Advertisement

Molecular Control of Actin Dynamics In Vivo: Insights from Drosophila

  • Lena Brüser
  • Sven BogdanEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 235)

Abstract

The actin cytoskeleton provides mechanical support for cells and generates forces to drive cell shape changes and cell migration in morphogenesis. Molecular understanding of actin dynamics requires a genetically traceable model system that allows interdisciplinary experimental approaches to elucidate the regulatory network of cytoskeletal proteins in vivo. Here, we will discuss some examples of how advances in Drosophila genetics and high-resolution imaging techniques contribute to the discovery of new actin functions, signaling pathways, and mechanisms of actin regulation in vivo.

Keywords

Actin cytoskeleton Boder cell migration Cell migration Drosophila Egg chamber rotation High-resolution microscopy Live imaging Macrophages WASP proteins 

Notes

Acknowledgements

We thank Meike Bechtold and Christian Klämbt for critical reading of the manuscript. Our work is supported by a grant to S.B. from the cluster of excellence “Cells in Motion” (CIM), and by grants to S.B. from the Heisenberg Program of the Deutsche Forschungsgemeinschaft (DFG) and by the SPP1464 priority programme of the DFG.

References

  1. Bai J, Uehara Y, Montell DJ (2000) Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103:1047–1058PubMedCrossRefGoogle Scholar
  2. Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087PubMedCrossRefGoogle Scholar
  3. Bastock R, St Johnston D (2011) Oogenesis: matrix revolutions. Curr Biol 21:R231–R233PubMedCrossRefGoogle Scholar
  4. Bear JE, Rawls JF, Saxe CL 3rd (1998) SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J Cell Biol 142:1325–1335PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beccari S, Teixeira L, Rorth P (2002) The JAK/STAT pathway is required for border cell migration during Drosophila oogenesis. Mech Dev 111:115–123PubMedCrossRefGoogle Scholar
  6. Bechtold M, Schultz J, Bogdan S (2014) FHOD proteins in actin dynamics—a formin’ class of its own. Small GTPases 5:11PubMedCrossRefGoogle Scholar
  7. Ben-Yaacov S, Le Borgne R, Abramson I, Schweisguth F, Schejter ED (2001) Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J Cell Biol 152:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berger S, Schafer G, Kesper DA, Holz A, Eriksson T, Palmer RH, Beck L, Klambt C, Renkawitz-Pohl R, Onel SF (2008) WASP and SCAR have distinct roles in activating the Arp2/3 complex during myoblast fusion. J Cell Sci 121:1303–1313PubMedCrossRefGoogle Scholar
  9. Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 6:9–23PubMedCrossRefGoogle Scholar
  10. Bilder D, Haigo SL (2012) Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev Cell 22:12–23PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bogdan S, Klambt C (2003) Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development 130:4427–4437PubMedCrossRefGoogle Scholar
  12. Bogdan S, Stephan R, Lobke C, Mertens A, Klambt C (2005) Abi activates WASP to promote sensory organ development. Nat Cell Biol 7:977–984PubMedCrossRefGoogle Scholar
  13. Borghese L, Fletcher G, Mathieu J, Atzberger A, Eades WC, Cagan RL, Rorth P (2006) Systematic analysis of the transcriptional switch inducing migration of border cells. Dev Cell 10:497–508PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bouma G, Burns S, Thrasher AJ (2007) Impaired T-cell priming in vivo resulting from dysfunction of WASp-deficient dendritic cells. Blood 110:4278–4284PubMedCrossRefGoogle Scholar
  15. Bouma G, Mendoza-Naranjo A, Blundell MP, de Falco E, Parsley KL, Burns SO, Thrasher AJ (2011) Cytoskeletal remodeling mediated by WASp in dendritic cells is necessary for normal immune synapse formation and T-cell priming. Blood 118:2492–2501PubMedCrossRefGoogle Scholar
  16. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  17. Brinkmann K, Winterhoff M, Onel SF, Schultz J, Faix J, Bogdan S (2016) WHAMY is a novel actin polymerase promoting myoblast fusion, macrophage cell motility and sensory organ development in Drosophila. J Cell Sci 129:604–620PubMedCrossRefGoogle Scholar
  18. Bruckner K, Kockel L, Duchek P, Luque CM, Rorth P, Perrimon N (2004) The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev Cell 7:73–84PubMedCrossRefGoogle Scholar
  19. Bugyi B, Carlier MF (2010) Control of actin filament treadmilling in cell motility. Annu Rev Biophys 39:449–470PubMedCrossRefGoogle Scholar
  20. Caceres R, Abou-Ghali M, Plastino J (2015) Reconstituting the actin cytoskeleton at or near surfaces in vitro. Biochim Biophys Acta 1853:3006–3014PubMedCrossRefGoogle Scholar
  21. Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V, Sawyer JK, Danuser G, Montell DJ (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cameron JM, Gabrielsen M, Chim YH, Munro J, McGhee EJ, Sumpton D, Eaton P, Anderson KI, Yin HB, Olson MF (2015) Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation. Curr Biol 25:1520–1525PubMedPubMedCentralCrossRefGoogle Scholar
  23. Campellone KG, Webb NJ, Znameroski EA, Welch MD (2008) WHAMM is an Arp2/3 complex activator that binds microtubules and functions in ER to Golgi transport. Cell 134:148–161PubMedPubMedCentralCrossRefGoogle Scholar
  24. Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cestra G, Toomre D, Chang S, De Camilli P (2005) The Abl/Arg substrate ArgBP2/nArgBP2 coordinates the function of multiple regulatory mechanisms converging on the actin cytoskeleton. Proc Natl Acad Sci U S A 102:1731–1736PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cetera M, Horne-Badovinac S (2015) Round and round gets you somewhere: collective cell migration and planar polarity in elongating Drosophila egg chambers. Curr Opin Genet Dev 32:10–15PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cetera M, Ramirez-San Juan GR, Oakes PW, Lewellyn L, Fairchild MJ, Tanentzapf G, Gardel ML, Horne-Badovinac S (2014) Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 5:5511PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen EH (2011) Invasive podosomes and myoblast fusion. Curr Top Membr 68:235–258PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen Z, Borek D, Padrick SB, Gomez TS, Metlagel Z, Ismail AM, Umetani J, Billadeau DD, Otwinowski Z, Rosen MK (2010) Structure and control of the actin regulatory WAVE complex. Nature 468:533–538PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen B, Brinkmann K, Chen Z, Pak CW, Liao Y, Shi S, Henry L, Grishin NV, Bogdan S, Rosen MK (2014a) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156:195–207PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chen XJ, Squarr AJ, Stephan R, Chen B, Higgins TE, Barry DJ, Martin MC, Rosen MK, Bogdan S, Way M (2014b) Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton. Dev Cell 30:569–584PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cho NK, Keyes L, Johnson E, Heller J, Ryner L, Karim F, Krasnow MA (2002) Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108:865–876PubMedCrossRefGoogle Scholar
  33. Cooper JA, Schafer DA (2000) Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12:97–103PubMedCrossRefGoogle Scholar
  34. Cotta-de-Almeida V, Westerberg L, Maillard MH, Onaldi D, Wachtel H, Meelu P, Chung UI, Xavier R, Alt FW, Snapper SB (2007) Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc Natl Acad Sci U S A 104:15424–15429PubMedPubMedCentralCrossRefGoogle Scholar
  35. D’Ambrosio MV, Vale RD (2010) A whole genome RNAi screen of Drosophila S2 cell spreading performed using automated computational image analysis. J Cell Biol 191:471–478PubMedPubMedCentralCrossRefGoogle Scholar
  36. Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 79:following 922Google Scholar
  37. Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van Den Oord JJ, Verhoef GE, Boogaerts MA, Fryns JP, You D, Rosen MK, Vandenberghe P (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27:313–317PubMedCrossRefGoogle Scholar
  38. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156PubMedCrossRefGoogle Scholar
  39. Dong B, Kakihara K, Otani T, Wada H, Hayashi S (2013) Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Nat Commun 4:1358PubMedPubMedCentralCrossRefGoogle Scholar
  40. Duchek P, Rorth P (2001) Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291:131–133PubMedCrossRefGoogle Scholar
  41. Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107:17–26PubMedCrossRefGoogle Scholar
  42. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793PubMedCrossRefGoogle Scholar
  43. Evans IR, Ghai PA, Urbancic V, Tan KL, Wood W (2013) SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila. Cell Death Differ 20:709–720PubMedPubMedCentralCrossRefGoogle Scholar
  44. Firat-Karalar EN, Welch MD (2011) New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 23:4–13PubMedCrossRefGoogle Scholar
  45. Fricke R, Gohl C, Dharmalingam E, Grevelhorster A, Zahedi B, Harden N, Kessels M, Qualmann B, Bogdan S (2009) Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE. Curr Biol 19:1429–1437PubMedCrossRefGoogle Scholar
  46. Frugtniet B, Jiang WG, Martin TA (2015) Role of the WASP and WAVE family proteins in breast cancer invasion and metastasis. Breast Cancer (Dove Med Press) 7:99–109PubMedCentralGoogle Scholar
  47. Fulga TA, Rorth P (2002) Invasive cell migration is initiated by guided growth of long cellular extensions. Nat Cell Biol 4:715–719PubMedCrossRefGoogle Scholar
  48. Gardberg M, Kaipio K, Lehtinen L, Mikkonen P, Heuser VD, Talvinen K, Iljin K, Kampf C, Uhlen M, Grenman R, Koivisto M, Carpen O (2013) FHOD1, a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell migration and invasion. PLoS One 8, e74923PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gates J (2012) Drosophila egg chamber elongation Insights into how tissues and organs are shaped. Fly 6:213–227PubMedPubMedCentralCrossRefGoogle Scholar
  50. Godt D, Tepass U (2009) Breaking a temporal barrier: signalling crosstalk regulates the initiation of border cell migration. Nat Cell Biol 11:536–538PubMedCrossRefGoogle Scholar
  51. Goulding NJ (2004) The molecular complexity of glucocorticoid actions in inflammation – a four-ring circus. Curr Opin Pharmacol 4:629–636PubMedCrossRefGoogle Scholar
  52. Gruenbaum-Cohen Y, Harel I, Umansky KB, Tzahor E, Snapper SB, Shilo BZ, Schejter ED (2012) The actin regulator N-WASp is required for muscle-cell fusion in mice. Proc Natl Acad Sci U S A 109:11211–11216PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gustafsson MG, Shao L, Carlton PM, Wang CJ, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266PubMedCrossRefGoogle Scholar
  55. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074PubMedPubMedCentralCrossRefGoogle Scholar
  56. Haralalka S, Shelton C, Cartwright HN, Katzfey E, Janzen E, Abmayr SM (2011) Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila. Development 138:1551–1562PubMedPubMedCentralCrossRefGoogle Scholar
  57. He L, Wang X, Montell DJ (2011) Shining light on Drosophila oogenesis: live imaging of egg development. Curr Opin Genet Dev 21:612–619PubMedCrossRefGoogle Scholar
  58. Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232:559–574PubMedCrossRefGoogle Scholar
  59. Ibarra N, Pollitt A, Insall RH (2005) Regulation of actin assembly by SCAR/WAVE proteins. Biochem Soc Trans 33:1243–1246PubMedCrossRefGoogle Scholar
  60. Imai K, Nonoyama S, Ochs HD (2003) WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Curr Opin Allergy Clin Immunol 3:427–436PubMedCrossRefGoogle Scholar
  61. Jang AC, Chang YC, Bai J, Montell D (2009) Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol 11:569–579PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jin Y, Mazza C, Christie JR, Giliani S, Fiorini M, Mella P, Gandellini F, Stewart DM, Zhu Q, Nelson DL, Notarangelo LD, Ochs HD (2004) Mutations of the Wiskott-Aldrich syndrome protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood 104:4010–4019PubMedCrossRefGoogle Scholar
  63. Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, Zhang JD, Wiemann S, Sahin O (2012) MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol 32:633–651PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kanca O, Caussinus E, Denes AS, Percival-Smith A, Affolter M (2014) Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development. Development 141:472–480PubMedCrossRefGoogle Scholar
  65. Kiger AA, Baum B, Jones S, Jones MR, Coulson A, Echeverri C, Perrimon N (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2:27PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kollmar M, Lbik D, Enge S (2012) Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML. BMC Res Notes 5:88PubMedPubMedCentralCrossRefGoogle Scholar
  67. Koronakis V, Hume PJ, Humphreys D, Liu T, Horning O, Jensen ON, McGhie EJ (2011) WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Proc Natl Acad Sci U S A 108:14449–14454PubMedPubMedCentralCrossRefGoogle Scholar
  68. Krause M, Gautreau A (2014) Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 15:577–590PubMedCrossRefGoogle Scholar
  69. Krzemien J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325–328PubMedCrossRefGoogle Scholar
  70. Kunda P, Craig G, Dominguez V, Baum B (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 13:1867–1875PubMedCrossRefGoogle Scholar
  71. Lammel U, Bechtold M, Risse B, Berh D, Fleige A, Bunse I, Jiang X, Klambt C, Bogdan S (2014) The Drosophila FHOD1-like formin Knittrig acts through Rok to promote stress fiber formation and directed macrophage migration during the cellular immune response. Development 141:1366–1380PubMedCrossRefGoogle Scholar
  72. Leng Y, Zhang J, Badour K, Arpaia E, Freeman S, Cheung P, Siu M, Siminovitch K (2005) Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci U S A 102:1098–1103PubMedPubMedCentralCrossRefGoogle Scholar
  73. Linardopoulou EV, Parghi SS, Friedman C, Osborn GE, Parkhurst SM, Trask BJ (2007) Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet 3, e237PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liu R, Abreu-Blanco MT, Barry KC, Linardopoulou EV, Osborn GE, Parkhurst SM (2009a) Wash functions downstream of Rho and links linear and branched actin nucleation factors. Development 136:2849–2860PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu T, Sims D, Baum B (2009b) Parallel RNAi screens across different cell lines identify generic and cell type-specific regulators of actin organization and cell morphology. Genome Biol 10:R26PubMedPubMedCentralCrossRefGoogle Scholar
  76. Loisel TP, Boujemaa R, Pantaloni D, Carlier MF (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401:613–616PubMedCrossRefGoogle Scholar
  77. Machesky LM, Gould KL (1999) The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11:117–121PubMedCrossRefGoogle Scholar
  78. Machesky LM, Insall RH (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8:1347–1356PubMedCrossRefGoogle Scholar
  79. Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD (1994) Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127:107–115PubMedCrossRefGoogle Scholar
  80. Maillard MH, Cotta-de-Almeida V, Takeshima F, Nguyen DD, Michetti P, Nagler C, Bhan AK, Snapper SB (2007) The Wiskott-Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J Exp Med 204:381–391PubMedPubMedCentralCrossRefGoogle Scholar
  81. Markus R, Laurinyecz B, Kurucz E, Honti V, Bajusz I, Sipos B, Somogyi K, Kronhamn J, Hultmark D, Ando I (2009) Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc Natl Acad Sci U S A 106:4805–4809PubMedPubMedCentralCrossRefGoogle Scholar
  82. Massarwa R, Carmon S, Shilo BZ, Schejter ED (2007) WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Dev Cell 12:557–569PubMedCrossRefGoogle Scholar
  83. McDonald JA, Montell DJ (2005) Analysis of cell migration using Drosophila as a model system. Methods Mol Biol 294:175–202PubMedGoogle Scholar
  84. McDonald JA, Pinheiro EM, Montell DJ (2003) PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130:3469–3478PubMedCrossRefGoogle Scholar
  85. McDonald JA, Pinheiro EM, Kadlec L, Schupbach T, Montell DJ (2006) Multiple EGFR ligands participate in guiding migrating border cells. Dev Biol 296:94–103PubMedCrossRefGoogle Scholar
  86. McMahon A, Supatto W, Fraser SE, Stathopoulos A (2008) Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 322:1546–1550PubMedPubMedCentralCrossRefGoogle Scholar
  87. Miki H, Miura K, Takenawa T (1996) N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15:5326–5335PubMedPubMedCentralGoogle Scholar
  88. Moeller MJ, Soofi A, Braun GS, Li X, Watzl C, Kriz W, Holzman LB (2004) Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and cell polarization. EMBO J 23:3769–3779PubMedPubMedCentralCrossRefGoogle Scholar
  89. Mohr S, Bakal C, Perrimon N (2010) Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79:37–64PubMedPubMedCentralCrossRefGoogle Scholar
  90. Montell DJ (2003) Border-cell migration: the race is on. Nat Rev Mol Cell Bio 4:13–24CrossRefGoogle Scholar
  91. Montell DJ, Rorth P, Spradling AC (1992) Slow border cells, a locus required for a developmentally regulated cell migration during oogenesis, encodes Drosophila C/EBP. Cell 71:51–62PubMedCrossRefGoogle Scholar
  92. Montell DJ, Yoon WH, Starz-Gaiano M (2012) Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 13:631–645PubMedPubMedCentralCrossRefGoogle Scholar
  93. Moreira S, Stramer B, Evans I, Wood W, Martin P (2010) Prioritization of competing damage and developmental signals by migrating macrophages in the Drosophila embryo. Curr Biol 20:464–470PubMedCrossRefGoogle Scholar
  94. Moreira CG, Jacinto A, Prag S (2013) Drosophila integrin adhesion complexes are essential for hemocyte migration in vivo. Biol Open 2:795–801PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mukherjee P, Gildor B, Shilo BZ, VijayRaghavan K, Schejter ED (2011) The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis. Development 138:2347–2357PubMedPubMedCentralCrossRefGoogle Scholar
  96. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, Cavallaro A, Booker M, Pfeiffer BD, Markstein M, Wang H et al (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100PubMedPubMedCentralCrossRefGoogle Scholar
  98. Oikawa T, Yamaguchi H, Itoh T, Kato M, Ijuin T, Yamazaki D, Suetsugu S, Takenawa T (2004) PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nat Cell Biol 6:420–426PubMedCrossRefGoogle Scholar
  99. Pocha SM, Montell DJ (2014) Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations. Annu Rev Genet 48:295–318PubMedCrossRefGoogle Scholar
  100. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465PubMedCrossRefGoogle Scholar
  101. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212PubMedPubMedCentralCrossRefGoogle Scholar
  102. Poulter NS, Pollitt AY, Davies A, Malinova D, Nash GB, Hannon MJ, Pikramenou Z, Rappoport JZ, Hartwig JH, Owen DM, Thrasher AJ, Watson SP, Thomas SG (2015) Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat Commun 6:7254PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rajan A, Tien AC, Haueter CM, Schulze KL, Bellen HJ (2009) The Arp2/3 complex and WASp are required for apical trafficking of Delta into microvilli during cell fate specification of sensory organ precursors. Nat Cell Biol 11:815–824PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ramond E, Meister M, Lemaitre B (2015) From embryo to adult: hematopoiesis along the Drosophila life cycle. Dev Cell 33:367–368PubMedCrossRefGoogle Scholar
  105. Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr Biol 23:424–429PubMedPubMedCentralCrossRefGoogle Scholar
  106. Recher M, Burns SO, de la Fuente MA, Volpi S, Dahlberg C, Walter JE, Moffitt K, Mathew D, Honke N, Lang PA, Patrizi L, Falet H, Keszei M, Mizui M, Csizmadia E, Candotti F, Nadeau K, Bouma G, Delmonte OM, Frugoni F, Fomin AB, Buchbinder D, Lundequist EM, Massaad MJ, Tsokos GC, Hartwig J, Manis J, Terhorst C, Geha RS, Snapper S, Lang KS, Malley R, Westerberg L, Thrasher AJ, Notarangelo LD (2012) B cell-intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood 119:2819–2828PubMedPubMedCentralCrossRefGoogle Scholar
  107. Regan JC, Brandao AS, Leitao AB, Mantas Dias AR, Sucena E, Jacinto A, Zaidman-Remy A (2013) Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog 9, e1003720PubMedPubMedCentralCrossRefGoogle Scholar
  108. Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rieder LE, Larschan EN (2014) Wisdom from the fly. Trends Genet 30:479–481PubMedPubMedCentralCrossRefGoogle Scholar
  110. Robinson DN, Cooley L (1997) Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu Rev Cell Dev Biol 13:147–170PubMedCrossRefGoogle Scholar
  111. Rogers SL, Wiedemann U, Stuurman N, Vale RD (2003) Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J Cell Biol 162:1079–1088PubMedPubMedCentralCrossRefGoogle Scholar
  112. Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231PubMedCrossRefGoogle Scholar
  113. Rohn JL, Sims D, Liu T, Fedorova M, Schock F, Dopie J, Vartiainen MK, Kiger AA, Perrimon N, Baum B (2011) Comparative RNAi screening identifies a conserved core metazoan actinome by phenotype. J Cell biol 194:789–805PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rorth P (2012) Fellow travellers: emergent properties of collective cell migration. EMBO Rep 13:984–991PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rosales-Nieves AE, Gonzalez-Reyes A (2014) Genetics and mechanisms of ovarian cancer: parallels between Drosophila and humans. Semin Cell Dev Biol 28:104–109PubMedCrossRefGoogle Scholar
  116. Rotkopf S, Hamberg Y, Aigaki T, Snapper SB, Shilo BZ, Schejter ED (2011) The WASp-based actin polymerization machinery is required in somatic support cells for spermatid maturation and release. Development 138:2729–2739PubMedCrossRefGoogle Scholar
  117. Rottner K, Stradal TE (2011) Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 23:569–578PubMedCrossRefGoogle Scholar
  118. Routley CE, Ashcroft GS (2009) Effect of estrogen and progesterone on macrophage activation during wound healing. Wound Repair Regen 17:42–50PubMedCrossRefGoogle Scholar
  119. Sadhukhan S, Sarkar K, Taylor M, Candotti F, Vyas YM (2014) Nuclear role of WASp in gene transcription is uncoupled from its ARP2/3-dependent cytoplasmic role in actin polymerization. J Immunol 193:150–160PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sampson CJ, Amin U, Couso JP (2013) Activation of Drosophila hemocyte motility by the ecdysone hormone. Biol Open 2:1412–1420PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sander M, Squarr AJ, Risse B, Jiang X, Bogdan S (2013) Drosophila pupal macrophages—a versatile tool for combined ex vivo and in vivo imaging of actin dynamics at high resolution. Eur J Cell Biol 92:349–354PubMedCrossRefGoogle Scholar
  122. Sarkar K, Sadhukhan S, Han SS, Vyas YM (2014) Disruption of hSWI/SNF complexes in T cells by WAS mutations distinguishes X-linked thrombocytopenia from Wiskott-Aldrich syndrome. Blood 124:3409–3419PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sens KL, Zhang S, Jin P, Duan R, Zhang G, Luo F, Parachini L, Chen EH (2010) An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J Cell Biol 191:1013–1027PubMedPubMedCentralCrossRefGoogle Scholar
  124. Shilagardi K, Li S, Luo F, Marikar F, Duan R, Jin P, Kim JH, Murnen K, Chen EH (2013) Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 340:359–363PubMedPubMedCentralCrossRefGoogle Scholar
  125. Silver DL, Montell DJ (2001) Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 107:831–841PubMedCrossRefGoogle Scholar
  126. Silver DL, Geisbrecht ER, Montell DJ (2005) Requirement for JAK/STAT signaling throughout border cell migration in Drosophila. Development 132:3483–3492PubMedCrossRefGoogle Scholar
  127. Snapper SB, Rosen FS, Mizoguchi E, Cohen P, Khan W, Liu CH, Hagemann TL, Kwan SP, Ferrini R, Davidson L, Bhan AK, Alt FW (1998) Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9:81–91PubMedCrossRefGoogle Scholar
  128. Squarr AJ, Brinkmann K, Chen B, Steinbacher T, Ebnet K, Rosen MK, Bogdan S (2016) Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation. J Cell Biol 212:591–603PubMedPubMedCentralCrossRefGoogle Scholar
  129. Starz-Gaiano M, Montell DJ (2004) Genes that drive invasion and migration in Drosophila. Curr Opin Genet Dev 14:86–91PubMedCrossRefGoogle Scholar
  130. Stephan R, Grevelhorster A, Wenderdel S, Klambt C, Bogdan S (2008) Abi induces ectopic sensory organ formation by stimulating EGFR signaling. Mech Dev 125:183–195PubMedCrossRefGoogle Scholar
  131. Stephan R, Gohl C, Fleige A, Klambt C, Bogdan S (2011) Membrane-targeted WAVE mediates photoreceptor axon targeting in the absence of the WAVE complex in Drosophila. Mol Biol Cell 22:4079–4092PubMedPubMedCentralCrossRefGoogle Scholar
  132. Stewart DM, Tian L, Nelson DL (1999) Mutations that cause the Wiskott-Aldrich syndrome impair the interaction of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein. J Immunol 162:5019–5024PubMedGoogle Scholar
  133. Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, Martin P (2005) Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 168:567–573PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sturner T, Tavosanis G (2016) Rotating for elongation: Fat2 whips for the race. J Cell Biol 212:487–489PubMedPubMedCentralCrossRefGoogle Scholar
  135. Suetsugu S, Hattori M, Miki H, Tezuka T, Yamamoto T, Mikoshiba K, Takenawa T (2002) Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev Cell 3:645–658PubMedCrossRefGoogle Scholar
  136. Supatto W, McMahon A, Fraser SE, Stathopoulos A (2009) Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis. Nat Protoc 4:1397–1412PubMedPubMedCentralCrossRefGoogle Scholar
  137. Takenawa T (2005) From N-WASP to WAVE: key molecules for regulation of cortical actin organization. Novartis Found Symp 269:3–10; discussion 10–15, 30–14 passimGoogle Scholar
  138. Tal T, Vaizel-Ohayon D, Schejter ED (2002) Conserved interactions with cytoskeletal but not signaling elements are an essential aspect of Drosophila WASp function. Dev Biol 243:260–271PubMedCrossRefGoogle Scholar
  139. Tang H, Li A, Bi J, Veltman DM, Zech T, Spence HJ, Yu X, Timpson P, Insall RH, Frame MC, Machesky LM (2013) Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. Curr Biol 23:107–117PubMedCrossRefGoogle Scholar
  140. Tanner K, Mori H, Mroue R, Bruni-Cardoso A, Bissell MJ (2012) Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc Natl Acad Sci U S A 109:1973–1978PubMedPubMedCentralCrossRefGoogle Scholar
  141. Taylor MD, Sadhukhan S, Kottangada P, Ramgopal A, Sarkar K, D’Silva S, Selvakumar A, Candotti F, Vyas YM (2010) Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci Transl Med 2:37ra44Google Scholar
  142. Thrasher AJ, Burns SO (2010) WASP: a key immunological multitasker. Nat Rev Immunol 10:182–192PubMedCrossRefGoogle Scholar
  143. Tsuboi S (2007) Requirement for a complex of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein in podosome formation in macrophages. J Immunol 178:2987–2995PubMedPubMedCentralCrossRefGoogle Scholar
  144. Veltman DM, Insall RH (2010) WASP family proteins: their evolution and its physiological implications. Mol Biol Cell 21:2880–2893PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vignaud T, Blanchoin L, Thery M (2012) Directed cytoskeleton self-organization. Trends Cell Biol 22:671–682PubMedCrossRefGoogle Scholar
  146. Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, Strina D, Patrosso MC, Ramenghi U, Sacco MG et al (1995) X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet 9:414–417PubMedCrossRefGoogle Scholar
  147. Wang XJ, Bo JY, Bridges T, Dugan KD, Pan TC, Chodosh LA, Montell DJ (2006) Analysis of cell migration using whole-genome expression profiling of migratory cells in the Drosophila ovary. Dev Cell 10:483–495PubMedCrossRefGoogle Scholar
  148. Wang X, He L, Wu YI, Hahn KM, Montell DJ (2010) Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nat Cell Biol 12:591–597PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang H, Lacoche S, Huang L, Xue B, Muthuswamy SK (2013) Rotational motion during three-dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly. Proc Natl Acad Sci U S A 110:163–168PubMedCrossRefGoogle Scholar
  150. Wangler MF, Yamamoto S, Bellen HJ (2015) Fruit flies in biomedical research. Genetics 199:639–653PubMedPubMedCentralCrossRefGoogle Scholar
  151. Weiss C, Schultz J (2015) Identification of divergent WH2 motifs by HMM-HMM alignments. BMC Res Notes 8:18PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wood W, Faria C, Jacinto A (2006) Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J Cell Biol 173:405–416PubMedPubMedCentralCrossRefGoogle Scholar
  153. Xia P, Wang S, Du Y, Zhao Z, Shi L, Sun L, Huang G, Ye B, Li C, Dai Z, Hou N, Cheng X, Sun Q, Li L, Yang X, Fan Z (2013) WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. EMBO J 32:2685–2696PubMedPubMedCentralCrossRefGoogle Scholar
  154. Xiao X, Mruk DD, Tang EI, Massarwa R, Mok KW, Li N, Wong CK, Lee WM, Snapper SB, Shilo BZ, Schejter ED, Cheng CY (2014) N-wasp is required for structural integrity of the blood-testis barrier. PLoS Genet 10, e1004447PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yan C, Martinez-Quiles N, Eden S, Shibata T, Takeshima F, Shinkura R, Fujiwara Y, Bronson R, Snapper SB, Kirschner MW, Geha R, Rosen FS, Alt FW (2003) WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J 22:3602–3612PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A (2012) Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. J Cell Biol 199:225–234PubMedPubMedCentralCrossRefGoogle Scholar
  157. Yu X, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I, Schwarz JP, Spence H, Futo K, Timpson P, Nixon C, Ma Y, Anton IM, Visegrady B, Insall RH, Oien K, Blyth K, Norman JC, Machesky LM (2012) N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J Cell Biol 199:527–544PubMedPubMedCentralCrossRefGoogle Scholar
  158. Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, Schejter ED (2002) SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 156:689–701PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zobel T, Bogdan S (2013) A high resolution view of the fly actin cytoskeleton lacking a functional WAVE complex. J Microsc 251:224–231PubMedCrossRefGoogle Scholar
  160. Zuchero JB, Coutts AS, Quinlan ME, La Thangue NB, Mullins RD (2009) p53-cofactor JMY is a multifunctional actin nucleation factor. Nat Cell Biol 11:451–459PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for NeurobiologyUniversity of MuensterMuensterGermany

Personalised recommendations