Postoperative Ileus: Pathophysiology, Current Therapeutic Approaches

  • N. Stakenborg
  • P. J. Gomez-Pinilla
  • G. E. BoeckxstaensEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 239)


Postoperative ileus, which develops after each abdominal surgical procedure, is an iatrogenic disorder characterized by a transient inhibition of gastrointestinal motility. Its pathophysiology is complex involving pharmacological (opioids, anesthetics), neural, and immune-mediated mechanisms. The early neural phase, triggered by activation of afferent nerves during the surgical procedure, is short lasting compared to the later inflammatory phase. The latter starts after 3–6 h and lasts several days, making it a more interesting target for treatment. Insight into the triggers and immune cells involved is of great importance for the development of new therapeutic strategies. In this chapter, the pathogenesis and the current therapeutic approaches to treat postoperative ileus are discussed.


Field effect Gastrointestinal motility Inflammatory phase Macrophages Mast cells Neural phase Pathophysiology Postoperative ileus 


  1. Basse L, Madsen JL, Billesbolle P, Bardram L, Kehlet H (2003) Gastrointestinal transit after laparoscopic versus open colonic resection. Surg Endosc 17(12):1919–1922. doi: 10.1007/s00464-003-9013-0 CrossRefPubMedGoogle Scholar
  2. Bauer AJ, Boeckxstaens GE (2004) Mechanisms of postoperative ileus. Neurogastroenterol Motil 16(Suppl 2):54–60. doi: 10.1111/j.1743-3150.2004.00558.x CrossRefPubMedGoogle Scholar
  3. Beck DE, Sweeney WB, McCarter MD, Ipamorelin 201 Study Group (2014) Prospective, randomized, controlled, proof-of-concept study of the Ghrelin mimetic ipamorelin for the management of postoperative ileus in bowel resection patients. Int J Colorectal Dis 29(12):1527–1534. doi: 10.1007/s00384-014-2030-8 CrossRefPubMedGoogle Scholar
  4. Becker G, Blum HE (2009) Novel opioid antagonists for opioid-induced bowel dysfunction and postoperative ileus. Lancet 373(9670):1198–1206. doi: 10.1016/S0140-6736(09)60139-2 CrossRefPubMedGoogle Scholar
  5. Berdun S, Bombuy E, Estrada O, Mans E, Rychter J, Clave P, Vergara P (2015) Peritoneal mast cell degranulation and gastrointestinal recovery in patients undergoing colorectal surgery. Neurogastroenterol Motil 27(6):764–774. doi: 10.1111/nmo.12525 CrossRefPubMedGoogle Scholar
  6. Bochicchio G, Charlton P, Pezzullo JC, Kosutic G, Senagore A (2012) Ghrelin agonist TZP-101/ulimorelin accelerates gastrointestinal recovery independently of opioid use and surgery type: covariate analysis of phase 2 data. World J Surg 36(1):39–45. doi: 10.1007/s00268-011-1335-9 CrossRefPubMedGoogle Scholar
  7. Boeckxstaens GE, de Jonge WJ (2009) Neuroimmune mechanisms in postoperative ileus. Gut 58(9):1300–1311. doi: 10.1136/gut.2008.169250 CrossRefPubMedGoogle Scholar
  8. Boeckxstaens GE, Hirsch DP, Kodde A, Moojen TM, Blackshaw A, Tytgat GN, Blommaart PJ (1999) Activation of an adrenergic and vagally-mediated NANC pathway in surgery-induced fundic relaxation in the rat. Neurogastroenterol Motil 11(6):467–474. CrossRefPubMedGoogle Scholar
  9. Boelens PG, Heesakkers FF, Luyer MD, van Barneveld KW, de Hingh IH, Nieuwenhuijzen GA et al (2014) Reduction of postoperative ileus by early enteral nutrition in patients undergoing major rectal surgery: prospective, randomized, controlled trial. Ann Surg 259(4):649–655. doi: 10.1097/SLA.0000000000000288 CrossRefPubMedGoogle Scholar
  10. Bueno L, Fioramonti J, Ruckebusch Y (1978) Postoperative intestinal motility in dogs and sheep. Am J Dig Dis 23(8):682–689. Accessed from CrossRefPubMedGoogle Scholar
  11. Bueno L, Fioramonti J, Delvaux M, Frexinos J (1997) Mediators and pharmacology of visceral sensitivity: from basic to clinical investigations. Gastroenterology 112(5):1714–1743. Accessed from CrossRefPubMedGoogle Scholar
  12. Chan DC, Liu YC, Chen CJ, Yu JC, Chu HC, Chen FC et al (2005) Preventing prolonged post-operative ileus in gastric cancer patients undergoing gastrectomy and intra-peritoneal chemotherapy. World J Gastroenterol 11(31):4776–4781. Accessed from CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837. doi: 10.1038/nri2873 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coimbra CR, Plourde V (1996) Abdominal surgery-induced inhibition of gastric emptying is mediated in part by interleukin-1 beta. Am J Physiol 270(3 Pt 2):R556–R560. Accessed from PubMedGoogle Scholar
  15. De Backer O, Elinck E, Blanckaert B, Leybaert L, Motterlini R, Lefebvre RA (2009) Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut 58(3):347–356. doi: 10.1136/gut.2008.155481 CrossRefPubMedGoogle Scholar
  16. de Jonge WJ, van den Wijngaard RM, The FO, ter Beek ML, Bennink RJ, Tytgat GN et al (2003) Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology 125(4):1137–1147. Accessed from CrossRefPubMedGoogle Scholar
  17. de Jonge WJ, The FO, van der Coelen D, Bennink RJ, Reitsma PH, van Deventer SJ et al (2004) Mast cell degranulation during abdominal surgery initiates postoperative ileus in mice. Gastroenterology 127(2):535–545. Accessed from CrossRefPubMedGoogle Scholar
  18. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ et al (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6(8):844–851. doi: 10.1038/ni1229 CrossRefPubMedGoogle Scholar
  19. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. doi: 10.1146/annurev.immunol.021908.132612 CrossRefPubMedGoogle Scholar
  20. Drake TM, Ward AE (2016) Pharmacological management to prevent ileus in major abdominal surgery: a systematic review and meta-analysis. J Gastrointest Surg 20(6):1253–1264. doi: 10.1007/s11605-016-3140-0 CrossRefPubMedGoogle Scholar
  21. Engel DR, Koscielny A, Wehner S, Maurer J, Schiwon M, Franken L et al (2010) T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat Med 16(12):1407–1413. doi: 10.1038/nm.2255 CrossRefPubMedGoogle Scholar
  22. Farro G, Gomez-Pinilla PJ, Di Giovangiulio M, Stakenborg N, Auteri M, Thijs T et al (2016) Smooth muscle and neural dysfunction contribute to different phases of murine postoperative ileus. Neurogastroenterol Motil 28(6):934–947. doi: 10.1111/nmo.12796 CrossRefPubMedGoogle Scholar
  23. Gibbons SJ, Verhulst PJ, Bharucha A, Farrugia G (2013) Review article: carbon monoxide in gastrointestinal physiology and its potential in therapeutics. Aliment Pharmacol Ther 38(7):689–702. doi: 10.1111/apt.12467 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Glowka TR, Steinebach A, Stein K, Schwandt T, Lysson M, Holzmann B et al (2015) The novel CGRP receptor antagonist BIBN4096BS alleviates a postoperative intestinal inflammation and prevents postoperative ileus. Neurogastroenterol Motil 27(7):1038–1049. doi: 10.1111/nmo.12584 CrossRefPubMedGoogle Scholar
  25. Gomez-Pinilla PJ, Farro G, Di Giovangiulio M, Stakenborg N, Nemethova A, de Vries A et al (2014a) Mast cells play no role in the pathogenesis of postoperative ileus induced by intestinal manipulation. PLoS One 9(1):e85304. doi: 10.1371/journal.pone.0085304 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gomez-Pinilla PJ, Binda MM, Lissens A, Di Giovangiulio M, van Bree SH, Nemethova A et al (2014b) Absence of intestinal inflammation and postoperative ileus in a mouse model of laparoscopic surgery. Neurogastroenterol Motil 26(9):1238–1247. doi: 10.1111/nmo.12376 CrossRefPubMedGoogle Scholar
  27. Gomez-Pinilla PJ, Di Giovangiulio M, Nemethova A, Stakenborg N, Farro G, Bosmans G et al (2014c) 416 Prucalopride activates the intestinal cholinergic anti-inflammatory pathway and prevents postoperative ileus. Gastroenterology 146(5):S-89. doi: 10.1016/S0016-5085(14)60324-3 CrossRefGoogle Scholar
  28. Gong J, Xie Z, Zhang T, Gu L, Yao W, Guo Z et al (2016) Randomised clinical trial: prucalopride, a colonic pro-motility agent, reduces the duration of post-operative ileus after elective gastrointestinal surgery. Aliment Pharmacol Ther 43(7):778–789. doi: 10.1111/apt.13557 CrossRefPubMedGoogle Scholar
  29. Hanawa H, Ota Y, Ding L, Chang H, Yoshida K, Otaki K et al (2011) IL-1 receptor accessory protein-Ig/IL-1 receptor type II-Ig heterodimer inhibits IL-1 response more strongly than other IL-1 blocking biopharmaceutical agents. J Clin Immunol 31(3):455–464. doi: 10.1007/s10875-010-9497-z CrossRefPubMedGoogle Scholar
  30. Ho TW, Connor KM, Zhang Y, Pearlman E, Koppenhaver J, Fan X et al (2014) Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention. Neurology 83(11):958–966. doi: 10.1212/WNL.0000000000000771 CrossRefPubMedGoogle Scholar
  31. Holte K, Kehlet H (2002) Postoperative ileus: progress towards effective management. Drugs 62(18):2603–2615. Accessed from CrossRefPubMedGoogle Scholar
  32. Kalff JC, Schraut WH, Simmons RL, Bauer AJ (1998) Surgical manipulation of the gut elicits an intestinal muscularis inflammatory response resulting in postsurgical ileus. Ann Surg 228(5):652–663. Accessed from CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kalff JC, Buchholz BM, Eskandari MK, Hierholzer C, Schraut WH, Simmons RL, Bauer AJ (1999a) Biphasic response to gut manipulation and temporal correlation of cellular infiltrates and muscle dysfunction in rat. Surgery 126(3):498–509. Accessed from CrossRefPubMedGoogle Scholar
  34. Kalff JC, Carlos TM, Schraut WH, Billiar TR, Simmons RL, Bauer AJ (1999b) Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 117(2):378–387. Accessed from CrossRefPubMedGoogle Scholar
  35. Kalff JC, Schraut WH, Billiar TR, Simmons RL, Bauer AJ (2000) Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 118(2):316–327. Accessed from CrossRefPubMedGoogle Scholar
  36. Kehlet H (2011) Surgery: fast-track colonic surgery and the “knowing-doing” gap. Nat Rev Gastroenterol Hepatol 8(10):539–540. doi: 10.1038/nrgastro.2011.153 CrossRefPubMedGoogle Scholar
  37. Kreiss C, Birder LA, Kiss S, VanBibber MM, Bauer AJ (2003) COX-2 dependent inflammation increases spinal Fos expression during rodent postoperative ileus. Gut 52(4):527–534. Accessed from CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lacy AM, Garcia-Valdecasas JC, Delgado S, Castells A, Taura P, Pique JM, Visa J (2002) Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet 359(9325):2224–2229. doi: 10.1016/S0140-6736(02)09290-5 CrossRefPubMedGoogle Scholar
  39. Livingston EH, Passaro EP Jr (1990) Postoperative ileus. Dig Dis Sci 35(1):121–132. Accessed from CrossRefPubMedGoogle Scholar
  40. Lubbers T, Luyer MD, de Haan JJ, Hadfoune M, Buurman WA, Greve JW (2009) Lipid-rich enteral nutrition reduces postoperative ileus in rats via activation of cholecystokinin-receptors. Ann Surg 249(3):481–487. doi: 10.1097/SLA.0b013e318194d187 CrossRefPubMedGoogle Scholar
  41. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA (2005) Nutritional stimu lation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202(8):1023–1029. doi: 10.1084/jem.20042397 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C, van Bree SH et al (2014) A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63(6):938–948. doi: 10.1136/gutjnl-2013-304676 CrossRefPubMedGoogle Scholar
  43. Milsom JW, Bohm B, Hammerhofer KA, Fazio V, Steiger E, Elson P (1998) A prospective, randomized trial comparing laparoscopic versus conventional techniques in colorectal cancer surgery: a preliminary report. J Am Coll Surg 187(1):46–54 discussion 54–45. Accessed from CrossRefPubMedGoogle Scholar
  44. Moore BA, Otterbein LE, Turler A, Choi AM, Bauer AJ (2003) Inhaled carbon monoxide suppresses the development of postoperative ileus in the murine small intestine. Gastroenterology 124(2):377–391. doi: 10.1053/gast.2003.50060 CrossRefPubMedGoogle Scholar
  45. Moore BA, Manthey CL, Johnson DL, Bauer AJ (2011) Matrix metalloproteinase-9 inhibition reduces inflammation and improves motility in murine models of postoperative ileus. Gastroenterology 141(4):1283–1292, 1292.e1–4. doi: 10.1053/j.gastro.2011.06.035 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mueller MH, Glatzle J, Kampitoglou D, Kasparek MS, Grundy D, Kreis ME (2008) Differential sensitization of afferent neuronal pathways during postoperative ileus in the mouse jejunum. Ann Surg 247(5):791–802. doi: 10.1097/SLA.0b013e31816a9d97 CrossRefPubMedGoogle Scholar
  47. Nakao A, Schmidt J, Harada T, Tsung A, Stoffels B, Cruz RJ Jr et al (2006) A single intraperitoneal dose of carbon monoxide-saturated ringer’s lactate solution ameliorates postoperative ileus in mice. J Pharmacol Exp Ther 319(3):1265–1275. doi: 10.1124/jpet.106.108654 CrossRefPubMedGoogle Scholar
  48. Ohtani H, Tamamori Y, Arimoto Y, Nishiguchi Y, Maeda K, Hirakawa K (2011) A meta-analysis of the short- and long-term results of randomized controlled trials that compared laparoscopy-assisted and conventional open surgery for colorectal cancer. J Cancer 2:425–434. Accessed from CrossRefPubMedPubMedCentralGoogle Scholar
  49. Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350(11):1104–1110. doi: 10.1056/NEJMoa030505 CrossRefPubMedGoogle Scholar
  50. Plourde V, Wong HC, Walsh JH, Raybould HE, Tache Y (1993) CGRP antagonists and capsaicin on celiac ganglia partly prevent postoperative gastric ileus. Peptides 14(6):1225–1229. Accessed from CrossRefPubMedGoogle Scholar
  51. Popescu I, Fleshner PR, Pezzullo JC, Charlton PA, Kosutic G, Senagore AJ (2010) The Ghrelin agonist TZP-101 for management of postoperative ileus after partial colectomy: a randomized, dose-ranging, placebo-controlled clinical trial. Dis Colon Rectum 53(2):126–134. doi: 10.1007/DCR.0b013e3181b54166 CrossRefPubMedGoogle Scholar
  52. Schmidt J, Stoffels B, Moore BA, Chanthaphavong RS, Mazie AR, Buchholz BM, Bauer AJ (2008) Proinflammatory role of leukocyte-derived Egr-1 in the development of murine postoperative ileus. Gastroenterology 135(3):926–936. doi: 10.1053/j.gastro.2008.05.079936 e921-922CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schwarz NT, Beer-Stolz D, Simmons RL, Bauer AJ (2002) Pathogenesis of paralytic ileus: intestinal manipulation opens a transient pathway between the intestinal lumen and the leukocytic infiltrate of the jejunal muscularis. Ann Surg 235(1):31–40. Accessed from CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schwarz NT, Kalff JC, Turler A, Speidel N, Grandis JR, Billiar TR, Bauer AJ (2004) Selective jejunal manipulation causes postoperative pan-enteric inflammation and dysmotility. Gastroenterology 126(1):159–169. Accessed from CrossRefPubMedGoogle Scholar
  55. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510(7503):92–101. doi: 10.1038/nature13479 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Seta ML, Kale-Pradhan PB (2001) Efficacy of metoclopramide in postoperative ileus after exploratory laparotomy. Pharmacotherapy 21(10):1181–1186. Accessed from CrossRefPubMedGoogle Scholar
  57. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA et al (2016) Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med 44(2):275–281. doi: 10.1097/CCM.0000000000001402 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shaw M, Pediconi C, McVey D, Mondou E, Quinn J, Chamblin B, Rousseau F (2013) Safety and efficacy of ulimorelin administered postoperatively to accelerate recovery of gastrointestinal motility following partial bowel resection: results of two randomized, placebo-controlled phase 3 trials. Dis Colon Rectum 56(7):888–897. doi: 10.1097/DCR.0b013e31829196d0 CrossRefPubMedGoogle Scholar
  59. Short V, Herbert G, Perry R, Atkinson C, Ness AR, Penfold C et al (2015) Chewing gum for postoperative recovery of gastrointestinal function. Cochrane Database Syst Rev 2:CD006506. doi: 10.1002/14651858.CD006506.pub3 Google Scholar
  60. Singh JA, Hossain A, Tanjong Ghogomu E, Kotb A, Christensen R, Mudano AS et al (2016) Biologics or tofacitinib for rheumatoid arthritis in incomplete responders to methotrexate or other traditional disease-modifying anti-rheumatic drugs: a systematic review and network meta-analysis. Cochrane Database Syst Rev 5:CD012183. doi: 10.1002/14651858.CD012183 Google Scholar
  61. Snoek SA, Dhawan S, van Bree SH, Cailotto C, van Diest SA, Duarte JM et al (2012) Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model. Neurogastroenterol Motil 24(2):172–184.e191. doi: 10.1111/j.1365-2982.2011.01820.x CrossRefPubMedGoogle Scholar
  62. Stoffels B, Schmidt J, Nakao A, Nazir A, Chanthaphavong RS, Bauer AJ (2009) Role of interleukin 10 in murine postoperative ileus. Gut 58(5):648–660. doi: 10.1136/gut.2008.153288 CrossRefPubMedGoogle Scholar
  63. Stoffels B, Hupa KJ, Snoek SA, van Bree S, Stein K, Schwandt T et al (2014) Postoperative ileus involves interleukin-1 receptor signaling in enteric glia. Gastroenterology 146(1):176–187.e1. doi: 10.1053/j.gastro.2013.09.030 CrossRefPubMedGoogle Scholar
  64. The FO, de Jonge WJ, Bennink RJ, van den Wijngaard RM, Boeckxstaens GE (2005) The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice. Br J Pharmacol 146(2):252–258. doi: 10.1038/sj.bjp.0706303 CrossRefPubMedPubMedCentralGoogle Scholar
  65. The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ et al (2007) Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 133(4):1219–1228. doi: 10.1053/j.gastro.2007.07.022 CrossRefPubMedGoogle Scholar
  66. The FO, Bennink RJ, Ankum WM, Buist MR, Busch OR, Gouma DJ et al (2008) Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus. Gut 57(1):33–40. doi: 10.1136/gut.2007.120238 CrossRefPubMedGoogle Scholar
  67. The FO, Buist MR, Lei A, Bennink RJ, Hofland J, van den Wijngaard RM et al (2009) The role of mast cell stabilization in treatment of postoperative ileus: a pilot study. Am J Gastroenterol 104(9):2257–2266. doi: 10.1038/ajg.2009.268 CrossRefPubMedGoogle Scholar
  68. The F, Cailotto C, van der Vliet J, de Jonge WJ, Bennink RJ, Buijs RM, Boeckxstaens GE (2011) Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus. Br J Pharmacol 163(5):1007–1016. doi: 10.1111/j.1476-5381.2011.01296.x CrossRefPubMedPubMedCentralGoogle Scholar
  69. Toyomasu Y, Mochiki E, Morita H, Ogawa A, Yanai M, Ohno T et al (2011) Mosapride citrate improves postoperative ileus of patients with colectomy. J Gastrointest Surg 15(8):1361–1367. doi: 10.1007/s11605-011-1567-x CrossRefPubMedGoogle Scholar
  70. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859. doi: 10.1038/nature01321 CrossRefPubMedGoogle Scholar
  71. Traut U, Brugger L, Kunz R, Pauli-Magnus C, Haug K, Bucher HC, Koller MT (2008) Systemic prokinetic pharmacologic treatment for postoperative adynamic ileus following abdominal surgery in adults. Cochrane Database Syst Rev 1:CD004930. doi: 10.1002/14651858.CD004930.pub3 Google Scholar
  72. Tsuchida Y, Hatao F, Fujisawa M, Murata T, Kaminishi M, Seto Y et al (2011) Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via alpha7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 60(5):638–647. doi: 10.1136/gut.2010.227546 CrossRefPubMedGoogle Scholar
  73. Turler A, Kalff JC, Moore BA, Hoffman RA, Billiar TR, Simmons RL, Bauer AJ (2006) Leukocyte-derived inducible nitric oxide synthase mediates murine postoperative ileus. Ann Surg 244(2):220–229. doi: 10.1097/01.sla.0000229963.37544.59 CrossRefPubMedPubMedCentralGoogle Scholar
  74. van Bree S, Vlug M, Bemelman W, Hollmann M, Ubbink D, Zwinderman K et al (2011) Faster recovery of gastrointestinal transit after laparoscopy and fast-track care in patients undergoing colonic surgery. Gastroenterology 141(3):872–880.e1–4. doi: 10.1053/j.gastro.2011.05.034 CrossRefPubMedGoogle Scholar
  75. van Bree SH, Cailotto C, Di Giovangiulio M, Jansen E, van der Vliet J, Costes L et al (2013) Systemic inflammation with enhanced brain activation contributes to more severe delay in postoperative ileus. Neurogastroenterol Motil 25(8):e540–e549. doi: 10.1111/nmo.12157 CrossRefPubMedGoogle Scholar
  76. van Bree SH, Bemelman WA, Hollmann MW, Zwinderman AH, Matteoli G, El Temna S et al (2014) Identification of clinical outcome measures for recovery of gastrointestinal motility in postoperative ileus. Ann Surg 259(4):708–714. doi: 10.1097/SLA.0b013e318293ee55 CrossRefPubMedGoogle Scholar
  77. Vaughan-Shaw PG, Fecher IC, Harris S, Knight JS (2012) A meta-analysis of the effectiveness of the opioid receptor antagonist alvimopan in reducing hospital length of stay and time to GI recovery in patients enrolled in a standardized accelerated recovery program after abdominal surgery. Dis Colon Rectum 55(5):611–620. doi: 10.1097/DCR.0b013e318249fc78 CrossRefPubMedGoogle Scholar
  78. Vlug MS, Wind J, Hollmann MW, Ubbink DT, Cense HA, Engel AF et al (2011) Laparoscopy in combination with fast track multimodal management is the best perioperative strategy in patients undergoing colonic surgery: a randomized clinical trial (LAFA-study). Ann Surg 254(6):868–875. doi: 10.1097/SLA.0b013e31821fd1ce CrossRefPubMedGoogle Scholar
  79. Wehner S, Schwarz NT, Hundsdoerfer R, Hierholzer C, Tweardy DJ, Billiar TR et al (2005) Induction of IL-6 within the rodent intestinal muscularis after intestinal surgical stress. Surgery 137(4):436–446. doi: 10.1016/j.surg.2004.11.003 CrossRefPubMedGoogle Scholar
  80. Wehner S, Straesser S, Vilz TO, Pantelis D, Sielecki T, de la Cruz VF et al (2009) Inhibition of p38 mitogen-activated protein kinase pathway as prophylaxis of postoperative ileus in mice. Gastroenterology 136(2):619–629. doi: 10.1053/j.gastro.2008.10.017 CrossRefPubMedGoogle Scholar
  81. Wehner S, Vilz TO, Sommer N, Sielecki T, Hong GS, Lysson M et al (2012) The novel orally active guanylhydrazone CPSI-2364 prevents postoperative ileus in mice independently of anti-inflammatory vagus nerve signaling. Langenbecks Arch Surg 397(7):1139–1147. doi: 10.1007/s00423-012-0989-6 CrossRefPubMedGoogle Scholar
  82. Wolthuis AM, Bislenghi G, Fieuws S, de Buck van Overstraeten A, Boeckxstaens G, D’Hoore A (2016) Incidence of prolonged postoperative ileus after colorectal surgery: a systematic review and meta-analysis. Colorectal Dis 18(1):O1–O9. doi: 10.1111/codi.13210 CrossRefPubMedGoogle Scholar
  83. Wu Z, Boersema GS, Jeekel J, Lange JF (2014) Nicotine gum chewing: a novel strategy to shorten duration of postoperative ileus via vagus nerve activation. Med Hypotheses 83(3):352–354. doi: 10.1016/j.mehy.2014.06.011 CrossRefPubMedGoogle Scholar
  84. Yu CS, Chun HK, Stambler N, Carpenito J, Schulman S, Tzanis E, Randazzo B (2011) Safety and efficacy of methylnaltrexone in shortening the duration of postoperative ileus following segmental colectomy: results of two randomized, placebo-controlled phase 3 trials. Dis Colon Rectum 54(5):570–578. doi: 10.1007/DCR.0b013e3182092bde CrossRefPubMedGoogle Scholar
  85. Zittel TT, Reddy SN, Plourde V, Raybould HE (1994) Role of spinal afferents and calcitonin gene-related peptide in the postoperative gastric ileus in anesthetized rats. Ann Surg 219(1):79–87. Accessed from CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • N. Stakenborg
    • 1
  • P. J. Gomez-Pinilla
    • 1
  • G. E. Boeckxstaens
    • 1
    • 2
    Email author
  1. 1.Division of Gastroenterology and Hepatology, Translational Research Center for Gastrointestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
  2. 2.Division of Gastroenterology and HepatologyUniversity Hospital LeuvenLeuvenBelgium

Personalised recommendations