• Tongzhi Wu
  • Christopher K. RaynerEmail author
  • Michael Horowitz
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 233)


Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the known incretin hormones in humans, released predominantly from the enteroendocrine K and L cells within the gut. Their secretion is regulated by a complex of integrated mechanisms involving direct contact for the activation of different chemo-sensors on the brush boarder of K and L cells and several indirect neuro-immuno-hormonal loops. The biological actions of GIP and GLP-1 are fundamental determinants of islet function and blood glucose homeostasis in health and type 2 diabetes. Moreover, there is increasing recognition that GIP and GLP-1 also exert pleiotropic extra-glycaemic actions, which may represent therapeutic targets for human diseases. In this review, we summarise current knowledge of the biology of incretin hormones in health and metabolic disorders and highlight the therapeutic potential of incretin hormones in metabolic regulation.


Extra-glycaemic actions Glucagon-like peptide-1 Glucose-dependent insulinotropic polypeptide Glycaemic actions Incretin hormones Obesity Type 2 diabetes 



The authors’ work has been supported by the National Health and Medical Research Council of Australia (NHMRC). TW is supported by a Royal Adelaide Hospital Early Career Fellowship.


  1. Abbott CR, Monteiro M, Small CJ, Sajedi A, Smith KL, Parkinson JR, Ghatei MA, Bloom SR (2005) The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res 1044:127–131PubMedCrossRefGoogle Scholar
  2. Adrian TE, Gariballa S, Parekh KA, Thomas SA, Saadi H, Al Kaabi J, Nagelkerke N, Gedulin B, Young AA (2012) Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia 55:2343–2347PubMedCrossRefGoogle Scholar
  3. Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM (2008) Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 283:18365–18376PubMedPubMedCentralCrossRefGoogle Scholar
  4. American Diabetes Association (2015) Approaches to glycemic treatment. Diabetes Care 38:S41–S48CrossRefGoogle Scholar
  5. Amland PF, Jorde R, Aanderud S, Burhol PG, Giercksky KE (1985) Effects of intravenously infused porcine GIP on serum insulin, plasma C-peptide, and pancreatic polypeptide in non-insulin-dependent diabetes in the fasting state. Scand J Gastroenterol 20:315–320PubMedCrossRefGoogle Scholar
  6. Arakawa M, Ebato C, Mita T, Fujitani Y, Shimizu T, Watada H, Kawamori R, Hirose T (2008) Miglitol suppresses the postprandial increase in interleukin 6 and enhances active glucagon-like peptide 1 secretion in viscerally obese subjects. Metabolism 57:1299–1306PubMedCrossRefGoogle Scholar
  7. Asmar M, Simonsen L, Madsbad S, Stallknecht B, Holst JJ, Bulow J (2010a) Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 59:2160–2163PubMedPubMedCentralCrossRefGoogle Scholar
  8. Asmar M, Tangaa W, Madsbad S, Hare K, Astrup A, Flint A, Bulow J, Holst JJ (2010b) On the role of glucose-dependent insulinotropic polypeptide in postprandial metabolism in humans. Am J Physiol Endocrinol Metab 298:E614–E621PubMedCrossRefGoogle Scholar
  9. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157PubMedCrossRefGoogle Scholar
  10. Baggio LL, Drucker DJ (2014) Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J Clin Invest 124:4223–4226PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balkan B, Li X (2000) Portal GLP-1 administration in rats augments the insulin response to glucose via neuronal mechanisms. Am J Physiol Regul Integr Comp Physiol 279:R1449–R1454PubMedGoogle Scholar
  12. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117:2340–2350PubMedCrossRefGoogle Scholar
  13. Beglinger S, Drewe J, Schirra J, Goke B, D’Amato M, Beglinger C (2010) Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab 95:879–886PubMedCrossRefGoogle Scholar
  14. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Ferno J, Salvador J, Escalada J, Dieguez C, Lopez M, Fruhbeck G, Nogueiras R (2014) GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63:3346–3358PubMedCrossRefGoogle Scholar
  15. Bertin E, Arner P, Bolinder J, Hagstrom-Toft E (2001) Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo. J Clin Endocrinol Metab 86:1229–1234PubMedGoogle Scholar
  16. Bharucha AE, Charkoudian N, Andrews CN, Camilleri M, Sletten D, Zinsmeister AR, Low PA (2008) Effects of glucagon-like peptide-1, yohimbine, and nitrergic modulation on sympathetic and parasympathetic activity in humans. Am J Physiol Regul Integr Comp Physiol 295:R874–R880PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brennan IM, Seimon RV, Luscombe-Marsh ND, Otto B, Horowitz M, Feinle-Bisset C (2011) Effects of acute dietary restriction on gut motor, hormone and energy intake responses to duodenal fat in obese men. Int J Obes (Lond) 35:448–456CrossRefGoogle Scholar
  18. Brown JC (1971) A gastric inhibitory polypeptide. I. The amino acid composition and the tryptic peptides. Can J Biochem 49:255–261PubMedCrossRefGoogle Scholar
  19. Brown JC, Dryburgh JR, Ross SA, Dupre J (1975) Identification and actions of gastric inhibitory polypeptide. Recent Prog Horm Res 31:487–532PubMedGoogle Scholar
  20. Bunck MC, Corner A, Eliasson B, Heine RJ, Shaginian RM, Taskinen MR, Smith U, Yki-Jarvinen H, Diamant M (2011a) Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 34:2041–2047PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bunck MC, Eliasson B, Corner A, Heine RJ, Shaginian RM, Taskinen MR, Yki-Jarvinen H, Smith U, Diamant M (2011b) Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes Metab 13:374–377PubMedCrossRefGoogle Scholar
  22. Butler PC, Ritzel R, Butler AE, Ritzel RA (2004) Islet turnover in lean and obese humans. Diabetes 53:A356CrossRefGoogle Scholar
  23. Butler AE, Campbell-Thompson M, Gurlo T, Dawson DW, Atkinson M, Butler PC (2013) Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 62:2595–2604PubMedPubMedCentralCrossRefGoogle Scholar
  24. Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, Vilsboll T, Knop FK (2013) Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia 56:965–972PubMedPubMedCentralCrossRefGoogle Scholar
  25. Camilleri M, Vazquez-Roque M, Iturrino J, Boldingh A, Burton D, McKinzie S, Wong BS, Rao AS, Kenny E, Mansson M, Zinsmeister AR (2012) Effect of a glucagon-like peptide 1 analog, ROSE-010, on GI motor functions in female patients with constipation-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 303:G120–G128PubMedCrossRefGoogle Scholar
  26. Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17(6):819–837PubMedCrossRefGoogle Scholar
  27. Cervera A, Wajcberg E, Sriwijitkamol A, Fernandez M, Zuo P, Triplitt C, Musi N, DeFronzo RA, Cersosimo E (2008) Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. Am J Physiol Endocrinol Metab 294:E846–E852PubMedCrossRefGoogle Scholar
  28. Chaikomin R, Wu KL, Doran S, Jones KL, Smout AJ, Renooij W, Holloway RH, Meyer JH, Horowitz M, Rayner CK (2007) Concurrent duodenal manometric and impedance recording to evaluate the effects of hyoscine on motility and flow events, glucose absorption, and incretin release. Am J Physiol Gastrointest Liver Physiol 292:G1099–G1104PubMedCrossRefGoogle Scholar
  29. Chen S, Okahara F, Osaki N, Shimotoyodome A (2014) Increased GIP signaling induces adipose inflammation via a HIF-1alpha-dependent pathway and impairs insulin sensitivity in mice. Am J Physiol Endocrinol Metab 308(5):E414–E425PubMedCrossRefGoogle Scholar
  30. Cho HJ, Robinson ES, Rivera LR, McMillan PJ, Testro A, Nikfarjam M, Bravo DM, Furness JB (2014) Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells. Cell Tissue Res 357(1):63–69PubMedCrossRefGoogle Scholar
  31. Christensen MB, Calanna S, Holst JJ, Vilsboll T, Knop FK (2014) Glucose-dependent insulinotropic polypeptide: blood glucose stabilizing effects in patients with type 2 diabetes. J Clin Endocrinol Metab 99:E418–E426PubMedCrossRefGoogle Scholar
  32. Christensen M, Calanna S, Sparre-Ulrich AH, Kristensen PL, Rosenkilde MM, Faber J, Purrello F, van Hall G, Holst JJ, Vilsboll T, Knop FK (2015) Glucose-dependent insulinotropic polypeptide augments glucagon responses to hypoglycemia in type 1 diabetes. Diabetes 64:72–78PubMedCrossRefGoogle Scholar
  33. Creutzfeldt W (1979) The incretin concept today. Diabetologia 16:75–85PubMedCrossRefGoogle Scholar
  34. Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA (1996) Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19:580–586PubMedCrossRefGoogle Scholar
  35. de Heer J, Holst JJ (2007) Sulfonylurea compounds uncouple the glucose dependence of the insulinotropic effect of glucagon-like peptide 1. Diabetes 56:438–443PubMedCrossRefGoogle Scholar
  36. de Heer J, Rasmussen C, Coy DH, Holst JJ (2008) Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51:2263–2270PubMedCrossRefGoogle Scholar
  37. De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA, Ghatei MA, Bloom SR, Matthews PM, Beaver JD, Dhillo WS (2011) The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab 14:700–706PubMedPubMedCentralCrossRefGoogle Scholar
  38. Deacon CF (2011) Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab 13:7–18PubMedCrossRefGoogle Scholar
  39. Deacon CF, Ahren B (2011) Physiology of incretins in health and disease. Rev Diabet Stud 8:293–306PubMedPubMedCentralCrossRefGoogle Scholar
  40. Deacon CF, Pridal L, Klarskov L, Olesen M, Holst JJ (1996) Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol 271:E458–E464PubMedGoogle Scholar
  41. Deacon CF, Nauck MA, Meier J, Hucking K, Holst JJ (2000) Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 85:3575–3581PubMedGoogle Scholar
  42. Deane AM, Chapman MJ, Fraser RJ, Summers MJ, Zaknic AV, Storey JP, Jones KL, Rayner CK, Horowitz M (2010a) Effects of exogenous glucagon-like peptide-1 on gastric emptying and glucose absorption in the critically ill: relationship to glycemia. Crit Care Med 38:1261–1269PubMedCrossRefGoogle Scholar
  43. Deane AM, Nguyen NQ, Stevens JE, Fraser RJ, Holloway RH, Besanko LK, Burgstad C, Jones KL, Chapman MJ, Rayner CK, Horowitz M (2010b) Endogenous glucagon-like peptide-1 slows gastric emptying in healthy subjects, attenuating postprandial glycemia. J Clin Endocrinol Metab 95:215–221PubMedCrossRefGoogle Scholar
  44. Diamant M, Van Gaal L, Stranks S, Guerci B, MacConell L, Haber H, Scism-Bacon J, Trautmann M (2012) Safety and efficacy of once-weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes over 84 weeks. Diabetes Care 35:683–689PubMedPubMedCentralCrossRefGoogle Scholar
  45. Drucker DJ (2013) Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls. Diabetes 62:3316–3323PubMedPubMedCentralCrossRefGoogle Scholar
  46. Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84:3434–3438PubMedPubMedCentralCrossRefGoogle Scholar
  47. Drucker DJ, Sherman SI, Bergenstal RM, Buse JB (2011) The safety of incretin-based therapies–review of the scientific evidence. J Clin Endocrinol Metab 96:2027–2031PubMedCrossRefGoogle Scholar
  48. Dupre J, Behme MT, McDonald TJ (2004) Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 89:3469–3473PubMedCrossRefGoogle Scholar
  49. Ebert R, Nauck M, Creutzfeldt W (1991) Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats. Horm Metab Res 23:517–521PubMedCrossRefGoogle Scholar
  50. Edholm T, Degerblad M, Gryback P, Hilsted L, Holst JJ, Jacobsson H, Efendic S, Schmidt PT, Hellstrom PM (2010) Differential incretin effects of GIP and GLP-1 on gastric emptying, appetite, and insulin-glucose homeostasis. Neurogastroenterol Motil 22(1191–200):e315Google Scholar
  51. Eguchi Y, Kitajima Y, Hyogo H, Takahashi H, Kojima M, Ono M, Araki N, Tanaka K, Yamaguchi M, Matsuda Y, Ide Y, Otsuka T, Ozaki I, Ono N, Eguchi T, Anzai K, Japan Study Group for NAFLD (JSG-NAFLD) (2014) Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol Res 45(3):269–278PubMedCrossRefGoogle Scholar
  52. Eissele R, Goke R, Willemer S, Harthus HP, Vermeer H, Arnold R, Goke B (1992) Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 22:283–291PubMedCrossRefGoogle Scholar
  53. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AM, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489PubMedPubMedCentralCrossRefGoogle Scholar
  54. Enc FY, Imeryuz N, Akin L, Turoglu T, Dede F, Haklar G, Tekesin N, Bekiroglu N, Yegen BC, Rehfeld JF, Holst JJ, Ulusoy NB (2001) Inhibition of gastric emptying by acarbose is correlated with GLP-1 response and accompanied by CCK release. Am J Physiol Gastrointest Liver Physiol 281:G752–G763PubMedGoogle Scholar
  55. Fara JW, Salazar AM (1978) Gastric inhibitory polypeptide increases mesenteric blood flow. Proc Soc Exp Biol Med 158:446–448PubMedCrossRefGoogle Scholar
  56. Flint A, Raben A, Rehfeld JF, Holst JJ, Astrup A (2000) The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans. Int J Obes Relat Metab Disord 24:288–298PubMedCrossRefGoogle Scholar
  57. Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB (2005) Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808–1815PubMedCrossRefGoogle Scholar
  58. Fujita Y, Wideman RD, Asadi A, Yang GK, Baker R, Webber T, Zhang T, Wang R, Ao Z, Warnock GL, Kwok YN, Kieffer TJ (2010) Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet alpha-cells and promotes insulin secretion. Gastroenterology 138:1966–1975PubMedCrossRefGoogle Scholar
  59. Gallwitz B, Vaag A, Falahati A, Madsbad S (2010) Adding liraglutide to oral antidiabetic drug therapy: onset of treatment effects over time. Int J Clin Pract 64:267–276PubMedCrossRefGoogle Scholar
  60. Gault VA, McClean PL, Cassidy RS, Irwin N, Flatt PR (2007) Chemical gastric inhibitory polypeptide receptor antagonism protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat and cafeteria diets. Diabetologia 50:1752–1762PubMedCrossRefGoogle Scholar
  61. Gentilcore D, Bryant B, Wishart JM, Morris HA, Horowitz M, Jones KL (2005) Acarbose attenuates the hypotensive response to sucrose and slows gastric emptying in the elderly. Am J Med 118:1289PubMedCrossRefGoogle Scholar
  62. Gil-Lozano M, Mingomataj EL, Wu WK, Ridout SA, Brubaker PL (2014) Circadian secretion of the intestinal hormone GLP-1 by the rodent L cell. Diabetes 63:3674–3685PubMedCrossRefGoogle Scholar
  63. Gjesing AP, Ekstrom CT, Eiberg H, Urhammer SA, Holst JJ, Pedersen O, Hansen T (2012) Fasting and oral glucose-stimulated levels of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are highly familial traits. Diabetologia 55:1338–1345PubMedCrossRefGoogle Scholar
  64. Gogebakan O, Andres J, Biedasek K, Mai K, Kuhnen P, Krude H, Isken F, Rudovich N, Osterhoff MA, Kintscher U, Nauck M, Pfeiffer AF, Spranger J (2012) Glucose-dependent insulinotropic polypeptide reduces fat-specific expression and activity of 11beta-hydroxysteroid dehydrogenase type 1 and inhibits release of free fatty acids. Diabetes 61:292–300PubMedPubMedCentralCrossRefGoogle Scholar
  65. Goo RH, Moore JG, Greenberg E, Alazraki NP (1987) Circadian variation in gastric emptying of meals in humans. Gastroenterology 93:515–518PubMedGoogle Scholar
  66. Gu G, Roland B, Tomaselli K, Dolman CS, Lowe C, Heilig JS (2013) Glucagon-like peptide-1 in the rat brain: distribution of expression and functional implication. J Comp Neurol 521:2235–2261PubMedCrossRefGoogle Scholar
  67. Gupta D, Peshavaria M, Monga N, Jetton TL, Leahy JL (2010) Physiologic and pharmacologic modulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in beta-cells by peroxisome proliferator-activated receptor (PPAR)-gamma signaling: possible mechanism for the GIP resistance in type 2 diabetes. Diabetes 59:1445–1450PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C (2004) Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 89:3055–3061PubMedCrossRefGoogle Scholar
  69. Hansen L, Deacon CF, Orskov C, Holst JJ (1999) Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140:5356–5363PubMedGoogle Scholar
  70. Hansen KB, Vilsboll T, Bagger JI, Holst JJ, Knop FK (2012) Impaired incretin-induced amplification of insulin secretion after glucose homeostatic dysregulation in healthy subjects. J Clin Endocrinol Metab 97:1363–1370PubMedCrossRefGoogle Scholar
  71. Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ (2010) The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59:1765–1770PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hegedus L, Moses AC, Zdravkovic M, Le Thi T, Daniels GH (2011) GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J Clin Endocrinol Metab 96:853–860PubMedCrossRefGoogle Scholar
  73. Heller RS, Kieffer TJ, Habener JF (1997) Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas. Diabetes 46:785–791PubMedCrossRefGoogle Scholar
  74. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189PubMedCrossRefGoogle Scholar
  75. Hojberg PV, Vilsboll T, Rabol R, Knop FK, Bache M, Krarup T, Holst JJ, Madsbad S (2009) Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52:199–207PubMedCrossRefGoogle Scholar
  76. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439PubMedCrossRefGoogle Scholar
  77. Horowitz M, Rayner CK, Jones KL (2013) Mechanisms and clinical efficacy of lixisenatide for the management of type 2 diabetes. Adv Ther 30:81–101PubMedCrossRefGoogle Scholar
  78. Irwin N, Flatt PR (2009) Evidence for beneficial effects of compromised gastric inhibitory polypeptide action in obesity-related diabetes and possible therapeutic implications. Diabetologia 52:1724–1731PubMedCrossRefGoogle Scholar
  79. Jendle J, Nauck MA, Matthews DR, Frid A, Hermansen K, During M, Zdravkovic M, Strauss BJ, Garber AJ, LEAD-2 and LEAD-3 Study Groups (2009) Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab 11:1163–1172PubMedCrossRefGoogle Scholar
  80. Kahles F, Meyer C, Mollmann J, Diebold S, Findeisen HM, Lebherz C, Trautwein C, Koch A, Tacke F, Marx N, Lehrke M (2014) GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes 63(10):3221–3229PubMedCrossRefGoogle Scholar
  81. Keyhani-Nejad F, Irmler M, Isken F, Wirth EK, Beckers J, Birkenfeld AL, Pfeiffer AF (2015) Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice. Diabetologia 58:374–383PubMedCrossRefGoogle Scholar
  82. Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ (2013) GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med 19:567–575PubMedCrossRefGoogle Scholar
  83. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH, Wintle ME, Maggs DG (2008) Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 24:275–286PubMedCrossRefGoogle Scholar
  84. Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2:1300–1304PubMedCrossRefGoogle Scholar
  85. Kuhre RE, Gribble FM, Hartmann B, Reimann F, Windelov JA, Rehfeld JF, Holst JJ (2014) Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. Am J Physiol Gastrointest Liver Physiol 306:G622–G630PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kunkel D, Basseri B, Low K, Lezcano S, Soffer EE, Conklin JL, Mathur R, Pimentel M (2011) Efficacy of the glucagon-like peptide-1 agonist exenatide in the treatment of short bowel syndrome. Neurogastroenterol Motil 23:739-e328PubMedCrossRefGoogle Scholar
  87. Kuo P, Chaikomin R, Pilichiewicz A, O’Donovan D, Wishart JM, Meyer JH, Jones KL, Feinle-Bisset C, Horowitz M, Rayner CK (2008) Transient, early release of glucagon-like peptide-1 during low rates of intraduodenal glucose delivery. Regul Pept 146:1–3PubMedCrossRefGoogle Scholar
  88. Kuo P, Stevens JE, Russo A, Maddox A, Wishart JM, Jones KL, Greville H, Hetzel D, Chapman I, Horowitz M, Rayner CK (2011) Gastric emptying, incretin hormone secretion, and postprandial glycemia in cystic fibrosis–effects of pancreatic enzyme supplementation. J Clin Endocrinol Metab 96:E851–E855PubMedCrossRefGoogle Scholar
  89. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, Hart AB, Olivan B (2007) Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 30:1709–1716PubMedPubMedCentralCrossRefGoogle Scholar
  90. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, Kovack B, Bawa B, Koshy N, Lee H, Yapp K, Olivan B (2008) Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 93:2479–2485PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lee MY, Fraser JD, Chapman MJ, Sundararajan K, Umapathysivam MM, Summers MJ, Zaknic AV, Rayner CK, Meier JJ, Horowitz M, Deane AM (2013) The effect of exogenous glucose-dependent insulinotropic polypeptide in combination with glucagon-like peptide-1 on glycemia in the critically ill. Diabetes Care 36:3333–3336PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lewis JT, Dayanandan B, Habener JF, Kieffer TJ (2000) Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology 141:3710–3716PubMedGoogle Scholar
  93. Lindgren O, Mari A, Deacon CF, Carr RD, Winzell MS, Vikman J, Ahren B (2009) Differential islet and incretin hormone responses in morning versus afternoon after standardized meal in healthy men. J Clin Endocrinol Metab 94:2887–2892PubMedCrossRefGoogle Scholar
  94. Lindgren O, Carr RD, Deacon CF, Holst JJ, Pacini G, Mari A, Ahren B (2011) Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab 96:2519–2524PubMedCrossRefGoogle Scholar
  95. Lindgren O, Pacini G, Tura A, Holst JJ, Deacon CF, Ahren B (2014) Incretin effect after oral amino acid ingestion in humans. J Clin Endocrinol Metab 100(3):1172–1176PubMedCrossRefGoogle Scholar
  96. Little TJ, Pilichiewicz AN, Russo A, Phillips L, Jones KL, Nauck MA, Wishart J, Horowitz M, Feinle-Bisset C (2006) Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J Clin Endocrinol Metab 91:1916–1923PubMedCrossRefGoogle Scholar
  97. Little TJ, Isaacs NJ, Young RL, Ott R, Nguyen NQ, Rayner CK, Horowitz M, Feinle-Bisset C (2014) Characterization of duodenal expression and localization of fatty acid-sensing receptors in humans: relationships with body mass index. Am J Physiol Gastrointest Liver Physiol 307(10):G958–G967PubMedCrossRefGoogle Scholar
  98. Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C, Ananthakrishnan G, Rohner-Jeanrenaud F, Drucker DJ, DiMarchi R, Rahmouni K, Oldfield BJ, Tschop MH, Perez-Tilve D (2012) Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61:2753–2762PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lorenz M, Pfeiffer C, Steinstrasser A, Becker RH, Rutten H, Ruus P, Horowitz M (2013) Effects of lixisenatide once daily on gastric emptying in type 2 diabetes - relationship to postprandial glycemia. Regul Pept 185C:1–8CrossRefGoogle Scholar
  100. Lovshin JA, Barnie A, DeAlmeida A, Logan A, Zinman B, Drucker DJ (2015) Liraglutide promotes natriuresis but does not increase circulating levels of atrial natriuretic peptide in hypertensive subjects with type 2 diabetes. Diabetes Care 38:132–139PubMedCrossRefGoogle Scholar
  101. Lu WJ, Yang Q, Sun W, Woods SC, D’Alessio D, Tso P (2007) The regulation of the lymphatic secretion of glucagon-like peptide-1 (GLP-1) by intestinal absorption of fat and carbohydrate. Am J Physiol Gastrointest Liver Physiol 293:G963–G971PubMedCrossRefGoogle Scholar
  102. Lyssenko V, Eliasson L, Kotova O, Pilgaard K, Wierup N, Salehi A, Wendt A, Jonsson A, De Marinis YZ, Berglund LM, Taneera J, Balhuizen A, Hansson O, Osmark P, Duner P, Brons C, Stancakova A, Kuusisto J, Bugliani M, Saxena R, Ahlqvist E, Kieffer TJ, Tuomi T, Isomaa B, Melander O, Sonestedt E, Orho-Melander M, Nilsson P, Bonetti S, Bonadonna R, Miccoli R, Delprato S, Marchetti P, Madsbad S, Poulsen P, Vaag A, Laakso M, Gomez MF, Groop L (2011) Pleiotropic effects of GIP on islet function involve osteopontin. Diabetes 60:2424–2433PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ma J, Bellon M, Wishart JM, Young R, Blackshaw LA, Jones KL, Horowitz M, Rayner CK (2009a) Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol 296:G735–G739PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM, Jones KL, Clifton PM, Horowitz M, Rayner CK (2009b) Effects of a protein preload on gastric emptying, glycemia, and gut hormones after a carbohydrate meal in diet-controlled type 2 diabetes. Diabetes Care 32:1600–1602PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ma J, Pilichiewicz AN, Feinle-Bisset C, Wishart JM, Jones KL, Horowitz M, Rayner CK (2012) Effects of variations in duodenal glucose load on glycaemic, insulin, and incretin responses in type 2 diabetes. Diabet Med 29:604–608PubMedCrossRefGoogle Scholar
  106. Ma J, Checklin HL, Wishart JM, Stevens JE, Jones KL, Horowitz M, Meyer JH, Rayner CK (2013) A randomised trial of enteric-coated nutrient pellets to stimulate gastrointestinal peptide release and lower glycaemia in type 2 diabetes. Diabetologia 56:1236–1242PubMedCrossRefGoogle Scholar
  107. Maida A, Hansotia T, Longuet C, Seino Y, Drucker DJ (2009) Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice. Gastroenterology 137:2146–2157PubMedCrossRefGoogle Scholar
  108. Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, Del Guerra S, D’Aleo V, Piro S, Marselli L, Boggi U, Filipponi F, Tinti L, Salvini L, Wollheim CB, Purrello F, Dotta F (2012) A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 55:3262–3272PubMedCrossRefGoogle Scholar
  109. McKay NJ, Galante DL, Daniels D (2014) Endogenous glucagon-like peptide-1 reduces drinking behavior and is differentially engaged by water and food intakes in rats. J Neurosci 34:16417–16423PubMedPubMedCentralCrossRefGoogle Scholar
  110. Meier JJ, Hucking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA (2001) Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 50:2497–2504PubMedCrossRefGoogle Scholar
  111. Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, Nauck MA (2003a) Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 46:798–801PubMedCrossRefGoogle Scholar
  112. Meier JJ, Nauck MA, Siepmann N, Greulich M, Holst JJ, Deacon CF, Schmidt WE, Gallwitz B (2003b) Similar insulin secretory response to a gastric inhibitory polypeptide bolus injection at euglycemia in first-degree relatives of patients with type 2 diabetes and control subjects. Metabolism 52:1579–1585PubMedCrossRefGoogle Scholar
  113. Meier JJ, Goetze O, Anstipp J, Hagemann D, Holst JJ, Schmidt WE, Gallwitz B, Nauck MA (2004) Gastric inhibitory polypeptide does not inhibit gastric emptying in humans. Am J Physiol Endocrinol Metab 286:E621–E625PubMedCrossRefGoogle Scholar
  114. Meier JJ, Gallwitz B, Askenas M, Vollmer K, Deacon CF, Holst JJ, Schmidt WE, Nauck MA (2005a) Secretion of incretin hormones and the insulinotropic effect of gastric inhibitory polypeptide in women with a history of gestational diabetes. Diabetologia 48:1872–1881PubMedCrossRefGoogle Scholar
  115. Meier JJ, Kemmeries G, Holst JJ, Nauck MA (2005b) Erythromycin antagonizes the deceleration of gastric emptying by glucagon-like peptide 1 and unmasks its insulinotropic effect in healthy subjects. Diabetes 54:2212–2218PubMedCrossRefGoogle Scholar
  116. Mentis N, Vardarli I, Kothe LD, Holst JJ, Deacon CF, Theodorakis M, Meier JJ, Nauck MA (2011) GIP does not potentiate the antidiabetic effects of GLP-1 in hyperglycemic patients with type 2 diabetes. Diabetes 60:1270–1276PubMedPubMedCentralCrossRefGoogle Scholar
  117. Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y, Kubota A, Fujimoto S, Kajikawa M, Kuroe A, Tsuda K, Hashimoto H, Yamashita T, Jomori T, Tashiro F, Miyazaki J, Seino Y (1999) Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci U S A 96:14843–14847PubMedPubMedCentralCrossRefGoogle Scholar
  118. Monnier L, Colette C, Dunseath GJ, Owens DR (2007) The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 30:263–269PubMedCrossRefGoogle Scholar
  119. Mortensen K, Christensen LL, Holst JJ, Orskov C (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114:189–196PubMedCrossRefGoogle Scholar
  120. Mulherin AJ, Oh AH, Kim H, Grieco A, Lauffer LM, Brubaker PL (2011) Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 152:4610–4619PubMedCrossRefGoogle Scholar
  121. Nasteska D, Harada N, Suzuki K, Yamane S, Hamasaki A, Joo E, Iwasaki K, Shibue K, Harada T, Inagaki N (2014) Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions. Diabetes 63:2332–2343PubMedCrossRefGoogle Scholar
  122. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W (1986) Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63:492–498PubMedCrossRefGoogle Scholar
  123. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307PubMedPubMedCentralCrossRefGoogle Scholar
  124. Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R, Schmiegel WH (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273:E981–E988PubMedGoogle Scholar
  125. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hufner M, Schmiegel WH (2002) Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 87:1239–1246PubMedCrossRefGoogle Scholar
  126. Nauck MA, Kemmeries G, Holst JJ, Meier JJ (2011a) Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60:1561–1565PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ (2011b) Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 54:10–18PubMedCrossRefGoogle Scholar
  128. Nauck MA, Baranov O, Ritzel RA, Meier JJ (2013) Do current incretin mimetics exploit the full therapeutic potential inherent in GLP-1 receptor stimulation? Diabetologia 56:1878–1883PubMedCrossRefGoogle Scholar
  129. Nicolaus M, Brodl J, Linke R, Woerle HJ, Goke B, Schirra J (2011) Endogenous GLP-1 regulates postprandial glycemia in humans: relative contributions of insulin, glucagon, and gastric emptying. J Clin Endocrinol Metab 96:229–236PubMedCrossRefGoogle Scholar
  130. Nogueiras R, Perez-Tilve D, Veyrat-Durebex C, Morgan DA, Varela L, Haynes WG, Patterson JT, Disse E, Pfluger PT, Lopez M, Woods SC, DiMarchi R, Dieguez C, Rahmouni K, Rohner-Jeanrenaud F, Tschop MH (2009) Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci 29:5916–5925PubMedCrossRefGoogle Scholar
  131. Nyberg J, Anderson MF, Meister B, Alborn AM, Strom AK, Brederlau A, Illerskog AC, Nilsson O, Kieffer TJ, Hietala MA, Ricksten A, Eriksson PS (2005) Glucose-dependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation. J Neurosci 25:1816–1825PubMedCrossRefGoogle Scholar
  132. Pathak V, Gault VA, Flatt PR, Irwin N (2014) Antagonism of gastric inhibitory polypeptide (GIP) by palmitoylation of GIP analogues with N- and C-terminal modifications improves obesity and metabolic control in high fat fed mice. Mol Cell Endocrinol 401:120–129PubMedCrossRefGoogle Scholar
  133. Perano SJ, Couper JJ, Horowitz M, Martin AJ, Kritas S, Sullivan T, Rayner CK (2014) Pancreatic enzyme supplementation improves the incretin hormone response and attenuates postprandial glycemia in adolescents with cystic fibrosis: a randomized crossover trial. J Clin Endocrinol Metab 99:2486–2493PubMedCrossRefGoogle Scholar
  134. Plamboeck A, Veedfald S, Deacon CF, Hartmann B, Wettergren A, Svendsen LB, Meisner S, Hovendal C, Knop FK, Vilsboll T, Holst JJ (2013) Characterisation of oral and i.v. glucose handling in truncally vagotomised subjects with pyloroplasty. Eur J Endocrinol 169:187–201PubMedPubMedCentralCrossRefGoogle Scholar
  135. Powell DR, Smith M, Greer J, Harris A, Zhao S, Dacosta C, Mseeh F, Shadoan MK, Sands A, Zambrowicz B, Ding ZM (2013) LX4211 increases serum GLP-1 and PYY levels by reducing SGLT-1-mediated absorption of intestinal glucose. J Pharmacol Exp Ther 345(2):250–259PubMedCrossRefGoogle Scholar
  136. Prigeon RL, Quddusi S, Paty B, D’Alessio DA (2003) Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol Endocrinol Metab 285:E-701–E-707CrossRefGoogle Scholar
  137. Pyke C, Knudsen LB (2013) The glucagon-like peptide-1 receptor–or not? Endocrinology 154:4–8PubMedCrossRefGoogle Scholar
  138. Pyke C, Heller RS, Kirk RK, Orskov C, Reedtz-Runge S, Kaastrup P, Hvelplund A, Bardram L, Calatayud D, Knudsen LB (2014) GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155:1280–1290PubMedCrossRefGoogle Scholar
  139. Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W (1995) Glucagon-like peptide 1 (7-36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol 30:892–896PubMedCrossRefGoogle Scholar
  140. Rankin MM, Kushner JA (2009) Adaptive beta-cell proliferation is severely restricted with advanced age. Diabetes 58:1365–1372PubMedPubMedCentralCrossRefGoogle Scholar
  141. Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, Gribble FM, Reimann F (2014) Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63:1224–1233PubMedPubMedCentralCrossRefGoogle Scholar
  142. Rocca AS, Brubaker PL (1999) Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140:1687–1694PubMedGoogle Scholar
  143. Salehi M, Vahl TP, D’Alessio DA (2008) Regulation of islet hormone release and gastric emptying by endogenous glucagon-like peptide 1 after glucose ingestion. J Clin Endocrinol Metab 93:4909–4916PubMedPubMedCentralCrossRefGoogle Scholar
  144. Salehi M, Aulinger B, Prigeon RL, D’Alessio DA (2010) Effect of endogenous GLP-1 on insulin secretion in type 2 diabetes. Diabetes 59:1330–1337PubMedPubMedCentralCrossRefGoogle Scholar
  145. Salehi M, Gastaldelli A, D’Alessio DA (2014) Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology 146(669–680):e2PubMedGoogle Scholar
  146. Sandoval DA, Bagnol D, Woods SC, D’Alessio DA, Seeley RJ (2008) Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57:2046–2054PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M (2011) Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 19:2310–2315CrossRefGoogle Scholar
  148. Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P, Lyssenko V, Bouatia-Naji N, Dupuis J, Jackson AU, Kao WH, Li M, Glazer NL, Manning AK, Luan J, Stringham HM, Prokopenko I, Johnson T, Grarup N, Boesgaard TW, Lecoeur C, Shrader P, O’Connell J, Ingelsson E, Couper DJ, Rice K, Song K, Andreasen CH, Dina C, Kottgen A, Le Bacquer O, Pattou F, Taneera J, Steinthorsdottir V, Rybin D, Ardlie K, Sampson M, Qi L, van Hoek M, Weedon MN, Aulchenko YS, Voight BF, Grallert H, Balkau B, Bergman RN, Bielinski SJ, Bonnefond A, Bonnycastle LL, Borch-Johnsen K, Bottcher Y, Brunner E, Buchanan TA, Bumpstead SJ, Cavalcanti-Proenca C, Charpentier G, Chen YD, Chines PS, Collins FS, Cornelis M, J Crawford G, Delplanque J, Doney A, Egan JM, Erdos MR, Firmann M, Forouhi NG, Fox CS, Goodarzi MO, Graessler J, Hingorani A, Isomaa B, Jorgensen T, Kivimaki M, Kovacs P, Krohn K, Kumari M, Lauritzen T, Levy-Marchal C, Mayor V, McAteer JB, Meyre D, Mitchell BD, Mohlke KL, Morken MA, Narisu N, Palmer CN, Pakyz R, Pascoe L, Payne F, Pearson D, Rathmann W, Sandbaek A, Sayer AA, Scott LJ, Sharp SJ, Sijbrands E, Singleton A, Siscovick DS, Smith NL, Sparso T, Swift AJ, Syddall H, Thorleifsson G, Tonjes A, Tuomi T, Tuomilehto J, Valle TT, Waeber G, Walley A, Waterworth DM, Zeggini E, Zhao JH, GIANT consortium, MAGIC investigators, Illig T, Wichmann HE, Wilson JF, van Duijn C, Hu FB, Morris AD, Frayling TM, Hattersley AT, Thorsteinsdottir U, Stefansson K, Nilsson P, Syvanen AC, Shuldiner AR, Walker M, Bornstein SR, Schwarz P, Williams GH, Nathan DM, Kuusisto J, Laakso M, Cooper C, Marmot M, Ferrucci L, Mooser V, Stumvoll M, Loos RJ, Altshuler D, Psaty BM, Rotter JI, Boerwinkle E, Hansen T, Pedersen O, Florez JC, McCarthy MI, Boehnke M, Barroso I, Sladek R, Froguel P, Meigs JB, Groop L, Wareham NJ, Watanabe RM (2010) Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 42:142–148PubMedPubMedCentralCrossRefGoogle Scholar
  149. Schirra J, Sturm K, Leicht P, Arnold R, Goke B, Katschinski M (1998) Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest 101:1421–1430PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schirra J, Nicolaus M, Roggel R, Katschinski M, Storr M, Woerle HJ, Goke B (2006) Endogenous glucagon-like peptide 1 controls endocrine pancreatic secretion and antro-pyloro-duodenal motility in humans. Gut 55:243–251PubMedPubMedCentralCrossRefGoogle Scholar
  151. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I, SAVOR-TIMI 53 Steering Committee and Investigators (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326PubMedCrossRefGoogle Scholar
  152. Seghieri M, Rebelos E, Gastaldelli A, Astiarraga BD, Casolaro A, Barsotti E, Pocai A, Nauck M, Muscelli E, Ferrannini E (2013) Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia 56:156–161PubMedCrossRefGoogle Scholar
  153. Seifarth C, Bergmann J, Holst JJ, Ritzel R, Schmiegel W, Nauck MA (1998) Prolonged and enhanced secretion of glucagon-like peptide 1 (7-36 amide) after oral sucrose due to alpha-glucosidase inhibition (acarbose) in Type 2 diabetic patients. Diabet Med 15:485–491PubMedCrossRefGoogle Scholar
  154. Seino Y, Yabe D (2013) Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J Diabetes Investig 4:108–130PubMedPubMedCentralCrossRefGoogle Scholar
  155. Seufert J, Gallwitz B (2014) The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes Metab 16:673–688PubMedCrossRefGoogle Scholar
  156. Shah M, Law JH, Micheletto F, Sathananthan M, Dalla Man C, Cobelli C, Rizza RA, Camilleri M, Zinsmeister AR, Vella A (2014) Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes 63:483–493PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA (2011) GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 6:e25269PubMedPubMedCentralCrossRefGoogle Scholar
  158. Smith EP, An Z, Wagner C, Lewis AG, Cohen EB, Li B, Mahbod P, Sandoval D, Perez-Tilve D, Tamarina N, Philipson LH, Stoffers DA, Seeley RJ, D’Alessio DA (2014) The role of beta cell glucagon-like peptide-1 signaling in glucose regulation and response to diabetes drugs. Cell Metab 19:1050–1057PubMedPubMedCentralCrossRefGoogle Scholar
  159. Steinert RE, Luscombe-Marsh ND, Little TJ, Standfield S, Otto B, Horowitz M, Feinle-Bisset C (2014a) Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men. J Clin Endocrinol Metab 99:3275–3284PubMedCrossRefGoogle Scholar
  160. Steinert RE, Schirra J, Meyer-Gerspach AC, Kienle P, Fischer H, Schulte F, Goeke B, Beglinger C (2014b) Effect of glucagon-like peptide-1 receptor antagonism on appetite and food intake in healthy men. Am J Clin Nutr 100:514–523PubMedCrossRefGoogle Scholar
  161. Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D, Garelli P, Casini A, Manco M, Mingrone G, Risaliti A, Frega GN, Benedetti A, Gastaldelli A (2011) Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 31:1285–1297PubMedCrossRefGoogle Scholar
  162. Svensson AM, Efendic S, Ostenson CG, Jansson L (1997) Gastric inhibitory polypeptide and splanchnic blood perfusion: augmentation of the islet blood flow increase in hyperglycemic rats. Peptides 18:1055–1059PubMedCrossRefGoogle Scholar
  163. Thazhath SS, Marathe C, Wu T, Chang J, Khoo J, Kuo P, Checklin H, Bound M, Russo A, Rigda RS, Jones KL, Horowitz M, Rayner CK (2014) Effects of the glucagon-like peptide-1 (GLP-1) receptor agonist, exenatide, on small intestinal motility, flow, and glucose absorption in healthy subjects and in type 2 diabetes (Abstract). United Eur Gastroenterol J 2(1S):A29Google Scholar
  164. Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM (2006) Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 290:E550–E559PubMedCrossRefGoogle Scholar
  165. Toft-Nielsen MB, Madsbad S, Holst JJ (1999) Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 22:1137–1143PubMedCrossRefGoogle Scholar
  166. Trahair LG, Horowitz M, Rayner CK, Gentilcore D, Lange K, Wishart JM, Jones KL (2012) Comparative effects of variations in duodenal glucose load on glycemic, insulinemic, and incretin responses in healthy young and older subjects. J Clin Endocrinol Metab 97:844–851PubMedCrossRefGoogle Scholar
  167. Trahair LG, Horowitz M, Hausken T, Feinle-Bisset C, Rayner CK, Jones KL (2014) Effects of exogenous glucagon-like peptide-1 on the blood pressure, heart rate, mesenteric blood flow and glycemic responses to intraduodenal glucose in healthy older subjects. J Clin Endocrinol Metab 99(12):E2628–E2634PubMedCrossRefGoogle Scholar
  168. Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, Bessho K, Li M, Amizuka N, Sato M, Udagawa N, Takahashi N, Tanaka K, Oiso Y, Seino Y (2006) Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 20:1644–1651PubMedCrossRefGoogle Scholar
  169. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72PubMedCrossRefGoogle Scholar
  170. Umapathysivam MM, Lee MY, Jones KL, Annink CE, Cousins CE, Trahair LG, Rayner CK, Chapman MJ, Nauck MA, Horowitz M, Deane AM (2014) Comparative effects of prolonged and intermittent stimulation of the glucagon-like peptide 1 receptor on gastric emptying and glycemia. Diabetes 63:785–790PubMedPubMedCentralCrossRefGoogle Scholar
  171. Ussher JR, Drucker DJ (2012) Cardiovascular biology of the incretin system. Endocr Rev 33:187–215PubMedPubMedCentralCrossRefGoogle Scholar
  172. Ussher JR, Drucker DJ (2014) Cardiovascular actions of incretin-based therapies. Circ Res 114:1788–1803PubMedCrossRefGoogle Scholar
  173. Vahl TP, Tauchi M, Durler TS, Elfers EE, Fernandes TM, Bitner RD, Ellis KS, Woods SC, Seeley RJ, Herman JP, D’Alessio DA (2007) Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148:4965–4973PubMedCrossRefGoogle Scholar
  174. Vella A, Shah P, Basu R, Basu A, Holst JJ, Rizza RA (2000) Effect of glucagon-like peptide 1(7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes. Diabetes 49:611–617PubMedCrossRefGoogle Scholar
  175. Vendrell J, El Bekay R, Peral B, Garcia-Fuentes E, Megia A, Macias-Gonzalez M, Fernandez Real J, Jimenez-Gomez Y, Escote X, Pachon G, Simo R, Selva DM, Malagon MM, Tinahones FJ (2011) Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology 152:4072–4079PubMedCrossRefGoogle Scholar
  176. Vilsboll T, Agerso H, Krarup T, Holst JJ (2003a) Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 88:220–224PubMedCrossRefGoogle Scholar
  177. Vilsboll T, Krarup T, Madsbad S, Holst JJ (2003b) Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 114:115–121PubMedCrossRefGoogle Scholar
  178. Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ (2003c) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88:2706–2713PubMedCrossRefGoogle Scholar
  179. Vilsboll T, Agerso H, Lauritsen T, Deacon CF, Aaboe K, Madsbad S, Krarup T, Holst JJ (2006) The elimination rates of intact GIP as well as its primary metabolite, GIP 3-42, are similar in type 2 diabetic patients and healthy subjects. Regul Pept 137:168–172PubMedCrossRefGoogle Scholar
  180. Waget A, Cabou C, Masseboeuf M, Cattan P, Armanet M, Karaca M, Castel J, Garret C, Payros G, Maida A, Sulpice T, Holst JJ, Drucker DJ, Magnan C, Burcelin R (2011) Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152:3018–3029PubMedCrossRefGoogle Scholar
  181. Waser B, Beetschen K, Pellegata NS, Reubi JC (2011) Incretin receptors in non-neoplastic and neoplastic thyroid C cells in rodents and humans: relevance for incretin-based diabetes therapy. Neuroendocrinology 94:291–301PubMedCrossRefGoogle Scholar
  182. Wettergren A, Petersen H, Orskov C, Christiansen J, Sheikh SP, Holst JJ (1994) Glucagon-like peptide-1 7-36 amide and peptide YY from the L-cell of the ileal mucosa are potent inhibitors of vagally induced gastric acid secretion in man. Scand J Gastroenterol 29:501–505PubMedCrossRefGoogle Scholar
  183. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F, Investigators E (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335PubMedCrossRefGoogle Scholar
  184. Wice BM, Reeds DN, Tran HD, Crimmins DL, Patterson BW, Dunai J, Wallendorf MJ, Ladenson JH, Villareal DT, Polonsky KS (2012) Xenin-25 amplifies GIP-mediated insulin secretion in humans with normal and impaired glucose tolerance but not type 2 diabetes. Diabetes 61:1793–1800PubMedPubMedCentralCrossRefGoogle Scholar
  185. Widenmaier SB, Kim SJ, Yang GK, De Los Reyes T, Nian C, Asadi A, Seino Y, Kieffer TJ, Kwok YN, McIntosh CH (2010) A GIP receptor agonist exhibits beta-cell anti-apoptotic actions in rat models of diabetes resulting in improved beta-cell function and glycemic control. PLoS One 5:e9590PubMedPubMedCentralCrossRefGoogle Scholar
  186. Witte AB, Gryback P, Jacobsson H, Naslund E, Hellstrom PM, Holst JJ, Hilsted L, Schmidt PT (2011) Involvement of endogenous glucagon-like peptide-1 in regulation of gastric motility and pancreatic endocrine secretion. Scand J Gastroenterol 46:428–435PubMedCrossRefGoogle Scholar
  187. Wu T, Rayner CK, Jones K, Horowitz M (2010) Dietary effects on incretin hormone secretion. Vitam Horm 84:81–110PubMedCrossRefGoogle Scholar
  188. Wu T, Zhao BR, Bound MJ, Checklin HL, Bellon M, Little TJ, Young RL, Jones KL, Horowitz M, Rayner CK (2012) Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans. Am J Clin Nutr 95:78–83PubMedCrossRefGoogle Scholar
  189. Wu T, Bound MJ, Standfield SD, Bellon M, Young RL, Jones KL, Horowitz M, Rayner CK (2013a) Artificial sweeteners have no effect on gastric emptying, glucagon-like peptide-1, or glycemia after oral glucose in healthy humans. Diabetes Care 36:e202–e203PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, Rayner CK (2013b) Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab 15:474–477PubMedCrossRefGoogle Scholar
  191. Wu T, Bound MJ, Standfield SD, Jones KL, Horowitz M, Rayner CK (2013c) Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans. J Clin Endocrinol Metab 98:E718–E722PubMedCrossRefGoogle Scholar
  192. Wu T, Bound MJ, Zhao BR, Standfield SD, Bellon M, Jones KL, Horowitz M, Rayner CK (2013d) Effects of a D-xylose preload with or without sitagliptin on gastric emptying, glucagon-like peptide-1, and postprandial glycemia in type 2 diabetes. Diabetes Care 36:1913–1918PubMedPubMedCentralCrossRefGoogle Scholar
  193. Wu T, Rayner CK, Young RL, Horowitz M (2013e) Gut motility and enteroendocrine secretion. Curr Opin Pharmacol 13:928–934PubMedCrossRefGoogle Scholar
  194. Wu T, Ma J, Bound MJ, Checklin H, Deacon CF, Jones KL, Horowitz M, Rayner CK (2014a) Effects of sitagliptin on glycemia, incretin hormones, and antropyloroduodenal motility in response to intraduodenal glucose infusion in healthy lean and obese humans and patients with type 2 diabetes treated with or without metformin. Diabetes 63:2776–2787PubMedCrossRefGoogle Scholar
  195. Wu T, Trahair LG, Bound MJ, Deacon CF, Horowitz M, Rayner CK, Jones KL (2014b) Effects of sitagliptin on blood pressure and heart rate in response to intraduodenal glucose infusion in patients with Type 2 diabetes: a potential role for glucose-dependent insulinotropic polypeptide? Diabet Med. doi: 10.1111/dme.12622 Google Scholar
  196. Xu G, Kaneto H, Laybutt DR, Duvivier-Kali VF, Trivedi N, Suzuma K, King GL, Weir GC, Bonner-Weir S (2007) Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56:1551–1558PubMedCrossRefGoogle Scholar
  197. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, Tanaka K, Drucker DJ, Seino Y, Inagaki N (2008) The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149:574–579PubMedCrossRefGoogle Scholar
  198. Yamamoto H, Lee CE, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK (2002) Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest 110:43–52PubMedPubMedCentralCrossRefGoogle Scholar
  199. Young RL, Chia B, Isaacs NJ, Ma J, Khoo J, Wu T, Horowitz M, Rayner CK (2013) Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes. Diabetes 62:3532–3541PubMedPubMedCentralCrossRefGoogle Scholar
  200. Zambrowicz B, Ogbaa I, Frazier K, Banks P, Turnage A, Freiman J, Boehm KA, Ruff D, Powell D, Sands A (2013) Effects of LX4211, a dual sodium-dependent glucose cotransporters 1 and 2 inhibitor, on postprandial glucose, insulin, glucagon-like peptide 1, and peptide tyrosine tyrosine in a dose-timing study in healthy subjects. Clin Ther 35(1162–1173):e8PubMedGoogle Scholar
  201. Zander M, Madsbad S, Madsen JL, Holst JJ (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359:824–830PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tongzhi Wu
    • 1
  • Christopher K. Rayner
    • 1
    • 2
    Email author
  • Michael Horowitz
    • 1
    • 2
  1. 1.Discipline of MedicineThe University of Adelaide, Royal Adelaide HospitalAdelaideAustralia
  2. 2.Centre of Research Excellence in Translating Nutritional Science into Good HealthThe University of AdelaideAdelaideAustralia

Personalised recommendations