Dry Age-Related Macular Degeneration Pharmacology

  • Charles B. Wright
  • Jayakrishna AmbatiEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 242)


Age-related macular degeneration (AMD), the most common form of irreversible blindness in the industrially developed world, can present years before a patient begins to lose vision. For most of these patients, AMD never progresses past its early stages to the advanced forms that are principally responsible for the vast majority of vision loss. Advanced AMD can manifest as either an advanced avascular form known as geographic atrophy (GA) marked by regional retinal pigment epithelium (RPE) cell death or as an advanced form known as neovascular AMD marked by the intrusion of fragile new blood vessels into the normally avascular retina. Physicians have several therapeutic interventions available to combat neovascular AMD, but GA has no approved effective therapies as of yet. In this chapter, we will discuss the current strategies for limiting dry AMD in patients. We will also discuss previous attempts at pharmacological intervention that were tested in a clinical setting and consider reasons why these putative therapeutics did not perform successfully in large-scale trials. Despite the number of unsuccessful past trials, new pharmacological interventions may succeed. These future therapies may aid millions of AMD patients worldwide.


Age-related macular degeneration Experimental medicine Ocular pharmacology 


  1. Ablonczy Z, Higbee D, Anderson DM, Dahrouj M, Grey AC, Gutierrez D, Koutalos Y, Schey KL, Hanneken A, Crouch RK (2013) Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Investig Ophthalmol Vis Sci 54(8):5535–5542. doi: 10.1167/iovs.13-12250 CrossRefGoogle Scholar
  2. Age-Related Eye Disease Study 2 Research G (2013) Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 309(19):2005–2015. doi: 10.1001/jama.2013.4997 CrossRefGoogle Scholar
  3. Age-Related Eye Disease Study Research G (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436CrossRefGoogle Scholar
  4. Ambati J, Ambati BK (2002) Age-related eye disease study caveats. Arch Ophthalmol 120(7):997, author reply 997–999PubMedGoogle Scholar
  5. Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75(1):26–39. doi: 10.1016/j.neuron.2012.06.018 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS, Hu J, Ebright JN, Malek G, Hauser MA, Rickman CB, Bok D, Hageman GS, Johnson LV (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29(2):95–112. doi: 10.1016/j.preteyeres.2009.11.003 PubMedCrossRefGoogle Scholar
  7. Barot M, Gokulgandhi MR, Mitra AK (2011) Mitochondrial dysfunction in retinal diseases. Curr Eye Res 36(12):1069–1077. doi: 10.3109/02713683.2011.607536 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baudouin C, Peyman GA, Fredj-Reygrobellet D, Gordon WC, Lapalus P, Gastaud P, Bazan NG (1992) Immunohistological study of subretinal membranes in age-related macular degeneration. Jpn J Ophthalmol 36(4):443–451PubMedGoogle Scholar
  9. Bhosale P, Serban B, Bernstein PS (2009) Retinal carotenoids can attenuate formation of A2E in the retinal pigment epithelium. Arch Biochem Biophys 483(2):175–181. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  10. Biswal MR, Ahmed CM, Ildefonso CJ, Han P, Li H, Jivanji H, Mao H, Lewin AS (2015) Systemic treatment with a 5HT1a agonist induces anti-oxidant protection and preserves the retina from mitochondrial oxidative stress. Exp Eye Res 140:94–105. doi: 10.1016/j.exer.2015.07.022 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bora NS, Matta B, Lyzogubov VV, Bora PS (2014) Relationship between the complement system, risk factors and prediction models in age-related macular degeneration. Mol Immunol. doi: 10.1016/j.molimm.2014.07.012 PubMedGoogle Scholar
  12. Brandl C, Grassmann F, Riolfi J, Weber BH (2015) Tapping stem cells to target AMD: challenges and prospects. J Clin Med 4(2):282–303. doi: 10.3390/jcm4020282 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buschini E, Fea AM, Lavia CA, Nassisi M, Pignata G, Zola M, Grignolo FM (2015) Recent developments in the management of dry age-related macular degeneration. Clin Ophthalmol 9:563–574. doi: 10.2147/OPTH.S59724 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carr AJ, Smart MJ, Ramsden CM, Powner MB, da Cruz L, Coffey PJ (2013) Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci 36(7):385–395. doi: 10.1016/j.tins.2013.03.006 PubMedCrossRefGoogle Scholar
  15. Catchpole I, Germaschewski V, Hoh Kam J, Lundh von Leithner P, Ford S, Gough G, Adamson P, Overend P, Hilpert J, Lopez FJ, Ng YS, Coffey P, Jeffery G (2013) Systemic administration of Abeta mAb reduces retinal deposition of Abeta and activated complement C3 in age-related macular degeneration mouse model. PLoS One 8(6), e65518. doi: 10.1371/journal.pone.0065518 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cheung LK, Eaton A (2013) Age-related macular degeneration. Pharmacotherapy 33(8):838–855. doi: 10.1002/phar.1264 PubMedCrossRefGoogle Scholar
  17. Chew EY, Clemons TE, Agron E, Sperduto RD, Sangiovanni JP, Davis MD, Ferris FL 3rd, Age-Related Eye Disease Study Research G (2014) Ten-year follow-up of age-related macular degeneration in the age-related eye disease study: AREDS report no. 36. JAMA Ophthalmol 132(3):272–277. doi: 10.1001/jamaophthalmol.2013.6636 PubMedCrossRefGoogle Scholar
  18. Cioffi CL, Racz B, Freeman EE, Conlon MP, Chen P, Stafford DG, Schwarz DM, Zhu L, Kitchen DB, Barnes KD, Dobri N, Michelotti E, Cywin CL, Martin WH, Pearson PG, Johnson G, Petrukhin K (2015) Bicyclic [3.3.0]-Octahydrocyclopenta[c]pyrrolo Antagonists of Retinol Binding Protein 4: Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease. J Med Chem 58(15):5863–5888. doi: 10.1021/acs.jmedchem.5b00423 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Coffey PJ, Gias C, McDermott CJ, Lundh P, Pickering MC, Sethi C, Bird A, Fitzke FW, Maass A, Chen LL, Holder GE, Luthert PJ, Salt TE, Moss SE, Greenwood J (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci U S A 104(42):16651–16656. doi: 10.1073/pnas.0705079104 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Collier RJ, Patel Y, Martin EA, Dembinska O, Hellberg M, Krueger DS, Kapin MA, Romano C (2011) Agonists at the serotonin receptor (5-HT(1A)) protect the retina from severe photo-oxidative stress. Investig Ophthalmol Vis Sci 52(5):2118–2126. doi: 10.1167/iovs.10-6304 CrossRefGoogle Scholar
  21. Danis RP, Lavine JA, Domalpally A (2015) Geographic atrophy in patients with advanced dry age-related macular degeneration: current challenges and future prospects. Clin Ophthalmol 9:2159–2174. doi: 10.2147/OPTH.S92359 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dentchev T, Milam AH, Lee VM, Trojanowski JQ, Dunaief JL (2003) Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 9:184–190PubMedGoogle Scholar
  23. Ding J-D, Johnson LV, Herrmann R, Farsiu S, Smith SG, Groelle M, Mace BE, Sullivan P, Jamison JA, Kelly U, Harrabi O, Bollini SS, Dilley J, Kobayashi D, Kuang B, Li W, Pons J, Lin JC, Bowes Rickman C (2011) Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc Natl Acad Sci U S A 108(28):E279–E287. doi: 10.1073/pnas.1100901108 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dobri N, Qin Q, Kong J, Yamamoto K, Liu Z, Moiseyev G, Ma JX, Allikmets R, Sparrow JR, Petrukhin K (2013) A1120, a nonretinoid RBP4 antagonist, inhibits formation of cytotoxic bisretinoids in the animal model of enhanced retinal lipofuscinogenesis. Investig Ophthalmol Vis Sci 54(1):85–95. doi: 10.1167/iovs.12-10050 CrossRefGoogle Scholar
  25. Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF, Farrar GJ, Kiang AS, Humphries MM, Lavelle EC, O'Neill LA, Hollyfield JG, Humphries P (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18(5):791–798. doi: 10.1038/nm.2717 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dridi S, Hirano Y, Tarallo V, Kim Y, Fowler BJ, Ambati BK, Bogdanovich S, Chiodo VA, Hauswirth WW, Kugel JF, Goodrich JA, Ponicsan SL, Hinton DR, Kleinman ME, Baffi JZ, Gelfand BD, Ambati J (2012) ERK1/2 activation is a therapeutic target in age-related macular degeneration. Proc Natl Acad Sci U S A 109(34):13781–13786. doi: 10.1073/pnas.1206494109 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dugel PU, Novack RL, Csaky KG, Richmond PP, Birch DG, Kubota R (2015) Phase ii, randomized, placebo-controlled, 90-day study of emixustat hydrochloride in geographic atrophy associated with dry age-related macular degeneration. Retina 35(6):1173–1183. doi: 10.1097/IAE.0000000000000606 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424. doi: 10.1126/science.1110189 PubMedCrossRefGoogle Scholar
  29. Eldred GE (1995) Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration. Gerontology 41(Suppl 2):15–28PubMedGoogle Scholar
  30. Ersoy L, Ristau T, Lechanteur YT, Hahn M, Hoyng CB, Kirchhof B, den Hollander AI, Fauser S (2014) Nutritional risk factors for age-related macular degeneration. BioMed Res Int 2014:413150. doi: 10.1155/2014/413150 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Evans J (2008) Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis. Eye 22(6):751–760. doi: 10.1038/eye.2008.100 PubMedCrossRefGoogle Scholar
  32. Evans JR (2013) Ginkgo biloba extract for age-related macular degeneration. Cochrane Database Syst Rev 1:CD001775. doi: 10.1002/14651858.CD001775.pub2 Google Scholar
  33. Evans JB, Syed BA (2013) New hope for dry AMD? Nat Rev Drug Discov 12(7):501–502. doi: 10.1038/nrd4038 PubMedCrossRefGoogle Scholar
  34. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, Sadda SR, Beckman Initiative for Macular Research Classification C (2013) Clinical classification of age-related macular degeneration. Ophthalmology 120(4):844–851. doi: 10.1016/j.ophtha.2012.10.036 PubMedCrossRefGoogle Scholar
  35. Forest DL, Johnson LV, Clegg DO (2015) Cellular models and therapies for age-related macular degeneration. Dis Model Mech 8(5):421–427. doi: 10.1242/dmm.017236 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT (2008) Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 3(9), e3119. doi: 10.1371/journal.pone.0003119 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gelfand BD, Wright CB, Kim Y, Yasuma T, Yasuma R, Li S, Fowler BJ, Bastos-Carvalho A, Kerur N, Uittenbogaard A, Han YS, Lou D, Kleinman ME, McDonald WH, Nunez G, Georgel P, Dunaief JL, Ambati J (2015) Iron toxicity in the retina requires Alu RNA and the NLRP3 inflammasome. Cell Rep 11(11):1686–1693. doi: 10.1016/j.celrep.2015.05.023 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ghaem Maralani H, Tai BC, Wong TY, Tai ES, Li J, Wang JJ, Mitchell P (2015) Metabolic syndrome and risk of age-related macular degeneration. Retina 35(3):459–466. doi: 10.1097/IAE.0000000000000338 PubMedCrossRefGoogle Scholar
  39. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421. doi: 10.1126/science.1110359 PubMedCrossRefGoogle Scholar
  40. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9(8):857–865. doi: 10.1038/ni.1636 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256(5054):184–185PubMedCrossRefGoogle Scholar
  42. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. doi: 10.1126/science.1072994 PubMedCrossRefGoogle Scholar
  43. Hirano Y, Yasuma T, Mizutani T, Fowler BJ, Tarallo V, Yasuma R, Kim Y, Bastos-Carvalho A, Kerur N, Gelfand BD, Bogdanovich S, He S, Zhang X, Nozaki M, Ijima R, Kaneko H, Ogura Y, Terasaki H, Nagai H, Haro I, Nunez G, Ambati BK, Hinton DR, Ambati J (2014) IL-18 is not therapeutic for neovascular age-related macular degeneration. Nat Med 20(12):1372–1375. doi: 10.1038/nm.3671 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14(2):194–198. doi: 10.1038/nm1709 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Howard KP, Klein BE, Lee KE, Klein R (2014) Measures of body shape and adiposity as related to incidence of age-related eye diseases: observations from the Beaver Dam Eye Study. Investig Ophthalmol Vis Sci 55(4):2592–2598. doi: 10.1167/iovs.13-13763 CrossRefGoogle Scholar
  46. Hwang JC, Chan JW, Chang S, Smith RT (2006) Predictive value of fundus autofluorescence for development of geographic atrophy in age-related macular degeneration. Investig Ophthalmol Vis Sci 47(6):2655–2661. doi: 10.1167/iovs.05-1027 CrossRefGoogle Scholar
  47. Ijima R, Kaneko H, Ye F, Nagasaka Y, Takayama K, Kataoka K, Kachi S, Iwase T, Terasaki H (2014) Interleukin-18 induces retinal pigment epithelium degeneration in mice. Investig Ophthalmol Vis Sci 55(10):6673–6678. doi: 10.1167/iovs.14-15367 CrossRefGoogle Scholar
  48. Jaffe GJ, Schmitz-Valckenberg S, Boyer D, Heier J, Wolf-Schnurrbusch U, Staurenghi G, Schmidt-Erfurth U, Holz FG (2015) Randomized trial to evaluate tandospirone in geographic atrophy secondary to age-related macular degeneration: The GATE Study. Am J Ophthalmol 160(6):1226–1234. doi: 10.1016/j.ajo.2015.08.024 PubMedCrossRefGoogle Scholar
  49. Jarrett SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 33(4):399–417. doi: 10.1016/j.mam.2012.03.009 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer's A beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci U S A 99(18):11830–11835. doi: 10.1073/pnas.192203399 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME, Ponicsan SL, Hauswirth WW, Chiodo VA, Karikó K, Yoo JW, Lee D-K, Hadziahmetovic M, Song Y, Misra S, Chaudhuri G, Buaas FW, Braun RE, Hinton DR, Zhang Q, Grossniklaus HE, Provis JM, Madigan MC, Milam AH, Justice NL, Albuquerque RJC, Blandford AD, Bogdanovich S, Hirano Y, Witta J, Fuchs E, Littman DR, Ambati BK, Rudin CM, Chong MMW, Provost P, Kugel JF, Goodrich JA, Dunaief JL, Baffi JZ, Ambati J (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature. doi: 10.1038/nature09830 PubMedPubMedCentralGoogle Scholar
  52. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106):733–736. doi: 10.1038/325733a0 PubMedCrossRefGoogle Scholar
  53. Kauppinen A, Niskanen H, Suuronen T, Kinnunen K, Salminen A, Kaarniranta K (2012) Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells--implications for age-related macular degeneration (AMD). Immunol Lett 147(1-2):29–33. doi: 10.1016/j.imlet.2012.05.005 PubMedCrossRefGoogle Scholar
  54. Kerur N, Hirano Y, Tarallo V, Fowler BJ, Bastos-Carvalho A, Yasuma T, Yasuma R, Kim Y, Hinton DR, Kirschning CJ, Gelfand BD, Ambati J (2013) TLR-independent and P2X7-dependent signaling mediate Alu RNA-induced NLRP3 inflammasome activation in geographic atrophy. Investig Ophthalmol Vis Sci 54(12):7395–7401. doi: 10.1167/iovs.13-12500 CrossRefGoogle Scholar
  55. Kim Y, Tarallo V, Kerur N, Yasuma T, Gelfand BD, Bastos-Carvalho A, Hirano Y, Yasuma R, Mizutani T, Fowler BJ, Li S, Kaneko H, Bogdanovich S, Ambati BK, Hinton DR, Hauswirth WW, Hakem R, Wright C, Ambati J (2014) DICER1/Alu RNA dysmetabolism induces Caspase-8-mediated cell death in age-related macular degeneration. Proc Natl Acad Sci U S A 111(45):16082–16087. doi: 10.1073/pnas.1403814111 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kirkham PA, Spooner G, Ffoulkes-Jones C, Calvez R (2003) Cigarette smoke triggers macrophage adhesion and activation: role of lipid peroxidation products and scavenger receptor. Free Radic Biol Med 35(7):697–710PubMedCrossRefGoogle Scholar
  57. Klein R, Klein BE, Franke T (1993) The relationship of cardiovascular disease and its risk factors to age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 100(3):406–414PubMedCrossRefGoogle Scholar
  58. Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389. doi: 10.1126/science.1109557 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kubota R, Al-Fayoumi S, Mallikaarjun S, Patil S, Bavik C, Chandler JW (2014) Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. Retina 34(3):603–609. doi: 10.1097/01.iae.0000434565.80060.f8 PubMedCrossRefGoogle Scholar
  60. LaVail MM, Yasumura D, Matthes MT, Lau-Villacorta C, Unoki K, Sung CH, Steinberg RH (1998) Protection of mouse photoreceptors by survival factors in retinal degenerations. Investig Ophthalmol Vis Sci 39(3):592–602Google Scholar
  61. Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76(4):397–403PubMedCrossRefGoogle Scholar
  62. Malone W, Perloff M, Crowell J, Sigman C, Higley H (2003) Fenretinide: a prototype cancer prevention drug. Expert Opin Investig Drugs 12(11):1829–1842. doi: 10.1517/13543784.12.11.1829 PubMedCrossRefGoogle Scholar
  63. Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV, Anderson RE (2009) Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med 46(5):672–679. doi: 10.1016/j.freeradbiomed.2008.12.006 PubMedCrossRefGoogle Scholar
  64. Mata NL, Vogel R (2010) Pharmacologic treatment of atrophic age-related macular degeneration. Curr Opin Ophthalmol 21(3):190–196. doi: 10.1097/ICU.0b013e32833866c8 PubMedCrossRefGoogle Scholar
  65. Mata NL, Lichter JB, Vogel R, Han Y, Bui TV, Singerman LJ (2013) Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration. Retina 33(3):498–507. doi: 10.1097/IAE.0b013e318265801d PubMedCrossRefGoogle Scholar
  66. Mitchell P, Smith W, Attebo K, Wang JJ (1995) Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology 102(10):1450–1460PubMedCrossRefGoogle Scholar
  67. Mullins RF, Schoo DP, Sohn EH, Flamme-Wiese MJ, Workamelahu G, Johnston RM, Wang K, Tucker BA, Stone EM (2014) The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning. Am J Pathol 184(11):3142–3153. doi: 10.1016/j.ajpath.2014.07.017 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Investig Ophthalmol Vis Sci 49(11):5136–5143. doi: 10.1167/iovs.08-1849 CrossRefGoogle Scholar
  69. Pervaiz S, Holme AL (2009) Resveratrol: its biologic targets and functional activity. Antioxid Redox Signal 11(11):2851–2897. doi: 10.1089/ARS.2008.2412 PubMedCrossRefGoogle Scholar
  70. Petrou PA, Cunningham D, Shimel K, Harrington M, Hammel K, Cukras CA, Ferris FL, Chew EY, Wong WT (2015) Intravitreal sirolimus for the treatment of geographic atrophy: results of a phase I/II clinical trial. Investig Ophthalmol Vis Sci 56(1):330–338. doi: 10.1167/iovs.14-15877 CrossRefGoogle Scholar
  71. Petrukhin K (2013) Pharmacological inhibition of lipofuscin accumulation in the retina as a therapeutic strategy for dry AMD treatment. Drug Discov Today Ther Strateg 10(1):e11–e20. doi: 10.1016/j.ddstr.2013.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ratnapriya R, Chew EY (2013) Age-related macular degeneration-clinical review and genetics update. Clin Genet 84(2):160–166. doi: 10.1111/cge.12206 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, Chen N, Goletz P, Ma JX, Crouch RK, Pfeifer K (1998) Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 20(4):344–351PubMedCrossRefGoogle Scholar
  74. Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, Saaddine J, Vision Health Cost-Effectiveness Study G (2009) Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol 127(4):533–540. doi: 10.1001/archophthalmol.2009.58 PubMedCrossRefGoogle Scholar
  75. Richer S, Patel S, Sockanathan S, Ulanski LJ 2nd, Miller L, Podella C (2014) Resveratrol based oral nutritional supplement produces long-term beneficial effects on structure and visual function in human patients. Nutrients 6(10):4404–4420. doi: 10.3390/nu6104404 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, Eldem B, Mones J, Richard G, Bandello F, European Society of Retina Specialists (2014) Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol 98(9):1144–1167. doi: 10.1136/bjophthalmol-2014-305702 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Schmier JK, Covert DW, Lau EC (2012) Patterns and costs associated with progression of age-related macular degeneration. Am J Ophthalmol 154(4):675–681. doi: 10.1016/j.ajo.2012.04.017, e671PubMedCrossRefGoogle Scholar
  78. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720. doi: 10.1016/S0140-6736(12)60028-2 PubMedCrossRefGoogle Scholar
  79. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516. doi: 10.1016/S0140-6736(14)61376-3 PubMedCrossRefGoogle Scholar
  80. Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT et al (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272(18):1413–1420PubMedCrossRefGoogle Scholar
  81. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA (2006) Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 103(10):3896–3901. doi: 10.1073/pnas.0600236103 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Smith W, Assink J, Klein R, Mitchell P, Klaver CC, Klein BE, Hofman A, Jensen S, Wang JJ, de Jong PT (2001) Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology 108(4):697–704PubMedCrossRefGoogle Scholar
  83. Suter M, Reme C, Grimm C, Wenzel A, Jaattela M, Esser P, Kociok N, Leist M, Richter C (2000) Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275(50):39625–39630. doi: 10.1074/jbc.M007049200 PubMedCrossRefGoogle Scholar
  84. Tao W, Wen R, Goddard MB, Sherman SD, O'Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA, Tsiaras WG, Acland GM, Pearce-Kelling S, Laties AM, Aguirre GD (2002) Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Investig Ophthalmol Vis Sci 43(10):3292–3298Google Scholar
  85. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y, Cho WG, Kaneko H, Fowler BJ, Bogdanovich S, Albuquerque RJ, Hauswirth WW, Chiodo VA, Kugel JF, Goodrich JA, Ponicsan SL, Chaudhuri G, Murphy MP, Dunaief JL, Ambati BK, Ogura Y, Yoo JW, Lee DK, Provost P, Hinton DR, Nunez G, Baffi JZ, Kleinman ME, Ambati J (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847–859. doi: 10.1016/j.cell.2012.03.036 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Thanos CG, Bell WJ, O'Rourke P, Kauper K, Sherman S, Stabila P, Tao W (2004) Sustained secretion of ciliary neurotrophic factor to the vitreous, using the encapsulated cell therapy-based NT-501 intraocular device. Tissue Eng 10(11-12):1617–1622. doi: 10.1089/ten.2004.10.1617 PubMedCrossRefGoogle Scholar
  87. Tseng WA, Thein T, Kinnunen K, Lashkari K, Gregory MS, D'Amore PA, Ksander BR (2013) NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration. Investig Ophthalmol Vis Sci 54(1):110–120. doi: 10.1167/iovs.12-10655 CrossRefGoogle Scholar
  88. Velilla S, Garcia-Medina JJ, Garcia-Layana A, Dolz-Marco R, Pons-Vazquez S, Pinazo-Duran MD, Gomez-Ulla F, Arevalo JF, Diaz-Llopis M, Gallego-Pinazo R (2013) Smoking and age-related macular degeneration: review and update. J Ophthalmol 2013:895147. doi: 10.1155/2013/895147 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF, de Jong PT (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102(2):205–210PubMedCrossRefGoogle Scholar
  90. Wang Y, Hanus JW, Abu-Asab MS, Shen D, Ogilvy A, Ou J, Chu XK, Shi G, Li W, Wang S, Chan CC (2016) NLRP3 upregulation in retinal pigment epithelium in age-related macular degeneration. Int J Mol Sci 17(1):73. doi: 10.3390/ijms17010073 PubMedCentralCrossRefGoogle Scholar
  91. Wilkinson JT, Fraunfelder FW (2011) Use of herbal medicines and nutritional supplements in ocular disorders: an evidence-based review. Drugs 71(18):2421–2434. doi: 10.2165/11596840-000000000-00000 PubMedCrossRefGoogle Scholar
  92. Wong RW, Richa DC, Hahn P, Green WR, Dunaief JL (2007) Iron toxicity as a potential factor in AMD. Retina 27(8):997–1003. doi: 10.1097/IAE.0b013e318074c290 PubMedCrossRefGoogle Scholar
  93. Wong TY, Chakravarthy U, Klein R, Mitchell P, Zlateva G, Buggage R, Fahrbach K, Probst C, Sledge I (2008) The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology 115(1):116–126. doi: 10.1016/j.ophtha.2007.03.008 PubMedCrossRefGoogle Scholar
  94. Wong WT, Kam W, Cunningham D, Harrington M, Hammel K, Meyerle CB, Cukras C, Chew EY, Sadda SR, Ferris FL (2010) Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Investig Ophthalmol Vis Sci 51(12):6131–6139. doi: 10.1167/iovs.10-5637 CrossRefGoogle Scholar
  95. Wong WT, Dresner S, Forooghian F, Glaser T, Doss L, Zhou M, Cunningham D, Shimel K, Harrington M, Hammel K, Cukras CA, Ferris FL, Chew EY (2013) Treatment of geographic atrophy with subconjunctival sirolimus: results of a phase I/II clinical trial. Investig Ophthalmol Vis Sci 54(4):2941–2950. doi: 10.1167/iovs.13-11650 CrossRefGoogle Scholar
  96. Woodell A, Rohrer B (2014) A mechanistic review of cigarette smoke and age-related macular degeneration. Adv Exp Med Biol 801:301–307. doi: 10.1007/978-1-4614-3209-8_38 PubMedCrossRefGoogle Scholar
  97. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, Gregori G, Penha FM, Moshfeghi AA, Zhang K, Sadda S, Feuer W, Rosenfeld PJ (2014) Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology 121(3):693–701. doi: 10.1016/j.ophtha.2013.09.044 PubMedCrossRefGoogle Scholar
  98. Zeng S, Whitmore SS, Sohn EH, Riker MJ, Wiley LA, Scheetz TE, Stone EM, Tucker BA, Mullins RF (2016) Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration. J Pathol 238(3):446–456. doi: 10.1002/path.4669 PubMedCrossRefGoogle Scholar
  99. Zhang K, Hopkins JJ, Heier JS, Birch DG, Halperin LS, Albini TA, Brown DM, Jaffe GJ, Tao W, Williams GA (2011) Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci U S A 108(15):6241–6245. doi: 10.1073/pnas.1018987108 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhang J, Kiser PD, Badiee M, Palczewska G, Dong Z, Golczak M, Tochtrop GP, Palczewski K (2015) Molecular pharmacodynamics of emixustat in protection against retinal degeneration. J Clin Invest 125(7):2781–2794. doi: 10.1172/JCI80950 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zhang S, Yu N, Zhang R, Zhang S, Wu J (2016) Interleukin-17A induces IL-1beta secretion from RPE cells via the NLRP3 inflammasome. Investig Ophthalmol Vis Sci 57(2):312–319. doi: 10.1167/iovs.15-17578 CrossRefGoogle Scholar
  102. Zhao C, Yasumura D, Li X, Matthes M, Lloyd M, Nielsen G, Ahern K, Snyder M, Bok D, Dunaief JL, LaVail MM, Vollrath D (2011) mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J Clin Invest 121(1):369–383. doi: 10.1172/JCI44303 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Physiology and Ophthalmology and Visual SciencesUniversity of Kentucky College of MedicineLexingtonUSA

Personalised recommendations