Pharmacological Tool Compounds for the Free Fatty Acid Receptor 4 (FFA4/GPR120)

  • Steffen V. F. Hansen
  • Trond Ulven
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 236)


The free fatty acid receptor 4 (FFA4), also known as GPR120, is a G protein-coupled receptor that is activated by long-chain fatty acids and that has been associated with regulation of appetite, release of insulin controlling hormones, insulin sensitization, anti-inflammatory and potentially anti-obesity activity, and is progressively appearing as an attractive potential target for the treatment of metabolic dysfunctions such as obesity, type 2 diabetes and inflammatory disorders. Ongoing investigations of the pharmacological functions of FFA4 and validation of its potential as a therapeutic target depend critically on the appropriateness and quality of the available pharmacological probes or tool compounds. After a brief summary of the pharmacological functions of FFA4 and some general considerations on desirable properties for these pharmacological tool compounds, the individual compounds that have been or are currently being used as tools for probing the function of FFA4 in various in vitro and in vivo settings will be discussed and evaluated.


Chemical probes FFA4 GPR120 Tool compound 


  1. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57:7874–7887CrossRefPubMedGoogle Scholar
  2. Arakawa K, Nishimura T, Sugimoto Y, Takahashi H, Shimamura T (2010) Preparation of heteroaryloxyphenyldihydrobenzisothiazoledioxide derivatives and analogs for use as GPR120 receptor modulators. Banyu Pharmaceutical, Tokyo. WO2010104195A1Google Scholar
  3. Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, Blagg J et al (2015) The promise and peril of chemical probes. Nat Chem Biol 11:536–541CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azevedo CM, Watterson KR, Wargent ET, Hansen SVF, Hudson BD, Kepczynska M et al (2016) A non-acidic free fatty acid receptor 4 agonists with antidiabetic activity. J Med Chem 59:8868–8878. doi: 10.1021/acs.jmedchem.6b00685 CrossRefPubMedGoogle Scholar
  5. Baell JB, Holloway GA (2010) New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740CrossRefPubMedGoogle Scholar
  6. Bang-Andersen B, Ruhland T, Jorgensen M, Smith G, Frederiksen K, Jensen KG et al (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem 54:3206–3221CrossRefPubMedGoogle Scholar
  7. Boettcher M, McManus MT (2015) Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585CrossRefPubMedPubMedCentralGoogle Scholar
  8. Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148:619–628CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bunnage ME, Chekler EL, Jones LH (2013) Target validation using chemical probes. Nat Chem Biol 9:195–199CrossRefPubMedGoogle Scholar
  10. Butcher AJ, Hudson BD, Shimpukade B, Alvarez-Curto E, Prihandoko R, Ulven T et al (2014) Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4. J Biol Chem 289:18451–18465CrossRefPubMedPubMedCentralGoogle Scholar
  11. Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592s–599sGoogle Scholar
  12. Chelliah M, Chu HD, Cox JM, Debenham JS, Eagen K, Lan P et al (2014) Preparation of substituted spiropiperidinyl compounds useful as GPR120 agonists. Merck Sharp & Dohme, Kenilworth, NJ. WO2014059232A2Google Scholar
  13. Christiansen E, Urban C, Grundmann M, Due-Hansen ME, Hagesaether E, Schmidt J et al (2011) Identification of a potent and selective free fatty acid receptor 1 (FFA1/GPR40) agonist with favorable physicochemical and in vitro ADME properties. J Med Chem 54:6691–6703CrossRefPubMedGoogle Scholar
  14. Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schroder R, Hudson BD et al (2012) Free fatty acid receptor 1 (FFA1/GPR40) agonists: mesylpropoxy appendage lowers lipophilicity and improves ADME properties. J Med Chem 55:6624–6628CrossRefPubMedGoogle Scholar
  15. Christiansen E, Due-Hansen ME, Urban C, Grundmann M, Schmidt J, Hansen SVF et al (2013) Discovery of a potent and selective free fatty acid receptor 1 agonist with low lipophilicity and high oral bioavailability. J Med Chem 56:982–992CrossRefPubMedGoogle Scholar
  16. Christiansen E, Watterson KR, Stocker CJ, Sokol E, Jenkins L, Simon K et al (2015) Activity of dietary fatty acids on FFA1 and FFA4 and characterization of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br J Nutr 113:1677–1688CrossRefPubMedGoogle Scholar
  17. Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT et al (2012) Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One 7, e30571CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cornish J, MacGibbon A, Lin JM, Watson M, Callon KE, Tong PC et al (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149:5688–5695CrossRefPubMedGoogle Scholar
  19. Davenport AP, Alexander SPH, Sharman JL, Pawson AJ, Benson HE, Monaghan AE et al (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 65:967–986CrossRefPubMedPubMedCentralGoogle Scholar
  20. Defossa E, Wagner M (2014) Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 24:2991–3000CrossRefPubMedGoogle Scholar
  21. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107CrossRefPubMedGoogle Scholar
  22. Egerod KL, Engelstoft MS, Lund ML, Grunddal KV, Zhao M, Barir-Jensen D et al (2015) Transcriptional and functional characterization of the G protein-coupled receptor repertoire of gastric somatostatin cells. Endocrinology 156:3909–3923CrossRefPubMedGoogle Scholar
  23. Engelstoft MS, Park WM, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S et al (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2:376–392CrossRefPubMedPubMedCentralGoogle Scholar
  24. Formicola R, Pevarello P, Kuhn C, Liberati C, Piscitelli F, Sodano M (2015) FFA4/GPR120 agonists: a survey of the recent patent literature. Pharm Pat Anal 4:443–451CrossRefPubMedGoogle Scholar
  25. Frye SV (2010) The art of the chemical probe. Nat Chem Biol 6:159–161CrossRefPubMedGoogle Scholar
  26. Fukushima K, Yamasaki E, Ishii S, Tomimatsu A, Takahashi K, Hirane M et al (2015) Different roles of GPR120 and GPR40 in the acquisition of malignant properties in pancreatic cancer cells. Biochem Biophys Res Commun 465:512–515CrossRefPubMedGoogle Scholar
  27. Gao B, Huang Q, Jie Q, Lu W-G, Wang L, Li X-J et al (2015) GPR120: a bi-potential mediator to modulate the osteogenic and adipogenic differentiation of BMMSCs. Sci Rep 5:14080CrossRefPubMedPubMedCentralGoogle Scholar
  28. Garrel G, Simon V, Denoyelle C, Cruciani-Guglielmacci C, Migrenne S, Counis R et al (2011) Unsaturated fatty acids stimulate LH secretion via novel PKCepsilon and -theta in gonadotrope cells and inhibit GnRH-induced LH release. Endocrinology 152:3905–3916CrossRefPubMedGoogle Scholar
  29. Gong Z, Yoshimura M, Aizawa S, Kurotani R, Zigman JM, Sakai T et al (2014) G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am J Physiol Endocrinol Metab 306:E28–E35CrossRefPubMedGoogle Scholar
  30. Gozal D, Qiao Z, Almendros I, Zheng J, Khalyfa A, Shimpukade B et al (2016) Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice. Int J Obes 40:1143–1149CrossRefGoogle Scholar
  31. Hakim F, Kheirandish-Gozal L, Gozal D (2015a) Obesity and altered sleep: a pathway to metabolic derangements in children? Semin Pediatr Neurol 22:77–85CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E et al (2015b) Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice. Sleep 38:31–40PubMedPubMedCentralGoogle Scholar
  33. Halder S, Kumar S, Sharma R (2013) The therapeutic potential of GPR120: a patent review. Expert Opin Ther Pat 23:1581–1590CrossRefPubMedGoogle Scholar
  34. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94CrossRefPubMedGoogle Scholar
  35. Hostetler HA, Kier AB, Schroeder F (2006) Very-long-chain and branched-chain fatty acyl-CoAs are high affinity ligands for the peroxisome proliferator-activated receptor α (PPARα). Biochemistry 45:7669–7681CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hudson BD, Murdoch H, Milligan G (2013a) Minireview: the effects of species ortholog and SNP variation on receptors for free fatty acids. Mol Endocrinol 27:1177–1187CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hudson BD, Shimpukade B, Mackenzie AE, Butcher AJ, Pediani JD, Christiansen E et al (2013b) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol Pharmacol 84:710–725CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hudson BD, Shimpukade B, Milligan G, Ulven T (2014) The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). J Biol Chem 289:20345–20358CrossRefPubMedPubMedCentralGoogle Scholar
  39. Humphries PS, Benbow JW, Bonin PD, Boyer D, Doran SD, Frisbie RK et al (2009) Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. Bioorg Med Chem Lett 19:2400–2403CrossRefPubMedGoogle Scholar
  40. Ishii S, Hirane M, Kato S, Fukushima N, Tsujiuchi T (2015a) Opposite effects of GPR120 and GPR40 on cell motile activity induced by ethionine in liver epithelial cells. Biochem Biophys Res Commun 456:135–138CrossRefPubMedGoogle Scholar
  41. Ishii S, Hirane M, Kitamura Y, Mori S, Fukushima N, Honoki K et al (2015b) Role of GPR120 in cell motile activity induced by 12-O-tetradecanoylphorbol-13-acetate in liver epithelial WB-F344 cells. Mol Cell Biochem 400:145–151CrossRefPubMedGoogle Scholar
  42. Kim HJ, Yoon HJ, Kim BK, Kang WY, Seong SJ, Lim MS et al (2015) G protein-coupled receptor 120 signaling negatively regulates osteoclast differentiation, survival, and function. J Cell Physiol 231:844–851CrossRefPubMedGoogle Scholar
  43. Kita T, Kadochi Y, Takahashi K, Fukushima K, Yamasaki E, Uemoto T et al (2016) Diverse effects of G-protein-coupled free fatty acid receptors on the regulation of cellular functions in lung cancer cells. Exp Cell Res 342:193–199CrossRefPubMedGoogle Scholar
  44. Kodadek T (2010) Rethinking screening. Nat Chem Biol 6:162–165CrossRefPubMedGoogle Scholar
  45. Konno Y, Ueki S, Takeda M, Kobayashi Y, Tamaki M, Moritoki Y et al (2015) Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis. PLoS One 10, e0120386CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kristinsson H, Smith DM, Bergsten P, Sargsyan E (2013) FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology 154:4078–4088CrossRefPubMedGoogle Scholar
  47. Lengqvist J, Mata De Urquiza A, Bergman AC, Willson TM, Sjovall J, Perlmann T et al (2004) Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics 3:692–703CrossRefPubMedGoogle Scholar
  48. Li X, Yu Y, Funk CD (2013a) Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4). FASEB J 27:4987–4997CrossRefPubMedGoogle Scholar
  49. Li Y, Zhang H, Jiang C, Xu M, Pang Y, Feng J et al (2013b) Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. J Biol Chem 288:9583–9592CrossRefPubMedPubMedCentralGoogle Scholar
  50. Liu Y, Chen LY, Sokolowska M, Eberlein M, Alsaaty S, Martinez-Anton A et al (2014) The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A(2) via GPR120 receptor to produce prostaglandin E(2) and plays an anti-inflammatory role in macrophages. Immunology 143:81–95CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liu Z, Hopkins MM, Zhang Z, Quisenberry CB, Fix LC, Galvan BM et al (2015) Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther 352:380–394CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ma J, Novack A, Nashashibi I, Pham P, Rabbat CJ, Song J et al (2010) [(Heterocyclylmethoxy)aryl]alkanoic acid derivatives as GPR120 receptor agonists and preparation and uses thereof. Metabolex, Hayward, CA. WO2010048207A2Google Scholar
  53. Martin C, Passilly-Degrace P, Chevrot M, Ancel D, Sparks SM, Drucker DJ et al (2012) Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 53:2256–2265CrossRefPubMedPubMedCentralGoogle Scholar
  54. Milligan G, Alvarez-Curto E, Watterson KR, Ulven T, Hudson BD (2015) Characterising pharmacological ligands to study the long chain fatty acid receptors GPR40/FFA1 and GPR120/FFA4. Br J Pharmacol 172:3254–3265CrossRefPubMedPubMedCentralGoogle Scholar
  55. Milligan G, Shimpukade B, Ulven T, Hudson BD (2016) Complex pharmacology of free fatty acid receptors. Chem Rev. doi: 10.1021/acs.chemrev.6b00056 PubMedGoogle Scholar
  56. Mizuta K, Zhang Y, Mizuta F, Hoshijima H, Shiga T, Masaki E et al (2015) Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 309:L970–L982CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moniri NH (2016) Free-fatty acid receptor-4 (GPR120): cellular and molecular function and its role in metabolic disorders. Biochem Pharmacol 110–111:1–15CrossRefPubMedGoogle Scholar
  58. Offermanns S (2014) Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 54:407–434CrossRefPubMedGoogle Scholar
  59. Oh da Y, Olefsky JM (2016) G protein-coupled receptors as targets for anti-diabetic therapeutics. Nat Rev Drug Discov 15:161–172CrossRefPubMedGoogle Scholar
  60. Oh da Y, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR et al (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20:942–947CrossRefPubMedGoogle Scholar
  61. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ et al (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698CrossRefPubMedPubMedCentralGoogle Scholar
  62. Peters JU (2013) Polypharmacology – foe or friend? J Med Chem 56:8955–8971CrossRefPubMedGoogle Scholar
  63. Pizzonero M, Dupont S, Babel M, Beaumont S, Bienvenu N, Blanque R et al (2014) Discovery and optimization of an azetidine chemical series as a free fatty acid receptor 2 (FFA2) antagonist: from hit to clinic. J Med Chem 57:10044–10057CrossRefPubMedGoogle Scholar
  64. Pouliot M, Jeanmart S (2016) Pan Assay Interference Compounds (PAINS) and other promiscuous compounds in antifungal research. J Med Chem 59:497–503CrossRefPubMedGoogle Scholar
  65. Prihandoko R, Alvarez-Curto E, Hudson BD, Butcher AJ, Ulven T, Miller AM et al (2016) Distinct phosphorylation clusters determine the signaling outcome of free fatty acid receptor 4/G protein-coupled receptor 120. Mol Pharmacol 89:505–520CrossRefPubMedGoogle Scholar
  66. Raptis DA, Limani P, Jang JH, Ungethum U, Tschuor C, Graf R et al (2014) GPR120 on Kupffer cells mediates hepatoprotective effects of omega3-fatty acids. J Hepatol 60:625–632CrossRefPubMedGoogle Scholar
  67. Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–47CrossRefPubMedGoogle Scholar
  68. Sergeev E, Hojgaard Hansen A, Pandey SK, Mackenzie AE, Hudson BD, Ulven T et al (2015) Non-equivalence of key positively charged residues of the free fatty acid 2 receptor in the recognition and function of agonist versus antagonist ligands. J Biol Chem 291:303–317CrossRefPubMedPubMedCentralGoogle Scholar
  69. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shi DF, Song J, Ma J, Novack A, Pham P, Nashashibi I et al (2010) Preparation of benzofuranyl substituted phenylalkylcarboxylic acids as Gpr120 receptor agonists. Metabolex, Hayward, CA. WO2010080537A1Google Scholar
  71. Shimpukade B, Hudson BD, Hovgaard CK, Milligan G, Ulven T (2012) Discovery of a potent and selective GPR120 agonist. J Med Chem 55:4511–4515CrossRefPubMedGoogle Scholar
  72. Song T, Peng J, Ren J, Wei HK, Peng J (2015) Cloning and characterization of spliced variants of the porcine G protein coupled receptor 120. Biomed Res Int 2015:813816PubMedPubMedCentralGoogle Scholar
  73. Song T, Zhou Y, Peng J, Tao YX, Yang Y, Xu T et al (2016) GPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Mol Cell Endocrinol 434:1–13CrossRefPubMedGoogle Scholar
  74. Sparks SM, Chen G, Collins JL, Danger D, Dock ST, Jayawickreme C et al (2014) Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). Bioorg Med Chem Lett 24:3100–3103CrossRefPubMedGoogle Scholar
  75. Stone VM, Dhayal S, Brocklehurst KJ, Lenaghan C, Sorhede Winzell M, Hammar M et al (2014) GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57:1182–1191CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sun P, Wang T, Zhou Y, Liu H, Jiang H, Zhu W et al (2013) DC260126: a small-molecule antagonist of GPR40 that protects against pancreatic beta-Cells dysfunction in db/db mice. PLoS One 8, e66744CrossRefPubMedPubMedCentralGoogle Scholar
  77. Talukdar S, Olefsky JM, Osborn O (2011) Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32:543–550CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tikhonova IG, Sum CS, Neumann S, Engel S, Raaka BM, Costanzi S et al (2008) Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J Med Chem 51:625–633CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tsukahara T, Watanabe K, Watanabe T, Yamagami H, Sogawa M, Tanigawa T et al (2015) Tumor necrosis factor alpha decreases glucagon-like peptide-2 expression by up-regulating G-protein-coupled receptor 120 in Crohn disease. Am J Pathol 185:185–196CrossRefPubMedGoogle Scholar
  80. Ulven T, Christiansen E (2015) Dietary influences on regulation of the long-chain fatty acid receptor FFA4/GPR120. Annu Rev Nutr 35:239–263CrossRefPubMedGoogle Scholar
  81. Ulven T, Kostenis E (2006) Targeting the prostaglandin D2 receptors DP and CRTH2 for treatment of inflammation. Curr Top Med Chem 6:1427–1444CrossRefPubMedGoogle Scholar
  82. Waring MJ, Baker DJ, Bennett SNL, Dossetter AG, Fenwick M, Garcia R et al (2015) Discovery of a series of 2-(pyridinyl)pyrimidines as potent antagonists of GPR40. Med Chem Commun 6:1024–1029CrossRefGoogle Scholar
  83. Watson SJ, Brown AJ, Holliday ND (2012) Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol Pharmacol 81:631–642CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wauquier F, Philippe C, Leotoing L, Mercier S, Davicco MJ, Lebecque P et al (2013) The free fatty acid receptor G protein-coupled receptor 40 (GPR40) protects from bone loss through inhibition of osteoclast differentiation. J Biol Chem 288:6542–6551CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wellhauser L, Belsham DD (2014) Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. J Neuroinflammation 11:60CrossRefPubMedPubMedCentralGoogle Scholar
  86. Workman P, Collins I (2010) Probing the probes: fitness factors for small molecule tools. Chem Biol 17:561–577CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wu Q, Wang H, Zhao X, Shi Y, Jin M, Wan B et al (2013) Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 32:5541–5550CrossRefPubMedGoogle Scholar
  88. Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C et al (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38:1154–1163CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations