The Role of the Gastrointestinal Microbiota in Visceral Pain

  • Kieran Rea
  • Siobhain M. O’Mahony
  • Timothy G. Dinan
  • John F. CryanEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 239)


A growing body of preclinical and clinical evidence supports a relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health status. Under normal homeostatic conditions this microbial population helps maintain intestinal peristalsis, mucosal integrity, pH balance, immune priming and protection against invading pathogens. Furthermore, these microbes can influence centrally regulated emotional behaviour through mechanisms including microbially derived bioactive molecules (amino acid metabolites, short-chain fatty acids, neuropeptides and neurotransmitters), mucosal immune and enteroendocrine cell activation, as well as vagal nerve stimulation.

The microbiota-gut-brain axis comprises a dynamic matrix of tissues and organs including the brain, autonomic nervous system, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis and resist perturbation to the system. Changes to the microbial environment, as a consequence of illness, stress or injury, can lead to a broad spectrum of physiological and behavioural effects locally including a decrease in gut barrier integrity, altered gut motility, inflammatory mediator release as well as nociceptive and distension receptor sensitisation. Centrally mediated events including hypothalamic-pituitary-adrenal (HPA) axis, neuroinflammatory events and neurotransmitter systems are concomitantly altered. Thus, both central and peripheral pathways associated with pain manifestation and perception are altered as a consequence of the microbiota-gut-brain axis imbalance.

In this chapter the involvement of the gastrointestinal microbiota in visceral pain is reviewed. We focus on the anatomical and physiological nodes whereby microbiota may be mediating pain response, and address the potential for manipulating gastrointestinal microbiota as a therapeutic target for visceral pain.


Microbiota Brain Gut IBS Pain 


  1. Agostini S, Goubern M, Tondereau V, Salvador-Cartier C, Bezirard V, Leveque M, Keranen H, Theodorou V, Bourdu-Naturel S, Goupil-Feuillerat N, Legrain-Raspaud S, Eutamene H (2012) A marketed fermented dairy product containing Bifidobacterium lactis CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption induced by acute stress in rats. Neurogastroenterol Motil 24(4):376-e172PubMedCrossRefGoogle Scholar
  2. Aguilera M, Cerda-Cuellar M, Martinez V (2015) Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice. Gut Microbes 6(1):10–23PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akbar A, Walters JR, Ghosh S (2009) Review article: visceral hypersensitivity in irritable bowel syndrome: molecular mechanisms and therapeutic agents. Aliment Pharmacol Ther 30(5):423–435PubMedCrossRefGoogle Scholar
  4. Allez M, Tieng V, Nakazawa A, Treton X, Pacault V, Dulphy N, Caillat-Zucman S, Paul P, Gornet JM, Douay C, Ravet S, Tamouza R, Charron D, Lemann M, Mayer L, Toubert A (2007) CD4+NKG2D+ T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132(7):2346–2358PubMedCrossRefGoogle Scholar
  5. Amaral FA, Sachs D, Costa VV, Fagundes CT, Cisalpino D, Cunha TM, Ferreira SH, Cunha FQ, Silva TA, Nicoli JR, Vieira LQ, Souza DG, Teixeira MM (2008) Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci U S A 105(6):2193–2197PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andrews PJ, Borody TJ (1993) “Putting back the bugs”: bacterial treatment relieves chronic constipation and symptoms of irritable bowel syndrome. Med J Aust 159(9):633–634PubMedGoogle Scholar
  7. Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, Dejaco C, Papay P, Novacek G, Trauner M, Loy A, Berry D (2013) Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol 108(10):1620–1630PubMedCrossRefGoogle Scholar
  8. Barbara G, Scaioli E, Barbaro MR, Biagi E, Laghi L, Cremon C, Marasco G, Colecchia A, Picone G, Salfi N, Capozzi F, Brigidi P, Festi D (2016) Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut. doi: 10.1136/gutjnl-2016-312377 Google Scholar
  9. Bengmark S (2013) Gut microbiota, immune development and function. Pharmacol Res 69(1):87–113PubMedCrossRefGoogle Scholar
  10. Bennet JD, Brinkman M (1989) Treatment of ulcerative colitis by implantation of normal colonic flora. Lancet 1(8630):164PubMedCrossRefGoogle Scholar
  11. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(1):11–20PubMedCrossRefGoogle Scholar
  12. Borody TJ, George L, Andrews P, Brandl S, Noonan S, Cole P, Hyland L, Morgan A, Maysey J, Moore-Jones D (1989) Bowel-flora alteration: a potential cure for inflammatory bowel disease and irritable bowel syndrome? Med J Aust 150(10):604PubMedGoogle Scholar
  13. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF (2014a) The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol 817:373–403PubMedCrossRefGoogle Scholar
  14. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014b) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20(9):509–518PubMedCrossRefGoogle Scholar
  15. Boue J, Basso L, Cenac N, Blanpied C, Rolli-Derkinderen M, Neunlist M, Vergnolle N, Dietrich G (2014) Endogenous regulation of visceral pain via production of opioids by colitogenic CD4(+) T cells in mice. Gastroenterology 146(1):166–175PubMedCrossRefGoogle Scholar
  16. Bradesi S (2010) Role of spinal cord glia in the central processing of peripheral pain perception. Neurogastroenterol Motil 22(5):499–511PubMedPubMedCentralCrossRefGoogle Scholar
  17. Braundmeier-Fleming A, Russell NT, Yang W, Nas MY, Yaggie RE, Berry M, Bachrach L, Flury SC, Marko DS, Bushell CB, Welge ME, White BA, Schaeffer AJ, Klumpp DJ (2016) Stool-based biomarkers of interstitial cystitis/bladder pain syndrome. Sci Rep 6:26083PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the Mammalian gut-brain axis. Adv Appl Microbiol 91:1–62PubMedCrossRefGoogle Scholar
  19. Canavan C, West J, Card T (2014) Review article: the economic impact of the irritable bowel syndrome. Aliment Pharmacol Ther 40(9):1023–1034PubMedCrossRefGoogle Scholar
  20. Cani PD, Everard A, Duparc T (2013) Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13(6):935–940PubMedCrossRefGoogle Scholar
  21. Carroll IM, Ringel-Kulka T, Siddle JP, Ringel Y (2012) Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 24(6):521–530, e248PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cassel SL, Sutterwala FS, Flavell RA (2008) The tiny conductor: immune regulation via commensal organisms. Cell Host Microbe 3(6):340–341PubMedCrossRefGoogle Scholar
  23. Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135(3):937–946, 946.e1–2Google Scholar
  24. Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, Bertrand J, Liedtke W, Dubourdeau M, Bertrand-Michel J, Zecchi L, Stanghellini V, Bunnett NW, Barbara G, Vergnolle N (2015) Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology 149(2):433–444.e7PubMedCrossRefGoogle Scholar
  25. Cervero F (2009) Visceral versus somatic pain: similarities and differences. Dig Dis 27(Suppl 1):3–10PubMedCrossRefGoogle Scholar
  26. Chang L (2005) Brain responses to visceral and somatic stimuli in irritable bowel syndrome: a central nervous system disorder? Gastroenterol Clin North Am 34(2):271–279PubMedCrossRefGoogle Scholar
  27. Clarke G, Cryan JF, Dinan TG, Quigley EM (2012) Review article: probiotics for the treatment of irritable bowel syndrome – focus on lactic acid bacteria. Aliment Pharmacol Ther 35(4):403–413PubMedCrossRefGoogle Scholar
  28. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673PubMedCrossRefGoogle Scholar
  29. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742PubMedCrossRefGoogle Scholar
  30. Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F, Seganti L, Osborn J, Falconieri P, Borrelli O, Cucchiara S (2006) Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55(12):1760–1767PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cortright DN, Szallasi A (2009) TRP channels and pain. Curr Pharm Des 15(15):1736–1749PubMedCrossRefGoogle Scholar
  32. Crouzet L, Gaultier E, Del’Homme C, Cartier C, Delmas E, Dapoigny M, Fioramonti J, Bernalier-Donadille A (2013) The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil 25(4):e272–e282PubMedCrossRefGoogle Scholar
  33. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712PubMedCrossRefGoogle Scholar
  34. Cryan JF, Dinan TG (2015a) Gut microbiota: microbiota and neuroimmune signalling-Metchnikoff to microglia. Nat Rev Gastroenterol Hepatol 12(9):494–496PubMedCrossRefGoogle Scholar
  35. Cryan JF, Dinan TG (2015b) More than a gut feeling: the microbiota regulates neurodevelopment and behavior. Neuropsychopharmacology 40(1):241–242PubMedCrossRefGoogle Scholar
  36. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 21(6):357–365PubMedCrossRefGoogle Scholar
  37. Curro D, Ianiro G, Pecere S, Bibbo S, Cammarota G (2016) Probiotics, fiber and herbal medicinal products for functional and inflammatory bowel disorders. Br J Pharmacol. doi: 10.1111/bph.13632 PubMedGoogle Scholar
  38. Dai C, Guandalini S, Zhao DH, Jiang M (2012) Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome: a possible action through nitric oxide pathway and enhance barrier function. Mol Cell Biochem 362(1–2):43–53PubMedCrossRefGoogle Scholar
  39. de Weerth C, Fuentes S, de Vos WM (2013) Crying in infants: on the possible role of intestinal microbiota in the development of colic. Gut Microbes 4(5):416–421PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63:1–9PubMedCrossRefGoogle Scholar
  41. Distrutti E, Cipriani S, Mencarelli A, Renga B, Fiorucci S (2013) Probiotics VSL#3 protect against development of visceral pain in murine model of irritable bowel syndrome. PLoS One 8(5):e63893PubMedPubMedCentralCrossRefGoogle Scholar
  42. Duerkop BA, Vaishnava S, Hooper LV (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31(3):368–376PubMedCrossRefGoogle Scholar
  43. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638PubMedPubMedCentralCrossRefGoogle Scholar
  44. El Aidy S, Dinan TG, Cryan JF (2014) Immune modulation of the brain-gut-microbe axis. Front Microbiol 5:146PubMedPubMedCentralCrossRefGoogle Scholar
  45. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977PubMedCrossRefGoogle Scholar
  46. Eutamene H, Lamine F, Chabo C, Theodorou V, Rochat F, Bergonzelli GE, Corthesy-Theulaz I, Fioramonti J, Bueno L (2007) Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J Nutr 137(8):1901–1907PubMedGoogle Scholar
  47. Farup PG, Jacobsen M, Ligaarden SC, Rudi K (2012) Probiotics, symptoms, and gut microbiota: what are the relations? A randomized controlled trial in subjects with irritable bowel syndrome. Gastroenterol Res Pract 2012:214102PubMedPubMedCentralGoogle Scholar
  48. Ford AC (2010) Probiotics in irritable bowel syndrome: underachievers or underpowered? Aliment Pharmacol Ther 31(8):922–923, author reply 923–924PubMedCrossRefGoogle Scholar
  49. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24(1):4–10PubMedCrossRefGoogle Scholar
  50. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21(1):47–59PubMedCrossRefGoogle Scholar
  51. Gaci N, Borrel G, Tottey W, O’Toole PW, Brugere JF (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20(43):16062–16078PubMedPubMedCentralCrossRefGoogle Scholar
  52. Giannetti E, Maglione M, Alessandrella A, Strisciuglio C, De Giovanni D, Campanozzi A, Miele E, Staiano A (2016) A mixture of 3 Bifidobacteria decreases abdominal pain and improves the quality of life in children with irritable bowel syndrome: a multicenter, randomized, double-blind, placebo-controlled, crossover trial. J Clin Gastroenterol. doi: 10.1097/MCG.0000000000000528 Google Scholar
  53. Greenwood-Van Meerveld B, Prusator DK, Johnson AC (2015) Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 308(11):G885–G903PubMedCrossRefGoogle Scholar
  54. Guglielmetti S, Mora D, Gschwender M, Popp K (2011) Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life – a double-blind, placebo-controlled study. Aliment Pharmacol Ther 33(10):1123–1132PubMedCrossRefGoogle Scholar
  55. Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG (2014) A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146(1):67–75.e5PubMedCrossRefGoogle Scholar
  56. Hoban AE, Moloney RD, Golubeva AV, McVey Neufeld KA, O’Sullivan O, Patterson E, Stanton C, Dinan TG, Clarke G, Cryan JF (2016) Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 339:463–477PubMedCrossRefGoogle Scholar
  57. Horvath A, Dziechciarz P, Szajewska H (2011) Meta-analysis: Lactobacillus rhamnosus GG for abdominal pain-related functional gastrointestinal disorders in childhood. Aliment Pharmacol Ther 33(12):1302–1310PubMedCrossRefGoogle Scholar
  58. Hungin AP, Mulligan C, Pot B, Whorwell P, Agreus L, Fracasso P, Lionis C, Mendive J, Philippart de Foy JM, Rubin G, Winchester C, de Wit N (2013) Systematic review: probiotics in the management of lower gastrointestinal symptoms in clinical practice – an evidence-based international guide. Aliment Pharmacol Ther 38(8):864–886PubMedPubMedCentralCrossRefGoogle Scholar
  59. Husebye E (1997) Communication between CNS and ENS: do regulatory peptides play a role in control of sleep modulation of gastrointestinal motility? Neurogastroenterol Motil 9(1):1–3PubMedCrossRefGoogle Scholar
  60. Jalanka-Tuovinen J, Salojarvi J, Salonen A, Immonen O, Garsed K, Kelly FM, Zaitoun A, Palva A, Spiller RC, de Vos WM (2014) Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63(11):1737–1745PubMedCrossRefGoogle Scholar
  61. Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, Simren M (2012a) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006PubMedCrossRefGoogle Scholar
  62. Jeffery IB, Quigley EM, Ohman L, Simren M, O’Toole PW (2012b) The microbiota link to irritable bowel syndrome: an emerging story. Gut Microbes 3(6):572–576PubMedPubMedCentralCrossRefGoogle Scholar
  63. Johnson AC, Greenwood-Van Meerveld B, McRorie J (2011) Effects of Bifidobacterium infantis 35624 on post-inflammatory visceral hypersensitivity in the rat. Dig Dis Sci 56(11):3179–3186PubMedCrossRefGoogle Scholar
  64. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335PubMedCrossRefGoogle Scholar
  65. Kamiya T, Wang L, Forsythe P, Goettsche G, Mao Y, Wang Y, Tougas G, Bienenstock J (2006) Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut 55(2):191–196PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kannampalli P, Pochiraju S, Chichlowski M, Berg BM, Rudolph C, Bruckert M, Miranda A, Sengupta JN (2014) Probiotic Lactobacillus rhamnosus GG (LGG) and prebiotic prevent neonatal inflammation-induced visceral hypersensitivity in adult rats. Neurogastroenterol Motil 26(12):1694–1704PubMedCrossRefGoogle Scholar
  67. Kassinen A, Krogius-Kurikka L, Makivuokko H, Rinttila T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133(1):24–33PubMedCrossRefGoogle Scholar
  68. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7(4):2839–2849PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14(4):169–181PubMedPubMedCentralCrossRefGoogle Scholar
  70. Larauche M, Mulak A, Yuan PQ, Kanauchi O, Tache Y (2012) Stress-induced visceral analgesia assessed non-invasively in rats is enhanced by prebiotic diet. World J Gastroenterol 18(3):225–236PubMedPubMedCentralCrossRefGoogle Scholar
  71. Laval L, Martin R, Natividad JN, Chain F, Miquel S, Desclee de Maredsous C, Capronnier S, Sokol H, Verdu EF, van Hylckama Vlieg JE, Bermudez-Humaran LG, Smokvina T, Langella P (2015) Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 6(1):1–9PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lee KJ, Tack J (2010) Altered intestinal microbiota in irritable bowel syndrome. Neurogastroenterol Motil 22(5):493–498PubMedCrossRefGoogle Scholar
  73. Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9(11):e1003726PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lyte M (2014) Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol 817:3–24PubMedCrossRefGoogle Scholar
  75. Malinen E, Krogius-Kurikka L, Lyra A, Nikkila J, Jaaskelainen A, Rinttila T, Vilpponen-Salmela T, von Wright AJ, Palva A (2010) Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol 16(36):4532–4540PubMedPubMedCentralCrossRefGoogle Scholar
  76. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211PubMedPubMedCentralCrossRefGoogle Scholar
  77. Martin R, Laval L, Chain F, Miquel S, Natividad J, Cherbuy C, Sokol H, Verdu EF, van Hylckama VJ, Bermudez-Humaran LG, Smokvina T, Langella P (2016) Bifidobacterium animalis ssp. lactis CNCM-I2494 restores gut barrier permeability in chronically low-grade inflamed mice. Front Microbiol 7:608PubMedPubMedCentralGoogle Scholar
  78. Matto J, Maunuksela L, Kajander K, Palva A, Korpela R, Kassinen A, Saarela M (2005) Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome – a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43(2):213–222PubMedCrossRefGoogle Scholar
  79. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014a) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34(46):15490–15496PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mayer EA, Savidge T, Shulman RJ (2014b) Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146(6):1500–1512PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mayer EA, Gupta A, Kilpatrick LA, Hong JY (2015a) Imaging brain mechanisms in chronic visceral pain. Pain 156(Suppl 1):S50–S63PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mayer EA, Tillisch K, Gupta A (2015b) Gut/brain axis and the microbiota. J Clin Invest 125(3):926–938PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118PubMedCrossRefGoogle Scholar
  84. McKernan DP, Fitzgerald P, Dinan TG, Cryan JF (2010) The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil 22(9):1029–1035, e268PubMedCrossRefGoogle Scholar
  85. Michail S, Kenche H (2011) Gut microbiota is not modified by randomized, double-blind, placebo-controlled trial of VSL#3 in diarrhea-predominant irritable bowel syndrome. Probiotics Antimicrob Proteins 3(1):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  86. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57(1):1–164PubMedCrossRefGoogle Scholar
  87. Moayyedi P, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, Soffer EE, Spiegel BM, Ford AC (2014) The effect of fiber supplementation on irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol 109(9):1367–1374PubMedCrossRefGoogle Scholar
  88. Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF (2014) The microbiome: stress, health and disease. Mamm Genome 25(1–2):49–74PubMedCrossRefGoogle Scholar
  89. Moloney RD, O’Mahony SM, Dinan TG, Cryan JF (2015) Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psych 6:15Google Scholar
  90. Moloney RD, Johnson AC, O’Mahony SM, Dinan TG, Greenwood-Van Meerveld B, Cryan JF (2016) Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci Ther 22(2):102–117PubMedCrossRefGoogle Scholar
  91. Muccioli GG, Naslain D, Backhed F, Reigstad CS, Lambert DM, Delzenne NM, Cani PD (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6:392PubMedPubMedCentralCrossRefGoogle Scholar
  92. Noor SO, Ridgway K, Scovell L, Kemsley EK, Lund EK, Jamieson C, Johnson IT, Narbad A (2010) Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol 10:134PubMedPubMedCentralCrossRefGoogle Scholar
  93. O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128(3):541–551PubMedCrossRefGoogle Scholar
  94. O’Mahony SM, Tramullas M, Fitzgerald P, Cryan JF (2012) Rodent models of colorectal distension. Curr Protoc Neurosci Chapter 9:Unit 9.40Google Scholar
  95. O’Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, Woznicki J, Hyland NP, Shanahan F, Quigley EM, Marchesi JR, O’Toole PW, Dinan TG, Cryan JF (2014) Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 277:885–901PubMedCrossRefGoogle Scholar
  96. Olesen M, Gudmand-Hoyer E (2000) Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am J Clin Nutr 72(6):1570–1575PubMedGoogle Scholar
  97. Oleskin AV, Shenderov BA (2016) Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis 27:30971PubMedGoogle Scholar
  98. Partty A, Luoto R, Kalliomaki M, Salminen S, Isolauri E (2013) Effects of early prebiotic and probiotic supplementation on development of gut microbiota and fussing and crying in preterm infants: a randomized, double-blind, placebo-controlled trial. J Pediatr 163(5):1272–1277.e1–2Google Scholar
  99. Pimentel M (2016) Review article: potential mechanisms of action of rifaximin in the management of irritable bowel syndrome with diarrhoea. Aliment Pharmacol Ther 43(Suppl 1):37–49PubMedCrossRefGoogle Scholar
  100. Pimentel M, Morales W, Chua K, Barlow G, Weitsman S, Kim G, Amichai MM, Pokkunuri V, Rook E, Mathur R, Marsh Z (2011) Effects of rifaximin treatment and retreatment in nonconstipated IBS subjects. Dig Dis Sci 56(7):2067–2072PubMedCrossRefGoogle Scholar
  101. Pinn DM, Aroniadis OC, Brandt LJ (2015) Is fecal microbiota transplantation (FMT) an effective treatment for patients with functional gastrointestinal disorders (FGID)? Neurogastroenterol Motil 27(1):19–29PubMedCrossRefGoogle Scholar
  102. Pott J, Hornef M (2012) Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 13(8):684–698PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rajilic-Stojanovic M, Biagi E, Heilig HG, Kajander K, Kekkonen RA, Tims S, de Vos WM (2011) Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141(5):1792–1801PubMedCrossRefGoogle Scholar
  104. Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 4:23–33PubMedPubMedCentralCrossRefGoogle Scholar
  105. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314PubMedCrossRefGoogle Scholar
  106. Ringel-Kulka T, Goldsmith JR, Carroll IM, Barros SP, Palsson O, Jobin C, Ringel Y (2014) Lactobacillus acidophilus NCFM affects colonic mucosal opioid receptor expression in patients with functional abdominal pain – a randomised clinical study. Aliment Pharmacol Ther 40(2):200–207PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ringel-Kulka T, Benson AK, Carroll IM, Kim J, Legge RM, Ringel Y (2016) Molecular characterization of the intestinal microbiota in patients with and without abdominal bloating. Am J Physiol Gastrointest Liver Physiol 310(6):G417–G426PubMedCrossRefGoogle Scholar
  108. Rosenbaum T, Simon SA (2007) TRPV1 receptors and signal transduction. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  109. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323PubMedPubMedCentralCrossRefGoogle Scholar
  110. Royet J, Gupta D, Dziarski R (2011) Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol 11(12):837–851PubMedGoogle Scholar
  111. Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16(3):246–254PubMedCrossRefGoogle Scholar
  112. Saab CY, Wang J, Gu C, Garner KN, Al-Chaer ED (2006) Microglia: a newly discovered role in visceral hypersensitivity? Neuron Glia Biol 2(4):271–277PubMedCrossRefGoogle Scholar
  113. Sachdev AH, Pimentel M (2012) Antibiotics for irritable bowel syndrome: rationale and current evidence. Curr Gastroenterol Rep 14(5):439–445PubMedCrossRefGoogle Scholar
  114. Sampson TR, Mazmanian SK (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17(5):565–576PubMedPubMedCentralCrossRefGoogle Scholar
  115. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141(5):1782–1791PubMedPubMedCentralCrossRefGoogle Scholar
  116. Savino F, Cresi F, Pautasso S, Palumeri E, Tullio V, Roana J, Silvestro L, Oggero R (2004) Intestinal microflora in breastfed colicky and non-colicky infants. Acta Paediatr 93(6):825–829PubMedCrossRefGoogle Scholar
  117. Savino F, Pelle E, Palumeri E, Oggero R, Miniero R (2007) Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a prospective randomized study. Pediatrics 119(1):e124–e130PubMedCrossRefGoogle Scholar
  118. Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A (2015) The human gut microbiota and virome: potential therapeutic implications. Dig Liver Dis 47(12):1007–1012PubMedCrossRefGoogle Scholar
  119. Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7(10):a020545PubMedCrossRefGoogle Scholar
  120. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shankar V, Homer D, Rigsbee L, Khamis HJ, Michail S, Raymer M, Reo NV, Paliy O (2015) The networks of human gut microbe-metabolite associations are different between health and irritable bowel syndrome. ISME J 9(8):1899–1903PubMedPubMedCentralCrossRefGoogle Scholar
  122. Silk DB, Davis A, Vulevic J, Tzortzis G, Gibson GR (2009) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29(5):508–518PubMedCrossRefGoogle Scholar
  123. Simren M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, Verdu EF, Whorwell PJ, Zoetendal EG, Rome Foundation C (2013) Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62(1):159–176PubMedCrossRefGoogle Scholar
  124. Sisson G, Ayis S, Sherwood RA, Bjarnason I (2014) Randomised clinical trial: a liquid multi-strain probiotic vs. placebo in the irritable bowel syndrome – a 12 week double-blind study. Aliment Pharmacol Ther 40(1):51–62PubMedCrossRefGoogle Scholar
  125. Souza DG, Vieira AT, Soares AC, Pinho V, Nicoli JR, Vieira LQ, Teixeira MM (2004) The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J Immunol 173(6):4137–4146PubMedCrossRefGoogle Scholar
  126. Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behaviour – epigenetic regulation of the gut-brain axis. Genes Brain Behav 13(1):69–86PubMedCrossRefGoogle Scholar
  127. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF (2016) The neuropharmacology of butyrate: the bread and butter of the microbiota-gut-brain axis? Neurochem Int 99:110–132PubMedCrossRefGoogle Scholar
  128. Sudo N (2012) Role of microbiome in regulating the HPA axis and its relevance to allergy. Chem Immunol Allergy 98:163–175PubMedCrossRefGoogle Scholar
  129. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275PubMedPubMedCentralCrossRefGoogle Scholar
  130. Takeda K, Akira S (2004) Microbial recognition by Toll-like receptors. J Dermatol Sci 34(2):73–82PubMedCrossRefGoogle Scholar
  131. Thabane M, Kottachchi DT, Marshall JK (2007) Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther 26(4):535–544PubMedCrossRefGoogle Scholar
  132. Vaishnava S, Behrendt CL, Hooper LV (2008a) Innate immune responses to commensal bacteria in the gut epithelium. J Pediatr Gastroenterol Nutr 46(Suppl 1):E10–E11PubMedGoogle Scholar
  133. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008b) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105(52):20858–20863PubMedPubMedCentralCrossRefGoogle Scholar
  134. Verdu EF, Bercik P, Verma-Gandhu M, Huang XX, Blennerhassett P, Jackson W, Mao Y, Wang L, Rochat F, Collins SM (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55(2):182–190PubMedPubMedCentralCrossRefGoogle Scholar
  135. Vergnolle N (2009) Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther 123(3):292–309PubMedCrossRefGoogle Scholar
  136. Whelan K (2011) Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr Opin Clin Nutr Metab Care 14(6):581–587PubMedCrossRefGoogle Scholar
  137. Williamson LL, McKenney EA, Holzknecht ZE, Belliveau C, Rawls JF, Poulton S, Parker W, Bilbo SD (2016) Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav Immun 51:14–28PubMedCrossRefGoogle Scholar
  138. Yoon JS, Sohn W, Lee OY, Lee SP, Lee KN, Jun DW, Lee HL, Yoon BC, Choi HS, Chung WS, Seo JG (2014) Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. J Gastroenterol Hepatol 29(1):52–59PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kieran Rea
    • 1
  • Siobhain M. O’Mahony
    • 1
    • 2
  • Timothy G. Dinan
    • 1
    • 3
  • John F. Cryan
    • 1
    • 2
    Email author
  1. 1.APC Microbiome InstituteUniversity College CorkCorkIreland
  2. 2.Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
  3. 3.Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland

Personalised recommendations