Equipping Physiologists with an Informatics Tool Chest: Toward an Integerated Mitochondrial Phenome

Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 240)

Abstract

Understanding the complex involvement of mitochondrial biology in disease development often requires the acquisition, analysis, and integration of large-scale molecular and phenotypic data. An increasing number of bioinformatics tools are currently employed to aid in mitochondrial investigations, most notably in predicting or corroborating the spatial and temporal dynamics of mitochondrial molecules, in retrieving structural data of mitochondrial components, and in aggregating as well as transforming mitochondrial centric biomedical knowledge. With the increasing prevalence of complex Big Data from omics experiments and clinical cohorts, informatics tools have become indispensable in our quest to understand mitochondrial physiology and pathology. Here we present an overview of the various informatics resources that are helping researchers explore this vital organelle and gain insights into its form, function, and dynamics.

Keywords

Computation Data science FAIR data Metadata Omics Open access Visualization 

Notes

Acknowledgements

This work was supported by the NIH Big Data to Knowledge (BD2K) Center of Excellence Award (U54GM114883).

References

  1. Almeida JS (2010) Computational ecosystems for data-driven medical genomics. Genome Med 2(9):67CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altmann R (1894) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Verlag von Veit & Comp, LeipzigGoogle Scholar
  3. Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465CrossRefPubMedGoogle Scholar
  4. Andrews RM et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23(2):147CrossRefPubMedGoogle Scholar
  5. Attimonelli M et al (2005) HmtDB, a human mitochondrial genomic resource based on variability studies supporting population genetics and biomedical research. BMC Bioinformatics 6(Suppl 4):S4CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bai X et al (2007) Third-generation human mitochondria-focused cDNA microarray and its bioinformatic tools for analysis of gene expression. Biotechniques 42(3):365–375CrossRefPubMedGoogle Scholar
  7. Bensley RR, Hoerr NL (1934) Studies on cell structure by the freezing-drying method VI. The preparation and properties of mitochondria. Anat Rec 60(4):449–455CrossRefGoogle Scholar
  8. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242 Oxford University PressCrossRefPubMedPubMedCentralGoogle Scholar
  9. Cacabelos D et al (2016) Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS. Acta Neuropathol Commun 4:3CrossRefPubMedPubMedCentralGoogle Scholar
  10. Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44(D1):D1251–D1257CrossRefPubMedGoogle Scholar
  11. Cambiaghi A, Ferrario M, Masseroli M (2016) Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief Bioinform. doi:10.1093/bib/bbw031 (Epub ahead of print)Google Scholar
  12. Castellana S, Ronai J, Mazza T (2015) MitImpact: an exhaustive collection of pre-computed pathogenicity predictions of human mitochondrial non-synonymous variants. Hum Mutat 36(2):E2413–E2422CrossRefPubMedGoogle Scholar
  13. Claude A (1946a) Fractionation of mammalian liver cells by differential centrifugation: II. Experimental procedures and results. J Exp Med 84(1):61–89CrossRefPubMedCentralGoogle Scholar
  14. Claude A (1946b) Fractionation of mammalian liver cells by differential centrifugation: I. Problems, methods, and preparation of extract. J Exp Med 84(1):51–59CrossRefPubMedCentralGoogle Scholar
  15. Claude A, Fullam EF (1945) An electron microscope study of isolated mitochondria: method and preliminary results. J Exp Med 81(1):51–62CrossRefPubMedPubMedCentralGoogle Scholar
  16. Daems WT, Wisse E (1966) Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. J Ultrastruct Res 16(1):123–140CrossRefPubMedGoogle Scholar
  17. Damas J et al (2014) MitoBreak: the mitochondrial DNA breakpoints database. Nucleic Acids Res 42(Database issue):D1261–D1268CrossRefPubMedGoogle Scholar
  18. de Graaf D (2013) Multi-omic biomarkers unlock the potential of diagnostic testing. MLO Med Lab Obs 45(8):40, 42PubMedGoogle Scholar
  19. DeCicco D et al (2015) MicroRNA network changes in the brain stem underlie the development of hypertension. Physiol Genomics 47(9):388–399CrossRefPubMedPubMedCentralGoogle Scholar
  20. DePristo MA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CrossRefPubMedPubMedCentralGoogle Scholar
  21. Emanuelsson O et al (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016CrossRefPubMedGoogle Scholar
  22. Emanuelsson O et al (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971CrossRefPubMedGoogle Scholar
  23. Falk MJ et al (2012) Mitochondrial disease genetic diagnostics: optimized whole-exome analysis for all MitoCarta nuclear genes and the mitochondrial genome. Discov Med 14(79):389–399PubMedPubMedCentralGoogle Scholar
  24. Field D et al (2009) Omics data sharing. Science 326(5950):234–236CrossRefPubMedPubMedCentralGoogle Scholar
  25. Finn RD et al (2014a) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230CrossRefPubMedGoogle Scholar
  26. Finn RD et al (2014b) iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Res 42(Database issue):D364–D373CrossRefPubMedGoogle Scholar
  27. Fisch KM et al (2015) Omics Pipe: a community-based framework for reproducible multi-omics data analysis. Bioinformatics 31(11):1724–1728CrossRefPubMedPubMedCentralGoogle Scholar
  28. FORCE11 (2014) Guiding principles for findable, accessible, interoperable and re-usable data publishing version b1.0. https://www.force11.org/node/6062
  29. Fox TD (2012) Mitochondrial protein synthesis, import, and assembly. Genetics 192(4):1203–1234CrossRefPubMedPubMedCentralGoogle Scholar
  30. Godovac-Zimmermann J (2008) 8th Siena meeting. From genome to proteome: integration and proteome completion. Expert Rev Proteomics 5(6):769–773CrossRefPubMedGoogle Scholar
  31. Goecks J et al (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gomez-Cabrero D et al (2014) Data integration in the era of omics: current and future challenges. BMC Syst Biol 8(Suppl 2):I1CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guo Y et al (2013) MitoSeek: extracting mitochondria information and performing high-throughput mitochondria sequencing analysis. Bioinformatics 29(9):1210–1211CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hayes DF et al (2014) Personalized medicine: risk prediction, targeted therapies and mobile health technology. BMC Med 12:37CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hirase S et al (2016) Parallel mitogenome sequencing alleviates random rooting effect in phylogeography. Genome Biol Evol 8(4):1267–1278CrossRefPubMedPubMedCentralGoogle Scholar
  36. Iwasaki W et al (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30(11):2531–2540CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jayaprakash AD et al (2015) Mito-seek enables deep analysis of mitochondrial DNA, revealing ubiquitous, stable heteroplasmy maintained by intercellular exchange. Nucleic Acids Res 43(4):2177–2187CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jia M et al (2012) Biomarkers in an animal model for revealing neural, hematologic, and behavioral correlates of PTSD. J Vis Exp (68)Google Scholar
  39. Johnston IG, Williams BP (2016) Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst 2(2):101–111CrossRefPubMedGoogle Scholar
  40. Johnston IG et al (2015) Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. Elife 4:e07464PubMedPubMedCentralGoogle Scholar
  41. Jupe S, Fabregat A, Hermjakob H (2015) Expression data analysis with reactome. Curr Protoc Bioinformatics 49:8.20.1–8.20.9CrossRefGoogle Scholar
  42. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036CrossRefPubMedGoogle Scholar
  43. Kanehisa M et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205CrossRefPubMedGoogle Scholar
  44. Kaye J, Hawkins N (2014) Data sharing policy design for consortia: challenges for sustainability. Genome Med 6(1):4CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kennedy EP, Lehninger AL (1949) Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J Biol Chem 179(2):957–972PubMedGoogle Scholar
  46. Klee EW, Ellis LB (2005) Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 6:256CrossRefPubMedPubMedCentralGoogle Scholar
  47. Krogh A et al (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580CrossRefPubMedGoogle Scholar
  48. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  49. Lesnefsky EJ et al (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33(6):1065–1089CrossRefPubMedGoogle Scholar
  50. Lott MT et al (2013) mtDNA variation and analysis using MITOMAP and MITOMASTER. Curr Protoc Bioinformatics 1(123):1.23.1–1.23.26CrossRefGoogle Scholar
  51. Lotz C et al (2014) Characterization, design, and function of the mitochondrial proteome: from organs to organisms. J Proteome Res 13(2):433–446CrossRefPubMedGoogle Scholar
  52. Matthews L et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37(Database issue):D619–D622CrossRefPubMedGoogle Scholar
  53. McKenna A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRefPubMedPubMedCentralGoogle Scholar
  54. Meinken J et al (2015) MetazSecKB: the human and animal secretome and subcellular proteome knowledgebase. Database 2015Google Scholar
  55. Min XJ (2010) Evaluation of computational methods for secreted protein prediction in different eukaryotes. J Proteomics Bioinform 3:143–147Google Scholar
  56. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148CrossRefPubMedGoogle Scholar
  57. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41(3):445–502CrossRefPubMedGoogle Scholar
  58. Mitchell P (1968) Chemiosmotic coupling and energy transduction. Glynn Research, Bodmin, CornwallGoogle Scholar
  59. Molloy JC (2011) The Open Knowledge Foundation: open data means better science. PLoS Biol 9(12):e1001195CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moritz RL, Bernt M, Middendorf M (2014) Local similarity search to find gene indicators in mitochondrial genomes. Biology (Basel) 3(1):220–242Google Scholar
  61. Nass MM, Nass S (1963a) Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. J Cell Biol 19:593–611CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nass S, Nass MM (1963b) Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments. J Cell Biol 19:613–629CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nawrocki EP et al (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(Database issue):D130–D137CrossRefPubMedGoogle Scholar
  64. O’Driscoll A, Daugelaite J, Sleator RD (2013) ‘Big data’, Hadoop and cloud computing in genomics. J Biomed Inform 46(5):774–781CrossRefPubMedGoogle Scholar
  65. Ono, K (2015) Cytoscape: an open source platform for complex network analysis and visualization. http://www.cytoscape.org/
  66. Oroboros (2015) MitoPedia – bioblast. http://www.bioblast.at/index.php/MitoPedia
  67. Pagliarini DJ et al (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134(1):112–123CrossRefPubMedPubMedCentralGoogle Scholar
  68. Palade GE (1952) The fine structure of mitochondria. Anat Rec 114(3):427–451CrossRefPubMedGoogle Scholar
  69. Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1(4):188–211CrossRefPubMedGoogle Scholar
  70. Perez-Riverol Y et al (2016) Omics discovery index – discovering and linking public omics datasets. bioRxiv:049205Google Scholar
  71. Picard M et al (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A 112(48):E6614–E6623CrossRefPubMedPubMedCentralGoogle Scholar
  72. Quintana MT et al (2016) Cardiomyocyte-specific human Bcl2-associated anthanogene 3 P209L expression induces mitochondrial fragmentation, Bcl2-associated anthanogene 3 haploin sufficiency, and activates p38 signaling. Am J Pathol 186(8):1989–2007CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rabilloud T et al (1998) Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis 19(6):1006–1014CrossRefPubMedGoogle Scholar
  74. Rubino F et al (2012) HmtDB, a genomic resource for mitochondrion-based human variability studies. Nucleic Acids Res 40(Database issue):D1150–D1159CrossRefPubMedGoogle Scholar
  75. Russo E et al (2016) Challenges in patient safety improvement research in the era of electronic health records. Healthcare (Amsterdam, Netherlands) pii: S2213-0764(15)30090-7. doi:10.1016/j.hjdsi.2016.06.005 (Epub ahead of print)Google Scholar
  76. Sandve GK et al (2013) Ten simple rules for reproducible computational research. PLoS Comput Biol 9(10):e1003285CrossRefPubMedPubMedCentralGoogle Scholar
  77. Schatz G, Gottfried S (1993) The protein import machinery of mitochondria. Protein Sci 2(2):141–146CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schatz G, Haslbrunner E, Tuppy H (1964) Deoxyribonucleic acid associated with yeast mitochondria. Biochem Biophys Res Commun 15(2):127–132CrossRefPubMedGoogle Scholar
  79. Sheynkman GM et al (2014) Using Galaxy-P to leverage RNA-Seq for the discovery of novel protein variations. BMC Genomics 15:703CrossRefPubMedPubMedCentralGoogle Scholar
  80. Small I et al (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590CrossRefPubMedGoogle Scholar
  81. Smith AC, Blackshaw JA, Robinson AJ (2012) MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res 40(Database issue):D1160–D1167CrossRefPubMedGoogle Scholar
  82. Stein LD (2004) Using the reactome database. Curr Protoc Bioinformatics Chapter 8:Unit8.7Google Scholar
  83. Tennessen JA et al (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337(6090):64–69CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ternent T et al (2014) How to submit MS proteomics data to ProteomeXchange via the PRIDE database. Proteomics 14(20):2233–2241CrossRefPubMedGoogle Scholar
  85. Tryka KA et al (2014) NCBI’s database of genotypes and phenotypes: dbGaP. Nucleic Acids Res 42(Database issue):D975–D979CrossRefPubMedGoogle Scholar
  86. Tun AW et al (2014) Profiling the mitochondrial proteome of Leber’s Hereditary Optic Neuropathy (LHON) in Thailand: down-regulation of bioenergetics and mitochondrial protein quality control pathways in fibroblasts with the 11778G>A mutation. PLoS One 9(9):e106779CrossRefPubMedPubMedCentralGoogle Scholar
  87. Van der Auwera GA et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033Google Scholar
  88. Vizcaino JA et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32(3):223–226CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vlasblom J et al (2014) Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping. J Proteomics 100:8–24CrossRefPubMedGoogle Scholar
  90. von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5(6):1335–1342Google Scholar
  91. Wallace DC et al (1988a) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242(4884):1427–1430CrossRefPubMedGoogle Scholar
  92. Wallace DC et al (1988b) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55(4):601–610CrossRefPubMedGoogle Scholar
  93. Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111(9):1222–1236CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang D et al (2014) Characterization of human plasma proteome dynamics using deuterium oxide. Proteomics Clin Appl 8(7–8):610–619CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wang Y et al (2016) Mitogenomic perspectives on the origin of Tibetan loaches and their adaptation to high altitude. Sci Rep 6:29690CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wasinger VC et al (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16(7):1090–1094CrossRefPubMedGoogle Scholar
  97. Wishart DS et al (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35(Database issue):D521–D526CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wishart DS et al (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610CrossRefPubMedGoogle Scholar
  99. Wishart DS et al (2013) HMDB 3.0 – The Human Metabolome Database in 2013. Nucleic Acids Res 41(Database issue):D801–D807CrossRefPubMedGoogle Scholar
  100. Xia J et al (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660CrossRefPubMedPubMedCentralGoogle Scholar
  101. Xia J et al (2012) MetaboAnalyst 2.0 – a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(Web Server issue):W127–W133CrossRefPubMedPubMedCentralGoogle Scholar
  102. Xia J et al (2015) MetaboAnalyst 3.0 – making metabolomics more meaningful. Nucleic Acids Res 43(W1):W251–W257CrossRefPubMedPubMedCentralGoogle Scholar
  103. Yates JR 3rd (2013) The revolution and evolution of shotgun proteomics for large-scale proteome analysis. J Am Chem Soc 135(5):1629–1640CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zong NC et al (2013) Integration of cardiac proteome biology and medicine by a specialized knowledgebase. Circ Res 113(9):1043–1053CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of PhysiologyUniversity of CaliforniaLos AngelesUSA
  2. 2.The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Departments of Physiology, Medicine, and BioinformaticsUniversity of CaliforniaLos AngelesUSA
  3. 3.Molecular Systems ClusterEuropean Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI)CambridgeUK

Personalised recommendations