Advertisement

pp 1-17 | Cite as

Impact of Host Defense Peptides on Chronic Wounds and Infections

  • Evan F. Haney
  • Daniel Pletzer
  • Robert E. W. HancockEmail author
Chapter
Part of the Recent Clinical Techniques, Results, and Research in Wounds book series

Abstract

Chronic wounds are a growing clinical concern worldwide with only a few treatment options available to address the fundamental causes of non-healing wounds. There is increasing evidence that the colonization of chronic wounds by bacteria growing within biofilms complicates treatment with conventional antibiotics and prevents proper wound healing. Compounding the issue is a relative lack of appropriate animal models that accurately capture the etiology and clinical features of chronic wounds. In the present work, we outline the role of natural host defense peptides (HDPs) on the wound healing process and highlight the potential of synthetic HDP derivatives as novel therapeutic molecules to treat long-lasting wounds. In particular, we will summarize many of the animal models available to study chronic wound infections and discuss recent results that describe the efficacy of synthetic HDPs and their ability to promote wound closure in vivo. We propose that novel synthetic HDPs that are optimized for both anti-biofilm and wound healing properties could 1 day provide additional support to help treat chronic wounds and improve patient welfare.

Notes

Acknowledgments

Our peptide research has been generously supported by grants from the Canadian Institutes of Health Research (funding reference number MOP-123477) and by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R33AI098701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. EFH and REWH are coinventors of patents for synthetic host defense peptides that have been assigned to their employer, the University of British Columbia, and licensed to ABT Innovations Inc. DP received a Feodor Lynen postdoctoral fellowship from the Alexander von Humboldt Foundation, and REWH holds a Canada Research Chair in Health and Genomics and a UBC Killam Professorship.

References

  1. 1.
    Vinh DC, Embil JM (2005) Rapidly progressive soft tissue infections. Lancet Infect Dis 5(8):501–513Google Scholar
  2. 2.
    Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526Google Scholar
  3. 3.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771Google Scholar
  4. 4.
    Nelzén O, Bergqvist D, Lindhagen A (1996) The prevalence of chronic lower-limb ulceration has been underestimated: results of a validated population questionnaire. Br J Surg 83(2):255–258Google Scholar
  5. 5.
    Guest JF, Ayoub N, McIlwraith T, Uchegbu I, Gerrish A, Weidlich D, Vowden K, Vowden P (2015) Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open 5(12):e009283Google Scholar
  6. 6.
    Malik VS, Willett WC, Hu FB (2013) Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 9(1):13–27Google Scholar
  7. 7.
    Zimmet P, Alberti KG, Magliano DJ, Bennett PH (2016) Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol 12(10):616–622Google Scholar
  8. 8.
    Wicke C, Bachinger A, Coerper S, Beckert S, Witte MB, Königsrainer A (2009) Aging influences wound healing in patients with chronic lower extremity wounds treated in a specialized wound care center. Wound Repair Regen 17(1):25–33Google Scholar
  9. 9.
    Percival SL, McCarty SM, Lipsky B (2015) Biofilms and wounds: an overview of the evidence. Adv Wound Care 4(7):373–381Google Scholar
  10. 10.
    Omar A, Wright JB, Schultz G, Burrell R, Nadworny P (2017) Microbial biofilms and chronic wounds. Microorganisms 5(1):9Google Scholar
  11. 11.
    Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ (2008) Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 58(2):185–206Google Scholar
  12. 12.
    Bjarnsholt T, Alhede M, Alhede M, Eickhardt-Sørensen SR, Moser C, Kühl M, Jensen PØ, Høiby N (2013) The in vivo biofilm. Trends Microbiol 21(9):466–474Google Scholar
  13. 13.
    James GA, Swogger E, Wolcott R, deLancey PE, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16(1):37–44Google Scholar
  14. 14.
    Dowd SE, Wolcott RD, Sun Y, McKeehan T, Smith E, Rhoads D (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3(10):e3326Google Scholar
  15. 15.
    Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C (2015) ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21(Suppl 1):S1–S25Google Scholar
  16. 16.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209Google Scholar
  17. 17.
    Breidenstein EBM, de la Fuente-Núñez C, Hancock REW (2011) Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19(8):419–426Google Scholar
  18. 18.
    O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79Google Scholar
  19. 19.
    Pletzer D, Coleman SR, Hancock REW (2016) Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol 33:35–40Google Scholar
  20. 20.
    Stewart PS, Franklin MJ, Williamson KS, Folsom JP, Boegli L, James GA (2015) Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 59(7):3838–3847Google Scholar
  21. 21.
    Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138Google Scholar
  22. 22.
    Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18Google Scholar
  23. 23.
    Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7(1):1–7Google Scholar
  24. 24.
    Federal Engagement in Antimicrobial Resistance, Centers for Disease Control and Prevention. http://www.cdc.gov/drugresistance/federal-engagement-in-ar/index.html. Accessed 6 Apr 2017
  25. 25.
    Epstein L, Dantes R, Magill S, Fiore A (2016) Varying estimates of sepsis mortality using death certificates and administrative codes — United States, 1999–2014. MMWR Morb Mortal Wkly Rep 65(13):342–345Google Scholar
  26. 26.
    Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64(4):323–334Google Scholar
  27. 27.
    Malone M, Bjarnsholt T, McBain AJ, James GA, Stoodley P, Leaper D, Tachi M, Schultz G, Swanson T, Wolcott RD (2017) The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care 26(1):20–25Google Scholar
  28. 28.
    Kirsner RS, Eaglstein WH (1993) The wound healing process. Dermatol Clin 11(4):629–640Google Scholar
  29. 29.
    Brown A (2015) Phases of the wound healing process. Nurs Times 111(46):12–13Google Scholar
  30. 30.
    Nunan R, Harding KG, Martin P (2014) Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 7(11):1205–1213Google Scholar
  31. 31.
    Zhao R, Liang H, Clarke E, Jackson C, Xue M (2016) Inflammation in chronic wounds. Int J Mol Sci 17(12):2085Google Scholar
  32. 32.
    Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ (2014) Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes 63(3):1103–1114Google Scholar
  33. 33.
    Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ (2015) How biofilms evade host defenses. Microbiol Spectr 2015;3(3)Google Scholar
  34. 34.
    Wolcott RD, Kennedy JP, Dowd SE (2009) Regular debridement is the main tool for maintaining a healthy wound bed in most chronic wounds. J Wound Care 18(2):54–56Google Scholar
  35. 35.
    Lipsky BA, Berendt AR, Deery HG, Embil JM, Joseph WS, Karchmer AW, LeFrock JL, Lew DP, Mader JT, Norden C, Tan JS (2004) Diagnosis and treatment of diabetic foot infections. Clin Infect Dis 39(7):885–910Google Scholar
  36. 36.
    Armstrong DG, Wrobel J, Robbins JM (2007) Guest editorial: are diabetes-related wounds and amputations worse than cancer? Int Wound J 4(4):286–287Google Scholar
  37. 37.
    Hancock RE, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16(5):321–334Google Scholar
  38. 38.
    Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12(7):503–516Google Scholar
  39. 39.
    Hilchie AL, Wuerth K, Hancock RE (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9(12):761–768Google Scholar
  40. 40.
    Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock REW (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182Google Scholar
  41. 41.
    Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346(6212):954–959Google Scholar
  42. 42.
    Schröder JM, Harder J (2006) Antimicrobial skin peptides and proteins. Cell Mol Life Sci 63(4):469–486Google Scholar
  43. 43.
    Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396(2–3):319–322Google Scholar
  44. 44.
    Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2(12):1133–1137Google Scholar
  45. 45.
    Chen VL, France DS, Martinelli GP (1986) De novo synthesis of lysozyme by human epidermal cells. J Invest Dermatol 87(5):585–587Google Scholar
  46. 46.
    Frohm M, Agerberth B, Ahangari G, Ståhle-Bäckdahl M, Lidén S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272(24):15258–15263Google Scholar
  47. 47.
    Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117(1):91–97Google Scholar
  48. 48.
    Markus Roupé K, Nybo M, Sjöbring U, Alberius P, Schmidtchen A, Sørensen OE (2010) Injury is a major inducer of epidermal innate immune responses during wound healing. J Invest Dermatol 130(4):1167–1177Google Scholar
  49. 49.
    Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T (2008) Host defense peptides in wound healing. Mol Med 14(7–8):528–537Google Scholar
  50. 50.
    Duplantier AJ, van Hoek ML (2013) The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol 4:143Google Scholar
  51. 51.
    Mangoni ML, McDermott AM, Zasloff M (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 25(3):167–173Google Scholar
  52. 52.
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DYM (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160Google Scholar
  53. 53.
    Milner SM, Ortega MR (1999) Reduced antimicrobial peptide expression in human burn wounds. Burns 25(5):411–413Google Scholar
  54. 54.
    Heilborn JD, Nilsson MF, Kratz G, Weber G, Sørensen O, Borregaard N, Ståhle-Bäckdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120(3):379–389Google Scholar
  55. 55.
    Galkowska H, Olszewski WL, Wojewodzka U (2005) Expression of natural antimicrobial peptide beta-defensin-2 and Langerhans cell accumulation in epidermis from human non-healing leg ulcers. Folia Histochem Cytobiol 43(3):133–136Google Scholar
  56. 56.
    Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111(11):1665–1672Google Scholar
  57. 57.
    Jacobsen F, Mittler D, Hirsch T, Gerhards A, Lehnhardt M, Voss B, Steinau HU, Steinstraesser L (2005) Transient cutaneous adenoviral gene therapy with human host defense peptide hCAP-18/LL-37 is effective for the treatment of burn wound infections. Gene Ther 12(20):1494–1502Google Scholar
  58. 58.
    Hirsch T, Spielmann M, Zuhaili B, Fossum M, Metzig M, Koehler T, Steinau H-U, Yao F, Onderdonk AB, Steinstraesser L, Eriksson E (2009) Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med 11(3):220–228Google Scholar
  59. 59.
    Steinstraesser L, Lam MC, Jacobsen F, Porporato PE, Chereddy KK, Becerikli M, Stricker I, Hancock REW, Lehnhardt M, Sonveaux P, Préat V, Vandermeulen G (2014) Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol Ther 22(4):734–742Google Scholar
  60. 60.
    Grönberg A, Mahlapuu M, Ståhle M, Whately-Smith C, Rollman O (2014) Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen 22(5):613–621Google Scholar
  61. 61.
    Haney EF, Hancock RE (2013) Peptide design for antimicrobial and immunomodulatory applications. Biopolymers 100(6):572–583Google Scholar
  62. 62.
    Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49(7):2845–2850Google Scholar
  63. 63.
    de la Fuente-Nunez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, REW H (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56(5):2696–2704Google Scholar
  64. 64.
    Haney EF, Mansour SC, Hilchie AL, de la Fuente-Núñez C, Hancock REW (2015) High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 71:276–285Google Scholar
  65. 65.
    de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, REW H (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10(5):e1004152Google Scholar
  66. 66.
    Luca MD, Maccari G, Maisetta G, Batoni G (2015) BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling 31(2):193–199Google Scholar
  67. 67.
    Di Grazia A, Cappiello F, Imanishi A, Mastrofrancesco A, Picardo M, Paus R, Mangoni ML (2015) The frog skin-derived antimicrobial peptide esculentin-1a(1-21)NH2 promotes the migration of human HaCaT keratinocytes in an EGF receptor-dependent manner: a novel promoter of human skin wound healing? PLoS One 10(6):e0128663Google Scholar
  68. 68.
    Steinstraesser L, Hirsch T, Schulte M, Kueckelhaus M, Jacobsen F, Mersch EA, Stricker I, Afacan N, Jenssen H, Hancock REW, Kindrachuk J (2012) Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 7(8):e39373Google Scholar
  69. 69.
    Huang H-N, Pan C-Y, Wu H-Y, Chen JY (2017) Antimicrobial peptide epinecidin-1 promotes complete skin regeneration of methicillin-resistant Staphylococcus aureus-infected burn wounds in a swine model. Oncotarget 8(13):21067–21080Google Scholar
  70. 70.
    Tomioka H, Nakagami H, Tenma A, Saito Y, Kaga T, Kanamori T, Tamura N, Tomono K, Kaneda Y, Morishita R (2014) Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway. PLoS One 9(3):e92597Google Scholar
  71. 71.
    Mansour SC, Pletzer D, de la Fuente-Núñez C, Kim P, Cheung GYC, Joo HS, Otto M, Hancock REW (2016) Bacterial abscess formation is controlled by the stringent stress response and can be targeted therapeutically. EBioMedicine 12:219–226Google Scholar
  72. 72.
    Chung EMC, Dean SN, Propst CN, Bishop BM, van Hoek ML (2017) Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. NPJ Biofilms Microbiomes 3(1):9Google Scholar
  73. 73.
    Nakagami H, Nishikawa T, Tamura N, Maeda A, Hibino H, Mochizuki M, Shimosato T, Moriya T, Morishita R, Tamai K, Tomono K, Kaneda Y (2012) Modification of a novel angiogenic peptide, AG30, for the development of novel therapeutic agents. J Cell Mol Med 16(7):1629–1639Google Scholar
  74. 74.
    de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, REW H (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22(2):196–205Google Scholar
  75. 75.
    Lee PHA, Rudisill JA, Lin KH, Zhang L, Harris SM, Falla TJ, Gallo RL (2004) HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair. Wound Repair Regen 12(3):351–358Google Scholar
  76. 76.
    Tang J, Liu H, Gao C, Mu L, Yang S, Rong M, Zhang Z, Liu J, Ding Q, Lai R (2014) A small peptide with potential ability to promote wound healing. PLoS One 9(3):e92082Google Scholar
  77. 77.
    Luca V, Stringaro A, Colone M, Pini A, Mangoni ML (2013) Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 70(15):2773–2786Google Scholar
  78. 78.
    McCrudden MTC, McLean DTF, Zhou M, Shaw J, Linden GJ, Irwin CR, Lundy FT (2014) The host defence peptide LL-37 is susceptible to proteolytic degradation by wound fluid isolated from foot ulcers of diabetic patients. Int J Pept Res Ther 20(4):457–464Google Scholar
  79. 79.
    Murphy CJ, Foster BA, Mannis MJ, Selsted ME, Reid TW (1993) Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol 155(2):408–413Google Scholar
  80. 80.
    Hulkower KI, Herber RL (2011) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3(1):107–124Google Scholar
  81. 81.
    Guo S, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229Google Scholar
  82. 82.
    Kosikowska P, Pikula M, Langa P, Trzonkowski P, Obuchowski M, Lesner A (2015) Synthesis and evaluation of biological activity of antimicrobial – pro-proliferative peptide conjugates. PLoS One 10(10):e0140377Google Scholar
  83. 83.
    Constantine BE, Bolton LL (1986) A wound model for ischemic ulcers in the guinea pig. Arch Dermatol Res 278(5):429–431Google Scholar
  84. 84.
    Ahn ST, Mustoe TA (1990) Effects of ischemia on ulcer wound healing: anew model in the rabbit ear. Ann Plast Surg 24(1):17–23Google Scholar
  85. 85.
    Mcfarlane RM, Deyoung G, Henry RA (1965) The design of a pedicle flap in the rat to study necrosis and its prevention. Plast Reconstr Surg 35:177–182Google Scholar
  86. 86.
    Chen C, Schultz GS, Bloch M, Edwards PD, Tebes S, Mast BA (1999) Molecular and mechanistic validation of delayed healing rat wounds as a model for human chronic wounds. Wound Repair Regen 7(6):486–494Google Scholar
  87. 87.
    Peirce SM, Skalak TC, Rodeheaver GT (2000) Ischemia-reperfusion injury in chronic pressure ulcer formation: a skin model in the rat. Wound Repair Regen 8(1):68–76Google Scholar
  88. 88.
    Wassermann E, Van Griensven M, Gstaltner K, Oehlinger W, Schrei K, Redl H (2009) A chronic pressure ulcer model in the nude mouse. Wound Repair Regen 17(4):480–484Google Scholar
  89. 89.
    Michaels J, Churgin SS, Blechman KM, Greives MR, Aarabi S, Galiano RD, Gurtner GC (2007) db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen 15(5):665–670Google Scholar
  90. 90.
    Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In Vivo 23(2):245–258Google Scholar
  91. 91.
    Pletzer D, Mansour SC, Wuerth K, Rahanjam N, REW H (2017) New mouse model for chronic infections by gram-negative bacteria enabling the study of anti-infective efficacy and host-microbe interactions. MBio 8(1):e00140–e00117Google Scholar
  92. 92.
    Kobayashi E, Hishikawa S, Teratani T, Lefor AT (2012) The pig as a model for translational research: overview of porcine animal models at Jichi Medical University. Transplant Res 1(1):8Google Scholar
  93. 93.
    Takahashi P (2006) Chronic ischemic, venous, and neuropathic ulcers in long-term care. Ann Long-Term Care 14(7):26–31Google Scholar
  94. 94.
    Pecoraro RE, Reiber GE, Burgess EM (1990) Pathways to diabetic limb amputation. Basis for prevention. Diabetes Care 13(5):513–521Google Scholar
  95. 95.
    Wang B, CC P, Pippin JJ (2014) Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 10(2):131–145Google Scholar
  96. 96.
    Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA (2013) Cell plasticity in wound healing: paracrine factors of M1/ M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal 11(1):29Google Scholar
  97. 97.
    Schierle CF, De la Garza M, Mustoe TA, Galiano RD (2009) Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen 17(3):354–359Google Scholar
  98. 98.
    Byrd MS, Pang B, Hong W, Waligora EA, Juneau RA, Armbruster CE, Weimer KED, Murrah K, Mann EE, Lu H, Sprinkle A, Parsek MR, Kock ND, Wozniak DJ, Swords WE (2011) Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect Immun 79(8):3087–3095Google Scholar
  99. 99.
    Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One 6(11):e27317Google Scholar
  100. 100.
    Zhao G, Hochwalt PC, Usui ML, Underwood RA, Singh PK, James GA, Stewart PS, Fleckman P, Olerud JE (2010) Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen 18(5):467–477Google Scholar
  101. 101.
    Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, Leung KP, Mustoe TA (2011) Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair Regen 19(3):400–410Google Scholar
  102. 102.
    Seth AK, Geringer MR, Gurjala AN, Hong SJ, Galiano RD, Leung KP, Mustoe TA (2012) Treatment of Pseudomonas aeruginosa biofilm-infected wounds with clinical wound care strategies: a quantitative study using an in vivo rabbit ear model. Plast Reconstr Surg 129(2):262e–274eGoogle Scholar
  103. 103.
    Mansour SC, Pena OM, Hancock REW (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35(9):443–450Google Scholar
  104. 104.
    Mansour SC, de la Fuente-Núñez C, Hancock REW (2015) Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci 21(5):323–329Google Scholar
  105. 105.
    Pan C-Y, Chen J-Y, Cheng Y-SE, Chen C-Y, Ni I-H, Sheen J-F, Pan Y-L, Kuo C-M (2007) Gene expression and localization of the epinecidin-1 antimicrobial peptide in the grouper (Epinephelus Coioides), and its role in protecting fish against pathogenic infection. DNA Cell Biol 26(6):403–413Google Scholar
  106. 106.
    Huang H-N, Rajanbabu V, Pan C-Y, Chan Y-L, Wu C-J, Chen J-Y (2013) Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 34(38):10319–10327Google Scholar
  107. 107.
    Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock REW (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77(4):451–459Google Scholar
  108. 108.
    McCarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care 2(8):438–447Google Scholar
  109. 109.
    Yager DR, Nwomeh BC (1999) The proteolytic environment of chronic wounds. Wound Repair Regen 7(6):433–441Google Scholar
  110. 110.
    Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46(1):157–168Google Scholar
  111. 111.
    Fjell CD, Hiss JA, Hancock REW, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51Google Scholar
  112. 112.
    Maloy WL, Kari UP (1995) Structure-activity studies on magainins and other host defense peptides. Biopolymers 37(2):105–122Google Scholar
  113. 113.
    Lipsky BA, Holroyd KJ, Zasloff M (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin Infect Dis 47(12):1537–1545Google Scholar
  114. 114.
    Moore A (2003) The big and small of drug discovery. EMBO Rep 4(2):114–117Google Scholar
  115. 115.
    GEN News Highlights. Dipexium’s diabetic foot ulcer candidate fails phase III trials. http://www.genengnews.com/gen-news-highlights/dipexiums-diabetic-foot-ulcer-candidate-fails-phase-iii-trials/81253359. Accessed 6 Apr 2017
  116. 116.
    Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48(8):3112–3118Google Scholar
  117. 117.
    ClinicalTrials.gov. Study to evaluate the long-term safety of a once-daily omiganan topical gel. https://clinicaltrials.gov/ct2/show/NCT02576847. Accessed 6 Apr 2017
  118. 118.
    Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock REW (2014) A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58(9):5363–5371Google Scholar
  119. 119.
    Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13(1):7–10Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Evan F. Haney
    • 1
    • 2
  • Daniel Pletzer
    • 1
    • 2
  • Robert E. W. Hancock
    • 1
    • 2
    Email author
  1. 1.2259 Lower Mall Research StationUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Microbiology and ImmunologyCentre for Microbial Diseases and Immunity Research, University of British ColumbiaVancouverCanada

Personalised recommendations