Advertisement

Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function

  • Hiroko P. Indo
  • Clare L. Hawkins
  • Ikuo Nakanishi
  • Ken-ichiro Matsumoto
  • Hirofumi Matsui
  • Shigeaki Suenaga
  • Michael J. Davies
  • Daret K. St Clair
  • Toshihiko Ozawa
  • Hideyuki J. Majima
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 240)

Abstract

Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.

Keywords

Activation GATA HIF Mitochondria Mitochondrial ROS MMP MnSOD NF-κB Reactive oxygen species Signal transduction Superoxide 

Notes

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (C) (No. 22592093 to H.J.M.) and the Strategic Promotion Program for Basic Nuclear Research (to H.J.M.) of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) (to H.J.M.) by the Ministry of Agriculture, Forestry and Fisheries of Japan. M.J.D. gratefully acknowledges financial support from the Novo Nordisk Foundation (Laureate Research Grant NNF13OC0004294).

Conflict of Interest

No potential conflicts of interest were disclosed.

References

  1. Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140. doi: 10.1038/24094 PubMedCrossRefGoogle Scholar
  2. Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90PubMedCrossRefGoogle Scholar
  3. Barkho BZ, Munoz AE, Li X, Li L, Cunningham LA, Zhao X (2008) Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26:3139–3149PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Görlach A (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 7:755–761CrossRefGoogle Scholar
  5. Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54:311–314PubMedCrossRefGoogle Scholar
  6. Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 9:13–23CrossRefGoogle Scholar
  7. Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541PubMedCrossRefGoogle Scholar
  8. Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34. doi: 10.1186/1741-7007-12-34 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206PubMedCrossRefGoogle Scholar
  10. Cochemé HM, Quin C, McQuaker SJ, Cabreiro F, Logan A, Prime TA, Abakumova I, Patel JV, Fearnley IM, James AM, Porteous CM, Smith RA, Saeed S, Carré JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP (2011) Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab 13:340–350PubMedPubMedCentralCrossRefGoogle Scholar
  11. Corn RA, Hunter C, Liou HC, Siebenlist U, Boothby MR (2005) Opposing roles for RelB and Bcl-3 in regulation of T-box expressed in T cells, GATA-3, and the effect of differentiation. J Immunol 175:2102–2110PubMedCrossRefGoogle Scholar
  12. Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR (2012) Cell signaling through protein kinase C oxidation and activation. Int J Mol Sci 13:10697–10721PubMedPubMedCentralCrossRefGoogle Scholar
  13. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRefGoogle Scholar
  14. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389–406PubMedCrossRefGoogle Scholar
  15. Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A (2001) A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2:45–50PubMedCrossRefGoogle Scholar
  16. Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289PubMedCrossRefGoogle Scholar
  17. Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473:805–825PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK (2008) Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45:1340–1351PubMedPubMedCentralCrossRefGoogle Scholar
  20. DiMauro S, Schon EA (2006) The mitochondrial respiratory chain and its disorders. In: DiMauro S, Hirano M, Schon EA (eds) Mitochondrial medicine. Informa, Abington, pp 7–26CrossRefGoogle Scholar
  21. Dirsch VM, Gerbes AL, Vollmar AM (1998) Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kappaB. Mol Pharmacol 53:402–407PubMedGoogle Scholar
  22. Fang P, Shi HY, Wu XM, Zhang YH, Zhong YJ, Deng WJ, Zhang YP, Xie M (2016) Targeted inhibition of GATA-6 attenuates airway inflammation and remodeling by regulating caveolin-1 through TLR2/MyD88/NF-κB in murine model of asthma. Mol Immunol 75:144–150PubMedCrossRefGoogle Scholar
  23. Finkel T (2012) Signal transduction by mitochondrial oxidants. J Biol Chem 287:4434–4440PubMedCrossRefGoogle Scholar
  24. Ganesh Yerra V, Negi G, Sharma SS, Kumar A (2013) Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol 1:394–397PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ghantous CM, Kobeissy FH, Soudani N, Rahman FA, Al-Hariri M, Itani HA, Sabra R, Zeidan A (2016) Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation. Front Pharmacol 6:240. doi: 10.3389/fphar.2015.00240, eCollection 2015Google Scholar
  26. Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 11:2209–2222PubMedCrossRefGoogle Scholar
  27. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505PubMedCrossRefGoogle Scholar
  28. Goodman BE (2002) Transport of small molecules across cell membranes: water channels and urea transporters. Adv Physiol Educ 26:146–157PubMedCrossRefGoogle Scholar
  29. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481PubMedCrossRefGoogle Scholar
  30. Gross J, Lapierre CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48:1014–1022PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gupta A, Rosenberger SF, Bowden GT (1999) Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 20:2063–2073PubMedCrossRefGoogle Scholar
  32. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142PubMedCrossRefGoogle Scholar
  33. Hagen T (2012) Oxygen versus reactive oxygen in the regulation of HIF-1α: the balance tips. Biomed Res Int 2012:436981. doi: 10.1155/2012/436981 Google Scholar
  34. Halliwell B, Gutteridge JMC (2007a) Oxygen is a toxic gas – an introduction to oxygen toxicity and reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 1–29Google Scholar
  35. Halliwell B, Gutteridge JMC (2007b) Antioxidant defences: endogeneous and diet derived. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 79–186Google Scholar
  36. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563PubMedCrossRefGoogle Scholar
  37. Hao L, Nishimura T, Wo H, Fernandez-Patron C (2006) Vascular responses to alpha1-adrenergic receptors in small rat mesenteric arteries depend on mitochondrial reactive oxygen species. Arterioscler Thromb Vasc Biol 26:819–825PubMedCrossRefGoogle Scholar
  38. Hawkins CL, Morgan PE, Davies MJ (2009) Quantification of protein modification by oxidants. Free Radic Biol Med 46:965–988PubMedCrossRefGoogle Scholar
  39. Heissmeyer V, Krappmann D, Wulczyn FG, Scheidereit C (1999) NF-kappaB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes. EMBO J 18:4766–4778PubMedPubMedCentralCrossRefGoogle Scholar
  40. Herscovitch M, Comb W, Ennis T, Coleman K, Yong S, Armstead B, Kalaitzidis D, Chandani S, Gilmore TD (2008) Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347. Biochem Biophys Res Commun 367:103–108PubMedCrossRefGoogle Scholar
  41. Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421PubMedCrossRefGoogle Scholar
  42. Hulboy DL, Rudolph LA, Matrisian LM (1997) Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod 3:27–45PubMedCrossRefGoogle Scholar
  43. Hwang AB, Ryu EA, Artan M, Chang HW, Kabir MH, Nam HJ, Lee D, Yang JS, Kim S, Mair WB, Lee C, Lee SS, Lee SJ (2014) Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111:E4458–E4467PubMedPubMedCentralCrossRefGoogle Scholar
  44. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118PubMedCrossRefGoogle Scholar
  45. Indo HP, Yen H-C, Nakanishi I, Matsumoto K, Tamura M, Nagano Y, Matsui H, Gusev O, Cornette R, Okuda T, Minamiyama Y, Ichikawa H, Suenaga S, Oki M, Sato T, Ozawa T, St Clair DK, Majima HJ (2015) A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 56:1–7PubMedCrossRefGoogle Scholar
  46. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213PubMedCrossRefGoogle Scholar
  47. Itoh K, Ye P, Matsumiya T, Tanji K, Ozaki T (2015) Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr 56:91–97PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jamaluddin M, Wang S, Boldogh I, Tian B, Brasier AR (2007) TNFalpha-induced NF-kappaB/RelA Ser(276) phosphorylation and enhanceosome formation is mediated by an ROS-dependent PKAc pathway. Cell Signal 19:1419–1433PubMedCrossRefGoogle Scholar
  49. Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242PubMedCrossRefGoogle Scholar
  50. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J (2008) Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29:713–721PubMedCrossRefGoogle Scholar
  52. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682PubMedCrossRefGoogle Scholar
  53. Kalyanaraman B (2011) Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochem Soc Trans 39:1221–1225PubMedCrossRefGoogle Scholar
  54. Kamata H, Manabe T, Oka S, Kamata K, Hirata H (2002) Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519:231–237PubMedCrossRefGoogle Scholar
  55. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121PubMedCrossRefGoogle Scholar
  56. Kerr RA (2005) Earth science. The story of O2. Science 308:1730–1732PubMedCrossRefGoogle Scholar
  57. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140PubMedCrossRefGoogle Scholar
  58. Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT (2011) Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 10:57. doi: 10.1186/1475-2840-10-57 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lazaro JL, Izzo V, Meaume S, Davies AH, Lobmann R, Uccioli L (2016) Elevated levels of matrix metalloproteinases and chronic wound healing: an updated review of clinical evidence. J Wound Care 25:277–287PubMedCrossRefGoogle Scholar
  60. Lentjes MH, Niessen HE, Akiyama Y, de Bruïne AP, Melotte V, van Engeland M (2016) The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 18:e3PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13:1137–1143PubMedGoogle Scholar
  62. Liu J, Yoshida Y, Yamashita U (2008) DNA-binding activity of NFkappaB and phosphorylation of p65 are induced by N-acetylcysteine through phosphatidylinositol (PI) 3-kinase. Mol Immunol 45:3984–3989PubMedCrossRefGoogle Scholar
  63. Lu Y, Wahl LM (2005) Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostaglandin E2 through enhancement of NF-kappa B activity in lipopolysaccharide-activated human primary monocytes. J Immunol 175:5423–5429PubMedCrossRefGoogle Scholar
  64. Majima HJ, Oberley TD, Furukawa K, Mattson MP, Yen HC, Szweda LI, St Clair DK (1998) Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem 273:8217–8224PubMedCrossRefGoogle Scholar
  65. Majima HJ, Indo HP, Tomita K, Iwashita Y, Suzuki H, Masuda D, Shimazu T, Tanigaki F, Umemura S, Yano S, Fukui K, Higashibata A, Yamazaki TQ, Kameyama M, Suenaga S, Sato T, Yen H-C, Gusev O, Okuda T, Matsui H, Ozawa T, Ishioka N (2009) Bio-assessment of risk in long-term manned space exploration – cell death factors in space radiation and/or microgravity: a review. Biol Sci Space 23:43–53CrossRefGoogle Scholar
  66. Majima HJ, Indo HP, Suenaga S et al (2011a) Mitochondria as source of free radicals. In: Naito Y, Suematsu M, Yoshikawa T (eds) Free radical biology in digestive diseases, Front Gastrointest Res, vol 29. Karger, Basel, pp 12–22Google Scholar
  67. Majima HJ, Indo HP, Suenaga S, Matsui H, Yen HC, Ozawa T (2011b) Mitochondria as possible pharmaceutical targets for the effects of vitamin E and its homologues in oxidative stress-related diseases. Curr Pharm Des 17:2190–2195PubMedCrossRefGoogle Scholar
  68. Majima HJ, Indo HP, Nakanishi I, Suenaga S, Matsumoto K, Matsui H, Minamiyama Y, Ichikawa H, Yen H-C, Hawkins CL, Davies MJ, Ozawa T, St Clair DK (2016) Chasing great paths of helmut sies “oxidative stress”. Arch Biochem Biophys 595:54–60PubMedCrossRefGoogle Scholar
  69. McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta 1818:1444–1450PubMedCrossRefGoogle Scholar
  70. Mekhail K, Gunaratnam L, Bonicalzi ME, Lee S (2004) HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol 6:642–647PubMedCrossRefGoogle Scholar
  71. Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, Mittal J, Yan D, Chapagain P, Liu XZ (2016) Intricate functions of matrix metalloproteinases in physiological and pathological conditions. J Cell Physiol 231:2599–2621PubMedCrossRefGoogle Scholar
  72. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115PubMedCrossRefGoogle Scholar
  73. Murray TV, Smyrnias I, Shah AM, Brewer AC (2013) NADPH oxidase 4 regulates cardiomyocyte differentiation via redox activation of c-Jun protein and the cis-regulation of GATA-4 gene transcription. J Biol Chem 288:15745–15759PubMedPubMedCentralCrossRefGoogle Scholar
  74. Naumann M, Wulczyn FG, Scheidereit C (1993) The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I kappa B molecules and control nuclear translocation of NF-kappa B. EMBO J 12:213–222PubMedPubMedCentralGoogle Scholar
  75. Pagé EL, Chan DA, Giaccia AJ, Levine M, Richard DE (2008) Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell 19:86–94PubMedPubMedCentralCrossRefGoogle Scholar
  76. Peng HB, Libby P, Liao JK (1995) Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem 270:14214–14219PubMedCrossRefGoogle Scholar
  77. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:1104–1117PubMedCrossRefGoogle Scholar
  78. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pruijt JF, Fibbe WE, Laterveer L, Pieters RA, Lindley IJ, Paemen L, Masure S, Willemze R, Opdenakker G (1999) Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci U S A 96:10863–10868PubMedPubMedCentralCrossRefGoogle Scholar
  80. Qutub AA, Popel AS (2008) Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia. Mol Cell Biol 28:5106–5119PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW (1998) Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 201:1153–1162PubMedGoogle Scholar
  82. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285PubMedCrossRefGoogle Scholar
  83. Salway JG (2004) Metabolism of one molecule of glucose yields 31 (or should be 38?) molecules of ATP. In: Salway JG (ed) Metabolism at a glance, 3rd edn. Blackwell, Malden, pp 20–21Google Scholar
  84. Schieven GL, Kirihara JM, Myers DE, Ledbetter JA, Uckun FM (1993) Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood 82:1212–1220PubMedGoogle Scholar
  85. Schoonbroodt S, Piette J (2000) Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol 60:1075–1083PubMedCrossRefGoogle Scholar
  86. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182CrossRefGoogle Scholar
  87. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569PubMedPubMedCentralCrossRefGoogle Scholar
  88. Shatynski KE, Chen H, Kwon J, Williams MS (2012) Decreased STAT5 phosphorylation and GATA-3 expression in NOX2-deficient T cells: role in T helper development. Eur J Immunol 42:3202–3211PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 16:3965–3973PubMedPubMedCentralCrossRefGoogle Scholar
  90. Small CD, Crawford BD (2016) Matrix metalloproteinases in neural development: a phylogenetically diverse perspective. Neural Regen Res 11:357–362PubMedPubMedCentralCrossRefGoogle Scholar
  91. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 792639. doi: 10.1155/2011/792639
  92. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258PubMedCrossRefGoogle Scholar
  93. Stadtman ER, Berlett BS (1991) Fenton chemistry. Amino acid oxidation. J Biol Chem 266:17201–17211PubMedGoogle Scholar
  94. Stefano ME, Herrero MT (2016) The multifaceted role of metalloproteinases in physiological and pathological conditions in embryonic and adult brains. Prog Neurobiol. doi: 10.1016/j.pneurobio.2016.08.002 PubMedGoogle Scholar
  95. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516PubMedPubMedCentralCrossRefGoogle Scholar
  96. Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB (2003) Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 278:24233–24241PubMedCrossRefGoogle Scholar
  97. Takeshige K, Minakami S (1979) NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem J 180:129–135PubMedPubMedCentralCrossRefGoogle Scholar
  98. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028PubMedGoogle Scholar
  99. Thornburg NJ, Pathmanathan R, Raab-Traub N (2003) Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res 63:8293–8301PubMedGoogle Scholar
  100. Tradtrantip L, Tajima M, Li L, Verkman AS (2009) Aquaporin water channels in transepithelial fluid transport. J Med Invest 56 Suppl:179–184PubMedCrossRefGoogle Scholar
  101. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wadley AJ, Turner JE, Aldred S (2016) Factors influencing post-exercise plasma protein carbonyl concentration. Free Radic Res 50:375–384PubMedCrossRefGoogle Scholar
  103. Wang Z, Wu M (2015) An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 5:7949. doi: 10.1038/srep07949 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031PubMedCrossRefGoogle Scholar
  105. Zhang HJ, Zhao W, Venkataraman S, Robbins ME, Buettner GR, Kregel KC, Oberley LW (2002) Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277:20919–20926PubMedCrossRefGoogle Scholar
  106. Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4:3793. doi: 10.1038/srep03793 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hiroko P. Indo
    • 1
    • 2
    • 3
  • Clare L. Hawkins
    • 4
    • 5
  • Ikuo Nakanishi
    • 6
  • Ken-ichiro Matsumoto
    • 6
  • Hirofumi Matsui
    • 7
  • Shigeaki Suenaga
    • 1
  • Michael J. Davies
    • 8
  • Daret K. St Clair
    • 3
  • Toshihiko Ozawa
    • 9
  • Hideyuki J. Majima
    • 1
    • 2
  1. 1.Department of OncologyKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
  2. 2.Department of Space Environmental MedicineKagoshima University Graduate School of Medical and Dental SciencesKagoshimaJapan
  3. 3.Graduate Center of Toxicology and Markey Cancer CenterUniversity of Kentucky College of MedicineLexingtonUSA
  4. 4.The Heart Research InstituteNewtownAustralia
  5. 5.Sydney Medical SchoolUniversity of SydneySydneyAustralia
  6. 6.Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation DamagesNational Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST)ChibaJapan
  7. 7.Division of Gastroenterology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
  8. 8.Department of Biomedical Sciences, Panum InstituteUniversity of CopenhagenCopenhagenDenmark
  9. 9.Division of Oxidative Stress ResearchShowa Pharmaceutical UniversityMachidaJapan

Personalised recommendations