksic O, Fedele G, Inghirami G, Gaidano G et al (2013) The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 98:953–963PubMedPubMedCentralGoogle Scholar
  14. Buhler A, Wendtner CM, Kipps TJ, Rassenti L, Fraser GA, Michallet AS, Hillmen P, Durig J, Gregory SA, Kalaycio M et al (2016) Lenalidomide treatment and prognostic markers in relapsed or refractory chronic lymphocytic leukemia: data from the prospective, multicenter phase-II CLL-009 trial. Blood Cancer J 6:e404PubMedPubMedCentralGoogle Scholar
  15. Burger JA (2010) Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. Semin Cancer Biol 20:424–430PubMedGoogle Scholar
  16. Burger JA, Chiorazzi N (2013) B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 34:592–601PubMedPubMedCentralGoogle Scholar
  17. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, Wang L, Stewart C, Fan J, Hoellenriegel J et al (2016) Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun 7:11589PubMedPubMedCentralGoogle Scholar
  18. Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ, Rosenwald A (2009) High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113:3050–3058PubMedPubMedCentralGoogle Scholar
  19. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, Bairey O, Hillmen P, Bartlett NL, Li J et al (2015) Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 373:2425–2437PubMedPubMedCentralGoogle Scholar
  20. Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA et al (2015) Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood 125:2497–2506PubMedPubMedCentralGoogle Scholar
  21. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG et al (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 369:32–42PubMedPubMedCentralGoogle Scholar
  22. Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, Chaves J, Wierda WG, Awan FT, Brown JR et al (2016) Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med 374:323–332PubMedGoogle Scholar
  23. Campregher PV, Hamerschlak N (2014) Novel prognostic gene mutations identified in chronic lymphocytic leukemia and their impact on clinical practice. Clin Lymphoma Myeloma Leuk 14:271–276PubMedGoogle Scholar
  24. Cassaday RD, Storer BE, Sorror ML, Sandmaier BM, Guthrie KA, Maloney DG, Rajendran JG, Pagel JM, Flowers ME, Green DJ et al (2015) Long-term outcomes of patients with persistent indolent B cell malignancies undergoing nonmyeloablative allogeneic transplantation. Biol Blood Marrow Transplant 21:281–287PubMedGoogle Scholar
  25. Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG (2013) Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 27:1059–1071PubMedPubMedCentralGoogle Scholar
  26. Cheng S, Guo A, Lu P, Ma J, Coleman M, Wang YL (2015) Functional characterization of BTK(C481S) mutation that confers ibrutinib resistance: exploration of alternative kinase inhibitors. Leukemia 29:895–900PubMedGoogle Scholar
  27. Cheson BD, Byrd JC, Rai KR, Kay NE, O’Brien SM, Flinn IW, Wiestner A, Kipps TJ (2012) Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol 30:2820–2822PubMedPubMedCentralGoogle Scholar
  28. Choi MY, Kashyap MK, Kumar D (2016) The chronic lymphocytic leukemia microenvironment: beyond the B-cell receptor. Best Pract Res Clin Haematol 29:40–53PubMedGoogle Scholar
  29. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF (1989) Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 71:343–350PubMedGoogle Scholar
  30. Cooperative Group for the Study of Immunoglobulin in Chronic Lymphocytic Leukemia (1988) Intravenous immunoglobulin for the prevention of infection in chronic lymphocytic leukemia. A randomized, controlled clinical trial. N Engl J Med 319:902Google Scholar
  31. Cramer P, Hallek M (2011) Prognostic factors in chronic lymphocytic leukemia-what do we need to know? Nat Rev Clin Oncol 8:38–47PubMedGoogle Scholar
  32. Cui B, Ghia EM, Chen L, Rassenti LZ, DeBoever C, Widhopf GF 2nd, Yu J, Neuberg DS, Wierda WG, Rai KR et al (2016) High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood 128:2931–2940PubMedPubMedCentralGoogle Scholar
  33. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J et al (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847PubMedGoogle Scholar
  34. Dighiero G, Hamblin TJ (2008) Chronic lymphocytic leukaemia. Lancet 371:1017–1029PubMedGoogle Scholar
  35. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910–1916PubMedGoogle Scholar
  36. Dreger P, Schnaiter A, Zenz T, Bottcher S, Rossi M, Paschka P, Buhler A, Dietrich S, Busch R, Ritgen M et al (2013) TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood 121:3284–3288PubMedGoogle Scholar
  37. Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, Lange E, Koppler H, Kiehl M, Sokler M et al (2016) First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 17:928–942PubMedGoogle Scholar
  38. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S et al (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 208:1389–1401PubMedPubMedCentralGoogle Scholar
  39. Fama R, Bomben R, Rasi S, Dal Bo M, Ciardullo C, Monti S, Rossi F, D’Agaro T, Zucchetto A, Gattei V et al (2014) Ibrutinib-naive chronic lymphocytic leukemia lacks Bruton tyrosine kinase mutations associated with treatment resistance. Blood 124:3831–3833PubMedGoogle Scholar
  40. Filip AA, Cisel B, Koczkodaj D, Wasik-Szczepanek E, Piersiak T, Dmoszynska A (2013) Circulating microenvironment of CLL: are nurse-like cells related to tumor-associated macrophages? Blood Cells Mol Dis 50:263–270PubMedGoogle Scholar
  41. Filip AA, Cisel B, Wasik-Szczepanek E (2015) Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes. Clin Exp Med 15:73–83PubMedGoogle Scholar
  42. Fischer K, Cramer P, Busch R, Bottcher S, Bahlo J, Schubert J, Pfluger KH, Schott S, Goede V, Isfort S et al (2012) Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol 30:3209–3216PubMedGoogle Scholar
  43. Foon KA, Boyiadzis M, Land SR, Marks S, Raptis A, Pietragallo L, Meisner D, Laman A, Sulecki M, Butchko A et al (2009) Chemoimmunotherapy with low-dose fludarabine and cyclophosphamide and high dose rituximab in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol 27:498–503PubMedGoogle Scholar
  44. Foon KA, Mehta D, Lentzsch S, Kropf P, Marks S, Lenzner D, Pietragallo L, Sulecki M, Tarhini A, Boyiadzis M (2012) Long-term results of chemoimmunotherapy with low-dose fludarabine, cyclophosphamide and high-dose rituximab as initial treatment for patients with chronic lymphocytic leukemia. Blood 119:3184–3185PubMedGoogle Scholar
  45. Fresquet V, Rieger M, Carolis C, Garcia-Barchino MJ, Martinez-Climent JA (2014) Acquired mutations in BCL2 family proteins conferring resistance to the BH3 mimetic ABT-199 in lymphoma. Blood 123:4111–4119PubMedGoogle Scholar
  46. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, Widhopf GF 2nd, Rassenti LZ, Cantwell MJ, Prussak CE et al (2008) Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci U S A 105:3047–3052PubMedPubMedCentralGoogle Scholar
  47. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz AD, Kipps TJ, Flinn I et al (2014) Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 370:997–1007PubMedPubMedCentralGoogle Scholar
  48. Furney SJ, Pedersen M, Gentien D, Dumont AG, Rapinat A, Desjardins L, Turajlic S, Piperno-Neumann S, de la Grange P, Roman-Roman S et al (2013) SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov 3:1122–1129PubMedPubMedCentralGoogle Scholar
  49. Geisler CH, van T’Veer MB, Jurlander J, Walewski J, Tjonnfjord G, Itala Remes M, Kimby E, Kozak T, Polliack A, Wu KL et al (2014) Frontline low-dose alemtuzumab with fludarabine and cyclophosphamide prolongs progression-free survival in high-risk CLL. Blood 123:3255–3262PubMedGoogle Scholar
  50. Ghia P, Guida G, Stella S, Gottardi D, Geuna M, Strola G, Scielzo C, Caligaris-Cappio F (2003) The pattern of CD38 expression defines a distinct subset of chronic lymphocytic leukemia (CLL) patients at risk of disease progression. Blood 101:1262–1269PubMedGoogle Scholar
  51. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T et al (2014) Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 370:1101–1110PubMedGoogle Scholar
  52. Goede V, Fischer K, Engelke A, Schlag R, Lepretre S, Montero LF, Montillo M, Fegan C, Asikanius E, Humphrey K et al (2015) Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia 29:1602–1604PubMedGoogle Scholar
  53. Granziero L, Circosta P, Scielzo C, Frisaldi E, Stella S, Geuna M, Giordano S, Ghia P, Caligaris-Cappio F (2003) CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood 101:1962–1969PubMedGoogle Scholar
  54. Gribben JG, O’Brien S (2011) Update on therapy of chronic lymphocytic leukemia. J Clin Oncol 29:544–550PubMedPubMedCentralGoogle Scholar
  55. Gricks CS, Zahrieh D, Zauls AJ, Gorgun G, Drandi D, Mauerer K, Neuberg D, Gribben JG (2004) Differential regulation of gene expression following CD40 activation of leukemic compared to healthy B cells. Blood 104:4002–4009PubMedGoogle Scholar
  56. Hallek M (2015) Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol 90:446–460PubMedGoogle Scholar
  57. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, Kipps TJ (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111:5446–5456PubMedPubMedCentralGoogle Scholar
  58. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, von Grunhagen U et al (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376:1164–1174PubMedGoogle Scholar
  59. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674Google Scholar
  60. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ et al (2010) Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 116:2078–2088PubMedPubMedCentralGoogle Scholar
  61. Herman SE, Montraveta A, Niemann CU, Mora-Jensen H, Gulrajani M, Krantz F, Mantel R, Smith LL, McClanahan F, Harrington B et al (2016) The Bruton’s tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin Cancer Res [Epub ahead of print]Google Scholar
  62. Herndon TM, Chen SS, Saba NS, Valdez J, Emson C, Gatmaitan M, Tian X, Hughes TE, Sun C, Arthur DC et al (2017) Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia [Epub ahead of print]. doi: 10.1038/leu.2017.11 PubMedPubMedCentralGoogle Scholar
  63. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ, Giese N, O’Brien S, Yu A, Miller LL et al (2011) The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118:3603–3612PubMedPubMedCentralGoogle Scholar
  64. Huw LY, O’Brien C, Pandita A, Mohan S, Spoerke JM, Lu S, Wang Y, Hampton GM, Wilson TR, Lackner MR (2013) Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Oncogenesis 2:e83PubMedPubMedCentralGoogle Scholar
  65. International CLL-IPI Working Group (2016) An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol 17:779–790Google Scholar
  66. Iyengar S, Clear A, Bodor C, Maharaj L, Lee A, Calaminici M, Matthews J, Iqbal S, Auer R, Gribben J, Joel S (2013) P110alpha-mediated constitutive PI3K signaling limits the efficacy of p110delta-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Blood 121:2274–2284PubMedPubMedCentralGoogle Scholar
  67. Jitschin R, Braun M, Qorraj M, Saul D, Le Blanc K, Zenz T, Mougiakakos D (2015) Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood 125:3432–3436PubMedGoogle Scholar
  68. Kalos M (2016) Chimeric antigen receptor-engineered T cells in CLL: the next chapter unfolds. J Immunother Cancer 4:5PubMedPubMedCentralGoogle Scholar
  69. Kaufman M, Limaye SA, Driscoll N, Johnson C, Caramanica A, Lebowicz Y, Patel D, Kohn N, Rai K (2009) A combination of rituximab, cyclophosphamide and dexamethasone effectively treats immune cytopenias of chronic lymphocytic leukemia. Leuk Lymphoma 50:892–899PubMedGoogle Scholar
  70. Kay NE, O’Brien SM, Pettitt AR, Stilgenbauer S (2007) The role of prognostic factors in assessing “high-risk” subgroups of patients with chronic lymphocytic leukemia. Leukemia 21:1885–1891PubMedGoogle Scholar
  71. Keating MJ (1999) Chronic lymphocytic leukemia. Semin Oncol 26:107–114PubMedGoogle Scholar
  72. Komarova NL, Burger JA, Wodarz D (2014) Evolution of ibrutinib resistance in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci U S A 111:13906–13911PubMedPubMedCentralGoogle Scholar
  73. Lampson BL, Kasar SN, Matos TR, Morgan EA, Rassenti L, Davids MS, Fisher DC, Freedman AS, Jacobson CA, Armand P et al (2016) Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood 128:195–203PubMedPubMedCentralGoogle Scholar
  74. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, Kluth S, Bozic I, Lawrence M, Bottcher S et al (2015) Mutations driving CLL and their evolution in progression and relapse. Nature 526:525–530PubMedPubMedCentralGoogle Scholar
  75. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M et al (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117:591–594PubMedPubMedCentralGoogle Scholar
  76. Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE (2005) VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 19:513–523PubMedGoogle Scholar
  77. Leu JI, Dumont P, Hafey M, Murphy ME, George DL (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 6:443–450PubMedGoogle Scholar
  78. Liang L, Zhao M, Zhu YC, Hu X, Yang LP, Liu H (2016) Efficacy of lenalidomide in relapsed/refractory chronic lymphocytic leukemia patient: a systematic review and meta-analysis. Ann Hematol 95:1473–1482PubMedGoogle Scholar
  79. Liu TM, Woyach JA, Zhong Y, Lozanski A, Lozanski G, Dong S, Strattan E, Lehman A, Zhang X, Jones JA et al (2015) Hypermorphic mutation of phospholipase C, gamma2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood 126:61–68PubMedPubMedCentralGoogle Scholar
  80. Lundin J, Kimby E, Bjorkholm M, Broliden PA, Celsing F, Hjalmar V, Mollgard L, Rebello P, Hale G, Waldmann H et al (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100:768–773PubMedGoogle Scholar
  81. Lutzny G, Kocher T, Schmidt-Supprian M, Rudelius M, Klein-Hitpass L, Finch AJ, Durig J, Wagner M, Haferlach C, Kohlmann A et al (2013) Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo. Cancer Cell 23:77–92PubMedPubMedCentralGoogle Scholar
  82. Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L, Lozanski A, Davis M, Gordon A, Smith LL et al (2015) Etiology of Ibrutinib Therapy Discontinuation and Outcomes in Patients With Chronic Lymphocytic Leukemia. JAMA Oncol 1:80–87PubMedPubMedCentralGoogle Scholar
  83. Malcikova J, Pavlova S, Kozubik KS, Pospisilova S (2014) TP53 mutation analysis in clinical practice: lessons from chronic lymphocytic leukemia. Hum Mutat 35:663–671PubMedGoogle Scholar
  84. Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vranova V, Cejkova S, Svitakova M, Skuhrova Francova H, Brychtova Y et al (2009) Monoallelic and biallelic inactivation of TP53 gene in chronic lymphocytic leukemia: selection, impact on survival, and response to DNA damage. Blood 114:5307–5314PubMedGoogle Scholar
  85. Mauro FR, Foa R, Cerretti R, Giannarelli D, Coluzzi S, Mandelli F, Girelli G (2000) Autoimmune hemolytic anemia in chronic lymphocytic leukemia: clinical, therapeutic, and prognostic features. Blood 95:2786–2792PubMedGoogle Scholar
  86. Messina M, Del Giudice I, Khiabanian H, Rossi D, Chiaretti S, Rasi S, Spina V, Holmes AB, Marinelli M, Fabbri G et al (2014) Genetic lesions associated with chronic lymphocytic leukemia chemo-refractoriness. Blood 123:2378–2388PubMedPubMedCentralGoogle Scholar
  87. Mohr J, Helfrich H, Fuge M, Eldering E, Buhler A, Winkler D, Volden M, Kater AP, Mertens D, Te Raa D et al (2011) DNA damage-induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. Blood 117:1622–1632PubMedGoogle Scholar
  88. Muellner MK, Uras IZ, Gapp BV, Kerzendorfer C, Smida M, Lechtermann H, Craig-Mueller N, Colinge J, Duernberger G, Nijman SM (2011) A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 7:787–793PubMedPubMedCentralGoogle Scholar
  89. Muzio M, Scielzo C, Bertilaccio MT, Frenquelli M, Ghia P, Caligaris-Cappio F (2009) Expression and function of toll like receptors in chronic lymphocytic leukaemia cells. Br J Haematol 144:507–516PubMedGoogle Scholar
  90. O’Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, Grant B, Richards DA, Coleman M, Wierda WG et al (2014) Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol 15:48–58PubMedGoogle Scholar
  91. O’Brien S, Jones JA, Coutre SE, Mato AR, Hillmen P, Tam C, Osterborg A, Siddiqi T, Thirman MJ, Furman RR et al (2016) Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol 17:1409–1418PubMedGoogle Scholar
  92. Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3:317–330PubMedGoogle Scholar
  93. Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, Kim YJ, Adam J, Lichter P, Solary E et al (2015) Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood 126:1106–1117PubMedPubMedCentralGoogle Scholar
  94. Pepper C, Hewamana S, Brennan P, Fegan C (2009) NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 5:1027–1037PubMedGoogle Scholar
  95. Pflug N, Bahlo J, Shanafelt TD, Eichhorst BF, Bergmann MA, Elter T, Bauer K, Malchau G, Rabe KG, Stilgenbauer S et al (2014) Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 124:49–62PubMedPubMedCentralGoogle Scholar
  96. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733PubMedPubMedCentralGoogle Scholar
  97. Pospisilova S, Gonzalez D, Malcikova J, Trbusek M, Rossi D, Kater AP, Cymbalista F, Eichhorst B, Hallek M, Dohner H et al (2012) ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 26:1458–1461PubMedGoogle Scholar
  98. Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E, Gizdic B, Rossi FM, Bomben R, Zucchetto A et al (2016) NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 30:182–189PubMedGoogle Scholar
  99. Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI, Munar M, Rubio-Perez C, Jares P, Aymerich M et al (2015) Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526:519–524PubMedGoogle Scholar
  100. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M et al (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475:101–105PubMedPubMedCentralGoogle Scholar
  101. Purroy N, Abrisqueta P, Carabia J, Carpio C, Palacio C, Bosch F, Crespo M (2015) Co-culture of primary CLL cells with bone marrow mesenchymal cells, CD40 ligand and CpG ODN promotes proliferation of chemoresistant CLL cells phenotypically comparable to those proliferating in vivo. Oncotarget 6:7632–7643PubMedGoogle Scholar
  102. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, Ramsay AJ, Bea S, Pinyol M, Martinez-Trillos A et al (2011) Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 44:47–52PubMedGoogle Scholar
  103. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS (1975) Clinical staging of chronic lymphocytic leukemia. Blood 46:219–234PubMedGoogle Scholar
  104. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, Byrd JC, Gribben JG (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437PubMedPubMedCentralGoogle Scholar
  105. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC et al (2004) ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351:893–901PubMedGoogle Scholar
  106. Riches JC, Gribben JG (2016) Mechanistic and clinical aspects of lenalidomide treatment for chronic lymphocytic leukemia. Curr Cancer Drug Targets 16:689–700PubMedGoogle Scholar
  107. Robak T, Dmoszynska A, Solal-Celigny P, Warzocha K, Loscertales J, Catalano J, Afanasiev BV, Larratt L, Geisler CH, Montillo M et al (2010) Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol 28:1756–1765PubMedGoogle Scholar
  108. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, Kipps TJ, Anderson MA, Brown JR, Gressick L et al (2016) Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 374:311–322PubMedGoogle Scholar
  109. Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, Bartoli A, Coaccioli S, Screpanti I, Marconi P (2009) Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113:856–865PubMedGoogle Scholar
  110. Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R (2013) Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 54:2351–2364PubMedGoogle Scholar
  111. Rossi D (2016) Venetoclax: a new weapon to treat high-risk CLL. Lancet Oncol 17:690–691PubMedGoogle Scholar
  112. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M, Fangazio M, Vaisitti T, Monti S, Chiaretti S et al (2011) Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 118:6904–6908PubMedPubMedCentralGoogle Scholar
  113. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S, Chiaretti S, Del Giudice I, Fabbri G, Bruscaggin A et al (2012) Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 119:2854–2862PubMedGoogle Scholar
  114. Rossi D, Gaidano G (2016) Richter syndrome: pathogenesis and management. Semin Oncol 43:311–319PubMedGoogle Scholar
  115. Schattner EJ (2000) CD40 ligand in CLL pathogenesis and therapy. Leuk Lymphoma 37:461–472PubMedGoogle Scholar
  116. Schott AF, Apel IJ, Nunez G, Clarke MF (1995) Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11:1389–1394PubMedGoogle Scholar
  117. Secchiero P, Melloni E, di Iasio MG, Tiribelli M, Rimondi E, Corallini F, Gattei V, Zauli G (2009) Nutlin-3 up-regulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feedback antiapoptotic mechanism. Blood 113:4300–4308PubMedGoogle Scholar
  118. Serra S, Horenstein AL, Vaisitti T, Brusa D, Rossi D, Laurenti L, D’Arena G, Coscia M, Tripodo C, Inghirami G et al (2011) CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118:6141–6152PubMedPubMedCentralGoogle Scholar
  119. Serra S, Vaisitti T, Audrito V, Bologna C, Buonincontri R, Chen SS, Arruga F, Brusa D, Coscia M, Jaksic O et al (2016) Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv 1:15Google Scholar
  120. Sharma S, Galanina N, Guo A, Lee J, Kadri S, Van Slambrouck C, Long B, Wang W, Ming M, Furtado LV et al (2016) Identification of a structurally novel BTK mutation that drives ibrutinib resistance in CLL. Oncotarget 7:68833–68841PubMedPubMedCentralGoogle Scholar
  121. Soma LA, Craig FE, Swerdlow SH (2006) The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol 37:152–159PubMedGoogle Scholar
  122. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, Kutok JL, Kearney JF, Otipoby KL, Rajewsky K (2009) PI3 kinase signals BCR-dependent mature B cell survival. Cell 139:573–586PubMedPubMedCentralGoogle Scholar
  123. Stilgenbauer S, Dohner H (2002) Campath-1H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N Engl J Med 347:452–453PubMedGoogle Scholar
  124. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T, Puvvada SD, Wendtner CM, Roberts AW, Jurczak W et al (2016) Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 17:768–778PubMedGoogle Scholar
  125. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K, Buhler A, Bottcher S, Ritgen M, Kneba M et al (2014) Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 123:3247–3254PubMedGoogle Scholar
  126. Te Raa GD, Kater AP (2016) TP53 dysfunction in CLL: implications for prognosis and treatment. Best Pract Res Clin Haematol 29:90–99PubMedGoogle Scholar
  127. Tsimberidou AM, Keating MJ (2005) Richter syndrome: biology, incidence, and therapeutic strategies. Cancer 103:216–228PubMedGoogle Scholar
  128. Villamor N, Conde L, Martinez-Trillos A, Cazorla M, Navarro A, Bea S, Lopez C, Colomer D, Pinyol M, Aymerich M et al (2013) NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 27:1100–1106PubMedGoogle Scholar
  129. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ, Cohen GM (2009) Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 113:4403–4413PubMedGoogle Scholar
  130. Walter HS, Rule SA, Dyer MJ, Karlin L, Jones C, Cazin B, Quittet P, Shah N, Hutchinson CV, Honda H et al (2016) A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 127:411–419PubMedPubMedCentralGoogle Scholar
  131. Wan Y, Wu CJ (2013) SF3B1 mutations in chronic lymphocytic leukemia. Blood 121:4627–4634PubMedPubMedCentralGoogle Scholar
  132. Wang L, Brooks AN, Fan J, Wan Y, Gambe R, Li S, Hergert S, Yin S, Freeman SS, Levin JZ et al (2016) Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30:750–763PubMedPubMedCentralGoogle Scholar
  133. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L et al (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365:2497–2506PubMedPubMedCentralGoogle Scholar
  134. Wendtner CM, Hallek M, Fraser GA, Michallet AS, Hillmen P, Durig J, Kalaycio M, Gribben JG, Stilgenbauer S, Buhler A et al (2016) Safety and efficacy of different lenalidomide starting doses in patients with relapsed or refractory chronic lymphocytic leukemia: results of an international multicenter double-blinded randomized phase II trial. Leuk Lymphoma 57:1291–1299PubMedGoogle Scholar
  135. Wiestner A (2012) Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 120:4684–4691PubMedPubMedCentralGoogle Scholar
  136. Woyach JA (2015) Patterns of resistance to B cell-receptor pathway antagonists in chronic lymphocytic leukemia and strategies for management. Hematology Am Soc Hematol Educ Program 2015:355–360PubMedGoogle Scholar
  137. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, Xue L, Li DH, Steggerda SM, Versele M et al (2014a) Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med 370:2286–2294PubMedPubMedCentralGoogle Scholar
  138. Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong Y, Ruppert AS, Lucas D, Williams K, Zhao W, Rassenti L et al (2014b) Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood 123:1810–1817PubMedPubMedCentralGoogle Scholar
  139. Woyach JA, Johnson AJ (2015) Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood 126:471–477PubMedPubMedCentralGoogle Scholar
  140. Wu J, Liu C, Tsui ST, Liu D (2016) Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol 9:80PubMedPubMedCentralGoogle Scholar
  141. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59PubMedGoogle Scholar
  142. Young A, Ngiow SF, Barkauskas DS, Sult E, Hay C, Blake SJ, Huang Q, Liu J, Takeda K, Teng MW et al (2016) Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30:391–403PubMedGoogle Scholar
  143. Zenz T, Benner A, Dohner H, Stilgenbauer S (2008a) Chronic lymphocytic leukemia and treatment resistance in cancer: the role of the p53 pathway. Cell Cycle 7:3810–3814PubMedGoogle Scholar
  144. Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A, Denzel T, Winkler D, Edelmann J, Schwanen C et al (2008b) Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 112:3322–3329PubMedGoogle Scholar
  145. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D, Buhler A, Edelmann J, Bergmann M, Hopfinger G et al (2010) TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 28:4473–4479PubMedGoogle Scholar
  146. Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, Winkler D, Durig J, van Oers MH, Mertens D et al (2009) miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113:3801–3808PubMedGoogle Scholar
  147. Zhang S, Wu CC, Fecteau JF, Cui B, Chen L, Zhang L, Wu R, Rassenti L, Lao F, Weigand S, Kipps TJ (2013) Targeting chronic lymphocytic leukemia cells with a humanized monoclonal antibody specific for CD44. Proc Natl Acad Sci U S A 110:6127–6132PubMedPubMedCentralGoogle Scholar
  148. Zhou Q, Lee GS, Brady J, Datta S, Katan M, Sheikh A, Martins MS, Bunney TD, Santich BH, Moir S et al (2012) A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 91:713–720PubMedPubMedCentralGoogle Scholar
  149. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1:a001883PubMedPubMedCentralGoogle Scholar
  150. Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal Bo M, Marconi D, Bossi F, Lorenzon D, Degan M, Rossi FM et al (2009) CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 69:4001–4009PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Human Genetics FoundationTurinItaly
  2. 2.Department of Medical SciencesUniversity of TurinTurinItaly

Personalised recommendations