Advertisement

Population Epigenomics: Advancing Understanding of Phenotypic Plasticity, Acclimation, Adaptation and Diseases

  • Ehren R. V. Moler
  • Abdulkadir Abakir
  • Maria Eleftheriou
  • Jeremy S. Johnson
  • Konstantin V. Krutovsky
  • Lara C. Lewis
  • Alexey Ruzov
  • Amy V. Whipple
  • Om P. Rajora
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Advances in chromatin state mapping, high-throughput DNA sequencing, and bioinformatics have revolutionized the study and interpretability of epigenomic variation. The increasing feasibility of obtaining and analyzing detailed information on epigenetic mechanisms across many individuals and populations has enabled the study of epigenomic variation at the population level and its contributions to phenotypic variation, acclimation, ecological adaptation, and disease traits. Over the past decade, researchers from disparate life sciences ranging from epidemiology to marine conservation have begun approaching their subjects through the lens of population epigenomics. Epigenetic mechanisms involve molecular alterations in chromatin through DNA methylation and histone modifications, as well as complex non-coding RNAs and enzyme machinery, all leading to altered transcription and post-transcriptional RNA processing resulting in changes in gene expression. Genetic and environmental variation and stochastic epimutations give rise to epigenomic variation. Notably, some forms of epigenomic variation are quite stable and in some instances may be transmitted through one or more rounds of meiosis. Epigenomic variation can contribute significantly to phenotypic plasticity, stress responses, disease conditions, and acclimation and adaptation to habitat conditions across a wide variety of organisms during their lifetime but also across multiple generations. The purpose of this chapter is to provide an overview of population epigenomics concepts, approaches, challenges, and applications. We discuss the molecular basis of epigenetic mechanisms and their variation and heritability across diverse tissues and taxa. We then discuss the sources of epigenomic variation, within – and among – population epigenomic variation in plants and animals, and the evolutionary context of epigenomic variation before reviewing current molecular and bioinformatics methods for screening epigenomic variation. We then explore the contribution and association of epigenomic variation with phenotypic and ecological adaptation traits in plants and common disease conditions in humans and pharmacoepigenomics, as well as the main challenges and future research directions in population epigenomics.

We emphasize challenges and potential solutions unique to the study of epigenomes and how those challenges are amplified by the diversity of pathways by which genes and environments can affect gene expression. With proper application and interpretation, the field of population epigenomics will continue to yield profound insights toward a better understanding of phenotypic plasticity, acclimation, ecological adaptation, heritability, human diseases, and pharmacogenomics.

Keywords

DNA methylation Epigenome-wide association study (EWAS) Evolution Histone modifications Missing heritability Non-coding RNAs Pharmacoepigenomics Phenotypic plasticity Population epigenomics Source and heritability of epigenomic variation 

Notes

Acknowledgments

E.R.V.M. and A.V.W. are supported by NSF Macrosystems grant no. EF-1442597. A.R.’s lab (A.A., M.E., L.C.L., and A.R.) is supported by Biotechnology and Biological Sciences Research Council [grant number BB/N005759/1] to A.R. A.A. is supported by Medical Research Council IMPACT DTP PhD Studentship [grant number MR/N013913/1] to A.A. OPR was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant RGPIN 2017-04589. The authors thank Dr. Chad Niederhuth for helpful comments and contributions to writing the bioinformatics section, and Dr. Jesse Hollister for sharing his thoughts about the preliminary outline of the chapter.

References

  1. Abakir A, Wheldon L, Johnson AD, Laurent P, Ruzov A. Detection of modified forms of cytosine using sensitive immunohistochemistry. J Vis Exp. 2016;16(114).Google Scholar
  2. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–7.PubMedPubMedCentralGoogle Scholar
  3. Adams RL, Burdon RH. DNA methylation in the cell. In: Molecular biology of DNA methylation. New York: Springer; 1985. p. 9–18.Google Scholar
  4. Adli M, Parlak M, Li Y, Eldahr S. Epigenetic states of nephron progenitors and epithelial differentiation. J Cell Biochem. 2015;116(6):893–902.PubMedPubMedCentralGoogle Scholar
  5. Agrawal AA. Phenotypic plasticity in the interactions and evolution of species. Science. 2001;294(5541):321–6.PubMedGoogle Scholar
  6. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl. 2008;1(1):95–111.PubMedPubMedCentralGoogle Scholar
  7. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methyl Kit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):R87.PubMedPubMedCentralGoogle Scholar
  8. Akkerman KC, Sattarin A, Kelly JK, Scoville AG. Transgenerational plasticity is sex-dependent and persistent in yellow monkeyflower (Mimulus guttatus). Environ Epigenet. 2016;2(2):dvw003.PubMedPubMedCentralGoogle Scholar
  9. Aller EST, Jagd LM, Kliebenstein DJ, Burow M. Comparison of the relative potential for epigenetic and genetic variation to contribute to trait stability. G3. 2018. http://www.g3journal.org/content/early/2018/03/21/g3.118.200127.abstract.
  10. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94.PubMedPubMedCentralGoogle Scholar
  11. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.PubMedGoogle Scholar
  12. Almeida RD, Loose M, Sottile V, Matsa E, Denning C, Young L, et al. 5-Hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics. 2012;7(4):383–9.PubMedGoogle Scholar
  13. Alonso C, Pérez R, Bazaga P, Herrera CM. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms. Front Genet. 2015;6(4):1–9.Google Scholar
  14. Alonso C, Medrano M, Pérez R, Bazaga P, Herrera C, Alonso C, et al. Tissue-specific response to experimental demethylation at seed germination in the non-model herb Erodium cicutarium. Epigenomes. 2017;1(3):16.Google Scholar
  15. Alvarez-Venegas R. Bacterial SET domain proteins and their role in eukaryotic chromatin modification. Front Genet. 2014;5:65.PubMedPubMedCentralGoogle Scholar
  16. Amato R. Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourin Cancer. 2007;5(7):422–6.PubMedGoogle Scholar
  17. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.PubMedPubMedCentralGoogle Scholar
  18. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, et al. The small RNA profile during Drosophila melanogaster development. Dev Cell. 2003;5(2):337–50.PubMedGoogle Scholar
  19. Armstrong KM, Bermingham EN, Bassett SA, Treloar BP, Roy NC, Barnett MPG. Global DNA methylation measurement by HPLC using low amounts of DNA. Biotechnol J. 2011;6(1):113–7.PubMedGoogle Scholar
  20. Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–58.PubMedGoogle Scholar
  21. Avramidou EV, Doulis AG, Aravanopoulos FA. Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene. 2015;562(2):180–7.PubMedGoogle Scholar
  22. Bailey T, Pawel K, Istvan L, Celine L, Qunhua L, Tao L, et al. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 2013;9(11):e1003326.PubMedPubMedCentralGoogle Scholar
  23. Baker B. Context-dependent transgenerational plasticity in an annual plant: effects of parental shade versus sun on fitness and competitive performance. Masters thesis. 2018. https://wesscholar.wesleyan.edu/etd_mas_theses/189.
  24. Balao F, Tannhäuser M, Lorenzo MT, Hedrén M, Paun O. Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex. Heredity. 2016;116(4):351–61.PubMedGoogle Scholar
  25. Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, et al. Landscape genomics: understanding relationships between environmental heterogeneity and genomic characteristics of populations. In: Rajora OP, editor. Population genomics concepts, strategies and approaches. Cham: Springer International Publishing AG; 2017.  https://doi.org/10.1007/13836_2017_2.CrossRefGoogle Scholar
  26. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.PubMedPubMedCentralGoogle Scholar
  27. Banta JA, Richards CL. Quantitative epigenetics and evolution. Heredity. 2018;121:210–24.PubMedGoogle Scholar
  28. Baron U, Turbachova I, Hellwag A, Eckhardt F, Berlin K, Hoffmüller U, et al. DNA methylation analysis as a tool for cell typing. Epigenetics. 2006;1(1):56–61.Google Scholar
  29. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedPubMedCentralGoogle Scholar
  30. Baythavong BS. Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments. Am Nat. 2011;178(1):75–87.PubMedGoogle Scholar
  31. Becker C, Weigel D. Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol. 2012;15(5):562–7.PubMedGoogle Scholar
  32. Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480(7376):245–9.PubMedGoogle Scholar
  33. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010;3(1):33.PubMedPubMedCentralGoogle Scholar
  34. Bennett RL, Licht JD. Targeting epigenetics in cancer. Annu Rev Pharmacol Toxicol. 2018;58(1):187–207.PubMedGoogle Scholar
  35. Bernstein E, Allis CD. RNA meets chromatin. Genes Dev. 2005;19(14):1635–55.PubMedGoogle Scholar
  36. Bewick AJ, Ji L, Niederhuth CE, Willing E-M, Hofmeister BT, Shi X, et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci U S A. 2016;113(32):9111–6.PubMedPubMedCentralGoogle Scholar
  37. Bewick AJ, Niederhuth CE, Ji L, Rohr NA, Griffin PT, Leebens-Mack J, et al. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biol. 2017;18(1):65.PubMedPubMedCentralGoogle Scholar
  38. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.PubMedGoogle Scholar
  39. Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation of disease -omics. PLoS Genet. 2016;12(6):e1006105.PubMedPubMedCentralGoogle Scholar
  40. Biswas S, Rao CM. Epigenetics in cancer: fundamentals and beyond. Pharmacol Therapeut. 2017;173:118–34.Google Scholar
  41. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20.PubMedPubMedCentralGoogle Scholar
  42. Bonchev G, Parisod C. Transposable elements and microevolutionary changes in natural populations. Mol Ecol Resour. 2013;13(5):765–75.PubMedGoogle Scholar
  43. Bonduriansky R, Head M. Maternal and paternal condition effects on offspring phenotype in Telostylinus angusticollis (Diptera: Neriidae). J Evol Biol. 2007;20(6):2379–88.PubMedGoogle Scholar
  44. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336(6083):934–7.PubMedGoogle Scholar
  45. Booth MJ, Ost TWB, Beraldi D, Bell NM, Branco MR, Reik W, et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc. 2013;8(10):1841–51.PubMedPubMedCentralGoogle Scholar
  46. Bostick M, Kim JK, Estève P-O, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317(5845):1760–4.PubMedGoogle Scholar
  47. Bousios A, Gaut BS. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. Curr Opin Plant Biol. 2016;30:123–33.PubMedGoogle Scholar
  48. Bowers E, Yan G, Mukherjee C, Orry A, Wang L. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010;17(5):471–82.PubMedPubMedCentralGoogle Scholar
  49. Braun KVE, Dhana K, de Vries PS, Voortman T, van Meurs JBJ, Uitterlinden AG, et al. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics. 2017;9(1):15.PubMedPubMedCentralGoogle Scholar
  50. Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol. 2013;3(2):399–415.PubMedPubMedCentralGoogle Scholar
  51. Bräutigam K, Soolanayakanahally R, Champigny M, Mansfield S, Douglas C, Campbell MM, et al. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Sci Rep. 2017;7:45388.PubMedPubMedCentralGoogle Scholar
  52. Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 2015;8:24.PubMedPubMedCentralGoogle Scholar
  53. Brown CJ, Lafreniere RG, Powers VE, Sebastio G, Ballabio A, Pettigrew AL, et al. Localization of the X inactivation centre on the human X chromosome in Xq13. Nature. 1991;349(6304):82–4.PubMedGoogle Scholar
  54. Buck MJ, Lieb JD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics. 2004;83(3):349–60.PubMedGoogle Scholar
  55. Calarco JP, Borges F, Donoghue MTA, Van Ex F, Jullien PE, Lopes T, et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell. 2012;151(1):194–205.PubMedPubMedCentralGoogle Scholar
  56. Carja O, MacIsaac JL, Mah SM, Henn BM, Kobor MS, Feldman MW, Fraser HB. Worldwide patterns of human epigenetic variation. Nat Ecol Evol. 2017;1(10):1577.PubMedGoogle Scholar
  57. Carneros E, Yakovlev I, Viejo M, Olsen JE, Fossdal CG. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta. 2017;246(3):553–66.PubMedPubMedCentralGoogle Scholar
  58. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.PubMedPubMedCentralGoogle Scholar
  59. Casadesús J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006;70(3):830–56.PubMedPubMedCentralGoogle Scholar
  60. Castillo-Aguilera O, Depreux P, Halby L, Arimondo P, Goossens L, Castillo-Aguilera O, et al. DNA methylation targeting: the DNMT/HMT crosstalk challenge. Biomolecules. 2017;7(1):3.PubMedCentralGoogle Scholar
  61. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.PubMedGoogle Scholar
  62. Chadha S, Sharma M. Transposable elements as stress adaptive capacitors induce genomic instability in fungal pathogen Magnaporthe oryzae. PLoS One. 2014;9(4):e94415.PubMedPubMedCentralGoogle Scholar
  63. Chatterjee A, Lagisz M, Rodger EJ, Zhen L, Stockwell PA, Duncan EJ, Horsfield JA, Jeyakani J, Mathavan S, Ozaki Y, Nakagawa S. Sex differences in DNA methylation and expression in zebrafish brain: a test of an extended ‘male sex drive’ hypothesis. Gene. 2016;590(2):307–16.PubMedGoogle Scholar
  64. Chen L-L. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016;41(9):761–72.PubMedGoogle Scholar
  65. Chen PY, Cokus SJ, Pellegrini M. BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics. 2010;11(1):203.PubMedPubMedCentralGoogle Scholar
  66. Chen Z, Riggs A. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286(21):18347–53.PubMedPubMedCentralGoogle Scholar
  67. Chen L, Ge B, Casale FP, Vasquez L, Kwan T, Garrido-Martín D, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell. 2016;167(5):1398–1414.e24.PubMedPubMedCentralGoogle Scholar
  68. Chen Z, Li S, Subramaniam S, Shyy JY-J, Chien S. Epigenetic regulation: a new frontier for biomedical engineers. Annu Rev Biomed Eng. 2017;19:195–219.PubMedGoogle Scholar
  69. Chowdhury B, Cho I-H, Irudayaraj J. Technical advances in global DNA methylation analysis in human cancers. J Biol Eng. 2017;11(1):10.PubMedPubMedCentralGoogle Scholar
  70. Chu AY, Tin A, Schlosser P, Ko YA, Qiu C, Yao C, Joehanes R, Grams ME, Liang L, Gluck CA, Liu C. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat Commun. 2017;8(1):1286.PubMedPubMedCentralGoogle Scholar
  71. Ci D, Song Y, Du Q, Tian M, Han S, Zhang D. Variation in genomic methylation in natural populations of Populus simonii is associated with leaf shape and photosynthetic traits. J Exp Bot. 2016;67:723–37.PubMedGoogle Scholar
  72. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M. DNA methylation: bisulphite modification and analysis. Nat Protoc. 2006;1(5):2353.PubMedGoogle Scholar
  73. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452(7184):215–9.PubMedPubMedCentralGoogle Scholar
  74. Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, et al. Mapping the epigenetic basis of complex traits. Science. 2014;343(6175):1145–8.PubMedGoogle Scholar
  75. Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009;10(5):490–7.PubMedPubMedCentralGoogle Scholar
  76. Csankovszki G, Nagy A, Jaenisch R. Synergism of Xist Rna, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol. 2001;153(4):773–84.PubMedPubMedCentralGoogle Scholar
  77. Cubas P, Vincent C. An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 1999;401(6749):157.PubMedGoogle Scholar
  78. Cushman SA. Grand challenges in evolutionary and population genetics: the importance of integrating epigenetics, genomics, modeling, and experimentation. Front Genet. 2014;5:197.PubMedPubMedCentralGoogle Scholar
  79. D’addario C, Francesco AD, Pucci M, Agrò AF, Maccarrone M. Epigenetic mechanisms and endocannabinoid signalling. FEBS J. 2013;280(9):1905–17.  https://doi.org/10.1111/febs.12125.CrossRefPubMedGoogle Scholar
  80. Darwin C. On the origins of species by means of natural selection. London: Murray; 1859. p. 247.Google Scholar
  81. Daskalos A, Nikolaidis G, Xinarianos G, Savvari P, Cassidy A, Zakopoulou R, et al. Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer. 2009;124(1):81–7.PubMedGoogle Scholar
  82. Deans C, Maggert KA. What do you mean, “epigenetic”? Genetics. 2015;199(4):887–96.PubMedPubMedCentralGoogle Scholar
  83. Denker A, de Laat W. A long-distance chromatin affair. Cell. 2015;162(5):942–3.PubMedGoogle Scholar
  84. Derissen EJ, Beijnen JH, Schellens JH. Concise drug review: azacitidine and decitabine. Oncologist. 2013;18(5):619–24.PubMedPubMedCentralGoogle Scholar
  85. Dewan S, Vander Mijnsbrugge K, De Frenne P, Steenackers M, Michiels B, Verheyen K. Maternal temperature during seed maturation affects seed germination and timing of bud set in seedlings of European black poplar. Forest Ecol Manag. 2018;410:126–35.Google Scholar
  86. Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937.Google Scholar
  87. Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, et al. Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A. 2012;109(32):E2183.PubMedPubMedCentralGoogle Scholar
  88. Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.PubMedPubMedCentralGoogle Scholar
  89. Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ, Casale FP, et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife. 2015;4:1–23.Google Scholar
  90. Duygu B, Poels EM, da Costa Martins PA. Genetics and epigenetics of arrhythmia and heart failure. Front Genet. 2013;4:219.PubMedPubMedCentralGoogle Scholar
  91. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet. 2006;38(12):1378–85.PubMedPubMedCentralGoogle Scholar
  92. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7).PubMedCentralGoogle Scholar
  93. Edwards DN, Ngwa VM, Wang S, Shiuan E, Brantley-Sieders DM, Kim LC, et al. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ. Sci Signal. 2017;10(508).Google Scholar
  94. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10(8):2709–21.PubMedPubMedCentralGoogle Scholar
  95. Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell. 2013;25(8):2783–97.PubMedPubMedCentralGoogle Scholar
  96. Eichten SR, Schmitz RJ, Springer NM. Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol. 2014;165(3):933.PubMedPubMedCentralGoogle Scholar
  97. Eleftheriou M, Pascual A, Wheldon L, Perry C, Abakir A. 5-Carboxylcytosine levels are elevated in human breast cancers and gliomas. Clin Epigenetics. 2015;7:88.  https://doi.org/10.1186/s13148-015-0117-x.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Eminaga S, Christodoulou DC, Vigneault F, Church GM, Seidman JG. Quantification of microRNA expression with next-generation sequencing. Curr Protoc Mol Biol. 2013;103(1):4.17.1–4.17.14.  https://doi.org/10.1002/0471142727.mb0417s103.CrossRefGoogle Scholar
  99. Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998;17(18):2413–7.PubMedGoogle Scholar
  100. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4.PubMedGoogle Scholar
  101. Ettre LS. Milestones in chromatography: the birth of partition chromatography. LCGC. 2001;19(5):506–12.Google Scholar
  102. Fagny M, Patin E, Macisaac JL, Rotival M, Flutre T, Jones MJ, et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun. 2015;6:10047.PubMedPubMedCentralGoogle Scholar
  103. Fatemi M, Hermann A, Gowher H, Jeltsch A. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem. 2002;269(20):4981–4.PubMedGoogle Scholar
  104. Fedoroff NV. Presidential address. Transposable elements, epigenetics, and genome evolution. Science. 2012;338(6108):758–67.PubMedGoogle Scholar
  105. Feinberg A, Irizarry R. Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc Natl Acad Sci U S A. 2010;107(Suppl 1):1757–64.  https://doi.org/10.1073/pnas.0906183107.CrossRefPubMedGoogle Scholar
  106. Feinberg A, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.PubMedGoogle Scholar
  107. Feng H, Conneely K, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42(8):e69.  https://doi.org/10.1093/nar/gku154.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12(8):565–75.PubMedGoogle Scholar
  109. Fernández-Sanlés A, Sayols-Baixeras S, Curcio S, Subirana I, Marrugat J, Elosua R. DNA methylation and age-independent cardiovascular risk, an epigenome-wide approach: the REGICOR study (REgistre GIroni del COR). Arterioscler Thromb Vasc Biol. 2018;38(3):645–52.PubMedGoogle Scholar
  110. Ficz G, Gribben J. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence? Genomics. 2014;104(5):352–7.PubMedPubMedCentralGoogle Scholar
  111. Field LM, Lyko F, Mandrioli M, Prantera G. DNA methylation in insects. Insect Mol Biol. 2004;13(2):109–15.PubMedGoogle Scholar
  112. Foust CM, Preite V, Schrey AW, Alvarez M, Robertson MH, Verhoeven KJF, et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol Ecol. 2016;25(8):1639–52.PubMedGoogle Scholar
  113. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005a;102(30):10604–9.PubMedPubMedCentralGoogle Scholar
  114. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005b;37(4):391–400.PubMedGoogle Scholar
  115. Fraser H, Lam L, Neumann S, Kobor M. Population-specificity of human DNA methylation. Genome Biol. 2012;13(2):R8.  https://doi.org/10.1186/gb-2012-13-2-r8.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Friso S, Choi S-W, Dolnikowski GG, Selhub J. A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Anal Chem. 2002;74(17):4526–31.PubMedGoogle Scholar
  117. Friso S, Pizzolo F, Choi S-W, Guarini P, Castagna A, Ravagnani V, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008;199(2):323–7.PubMedGoogle Scholar
  118. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A. 1992;89(5):1827–31.PubMedPubMedCentralGoogle Scholar
  119. Fu Y, Luo G-Z, Chen K, Deng X, Yu M, Han D, et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell. 2015;161(4):879–92.PubMedPubMedCentralGoogle Scholar
  120. Furrow RE. Epigenetic inheritance, epimutation, and the response to selection. PLoS One. 2014;9(7):e101559.PubMedPubMedCentralGoogle Scholar
  121. Gadaleta MC, Iwasaki O, Noguchi C, Noma K-I, Noguchi E. Chromatin immunoprecipitation to detect DNA replication and repair factors. Methods Mol Biol. 2015;1300:169–86.PubMedPubMedCentralGoogle Scholar
  122. Gajer J, Furdas S, Gründer A, Gothwal M, Heinicke U. Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis. 2015;4:e137.  https://doi.org/10.1038/oncsis.2014.51.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Galloway LF, Etterson JR. Transgenerational plasticity is adaptive in the wild. Science. 2007;318(5853):1134–6.PubMedGoogle Scholar
  124. Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell. 2013;153(5):1149–63.PubMedPubMedCentralGoogle Scholar
  125. Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One. 2010;5(12):e15367.PubMedPubMedCentralGoogle Scholar
  126. Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem. 2005;74:481–514.PubMedGoogle Scholar
  127. Grant GR, Manduchi E, Stoeckert CJ. Analysis and management of microarray gene expression data. Curr Protoc Mol Biol. 2007;77(1):19.6.1–19.6.30.Google Scholar
  128. Grativol C, Hemerly AS, Ferreira PCG. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta. 2012;1819(2):176–85.PubMedGoogle Scholar
  129. Greally JM. Population epigenetics. Curr Opin Syst Biol. 2017;1:84–9.PubMedPubMedCentralGoogle Scholar
  130. Greenblatt SM, Nimer SD. Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia. 2014;28(7):1396–406.PubMedPubMedCentralGoogle Scholar
  131. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, et al. DNA methylation on N6-adenine in C. elegans. Cell. 2015;161(4):868–78.PubMedPubMedCentralGoogle Scholar
  132. Groot MP, Wagemaker N, Ouborg NJ, Verhoeven KJF, Vergeer P. Epigenetic population differentiation in field- and common garden-grown Scabiosa columbaria plants. Ecol Evol. 2018;8(6):3505–17.PubMedPubMedCentralGoogle Scholar
  133. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29(13):e65.PubMedPubMedCentralGoogle Scholar
  134. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6(4):468.PubMedGoogle Scholar
  135. Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol. 2016;25(8):1665–80.PubMedGoogle Scholar
  136. Guo W, Fiziev P, Yan W, Cokus S, Sun X. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data. BMC Genomics. 2013;14:774.  https://doi.org/10.1186/1471-2164-14-774.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7.PubMedPubMedCentralGoogle Scholar
  138. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.PubMedPubMedCentralGoogle Scholar
  139. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods. 2008;44(1):3–12.PubMedPubMedCentralGoogle Scholar
  140. Hagmann J, Becker C, Müller J, Stegle O, Meyer RC, Wang G, et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 2015;11(1):e1004920.PubMedPubMedCentralGoogle Scholar
  141. Halfmann R, Lindquist S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science. 2010;330(6004):629–32.PubMedGoogle Scholar
  142. Hansen JC. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct. 2002;31:361–92.PubMedGoogle Scholar
  143. Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13(10):R83.PubMedPubMedCentralGoogle Scholar
  144. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.PubMedGoogle Scholar
  145. Hardcastle TJ, Müller SY, Baulcombe DC. Towards annotating the plant epigenome: the Arabidopsis thaliana small RNA locus map. Sci Rep. 2018;8(1):6338.PubMedPubMedCentralGoogle Scholar
  146. He Y, Michaels SD, Amasino RM. Regulation of flowering time by histone acetylation in Arabidopsis. Science. 2003;302(5651):1751–4.PubMedGoogle Scholar
  147. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.PubMedGoogle Scholar
  148. He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell. 2010;22(1):17–33.PubMedPubMedCentralGoogle Scholar
  149. He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.PubMedPubMedCentralGoogle Scholar
  150. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109.PubMedPubMedCentralGoogle Scholar
  151. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007;39(3):311–8.PubMedPubMedCentralGoogle Scholar
  152. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459(7243):108–12.PubMedPubMedCentralGoogle Scholar
  153. Hendry A, Kinnison M. An introduction to microevolution: rate, pattern, process. Genetica. 2001;112–113(1):1–8.PubMedGoogle Scholar
  154. Herrera CM, Bazaga P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 2010;187(3):867–76.PubMedGoogle Scholar
  155. Herrera CM, Bazaga P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot J Linn Soc. 2013;171(3):441–52.Google Scholar
  156. Herrera CM, Bazaga P. Genetic and epigenetic divergence between disturbed and undisturbed subpopulations of a Mediterranean shrub: a 20-year field experiment. Ecol Evol. 2016;6(11):3832–47.PubMedPubMedCentralGoogle Scholar
  157. Herrera CM, Medrano M, Bazaga P. Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae). PLoS One. 2013;8(7):e70730.PubMedPubMedCentralGoogle Scholar
  158. Herrera CM, Medrano M, Bazaga P. Comparative spatial genetics and epigenetics of plant populations: heuristic value and a proof of concept. Mol Ecol. 2016;25(8):1653–64.PubMedGoogle Scholar
  159. Herzing LB, Romer JT, Horn JM, Ashworth A. Xist has properties of the X-chromosome inactivation centre. Nature. 1997;386(6622):272–5.PubMedGoogle Scholar
  160. Hewitt AW, Januar V, Sexton-Oates A, Joo JE, Franchina M, Wang JJ, et al. DNA methylation landscape of ocular tissue relative to matched peripheral blood. Sci Rep. 2017;7:46330.PubMedPubMedCentralGoogle Scholar
  161. Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency. Development. 2009;136(4):509–23.PubMedPubMedCentralGoogle Scholar
  162. Holliday R. Epigenetics: an overview. Dev Genet. 1994;15(6):453–7.PubMedGoogle Scholar
  163. Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187(4173):226–32.PubMedGoogle Scholar
  164. Horsthemke B. A critical view on transgenerational epigenetic inheritance in humans. Nat Commun. 2018;9(1):2973.PubMedPubMedCentralGoogle Scholar
  165. Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem. 1948;175(1):315–32.PubMedGoogle Scholar
  166. Hu J, Barrett RD. Epigenetics in natural animal populations. J Evol Biol. 2017;30(9):1612–32.PubMedGoogle Scholar
  167. Huanca-Mamani W, Arias-Carrasco R, Cárdenas-Ninasivincha S, Rojas-Herrera M, Sepúlveda-Hermosilla G, Caris-Maldonado JC, Bastías E, Maracaja-Coutinho V. Long non-coding RNAs responsive to salt and boron stress in the hyper-arid lluteño maize from atacama desert. Genes. 2018;9(3):170.PubMedCentralGoogle Scholar
  168. Iglesias FM, Cerdán PD. Maintaining epigenetic inheritance during DNA replication in plants. Front Plant Sci. 2016;7:38.  https://doi.org/10.3389/fpls.2016.00038.CrossRefPubMedPubMedCentralGoogle Scholar
  169. Ingvarsson PK, Street NR. Association genetics of complex traits in plants. New Phytol. 2011;189(4):909–22.PubMedGoogle Scholar
  170. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3.PubMedPubMedCentralGoogle Scholar
  171. Iurlaro M, von Meyenn F, Reik W. DNA methylation homeostasis in human and mouse development. Curr Opin Genet Dev. 2017;43:101–9.PubMedGoogle Scholar
  172. Iwasaki YW, Siomi MC, Siomi H. PIWI-interacting RNA: its biogenesis and functions. Annu Rev Biochem. 2015;84:405–33.PubMedPubMedCentralGoogle Scholar
  173. Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009;84(2):131–76.PubMedGoogle Scholar
  174. Jackson SA. Epigenomics: dissecting hybridization and polyploidization. Genome Biol. 2017;18(1):17–9.Google Scholar
  175. Jackson V, Chalkley R. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell. 1981;23(1):121–34.PubMedGoogle Scholar
  176. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.PubMedGoogle Scholar
  177. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15(2):R31.PubMedPubMedCentralGoogle Scholar
  178. Jamniczky HA, Boughner JC, Rolian C, Gonzalez PN, Powell CD, Schmidt EJ, et al. Rediscovering Waddington in the post-genomic age: operationalising Waddington’s epigenetics reveals new ways to investigate the generation and modulation of phenotypic variation. Bioessays. 2010;32(7):553–8.PubMedGoogle Scholar
  179. Janoušek B, Široký J, Vyskot B. Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Mol Gen Genet. 1996;250(4):483–90.PubMedGoogle Scholar
  180. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.PubMedPubMedCentralGoogle Scholar
  181. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.PubMedGoogle Scholar
  182. Jiang L, Zhang J, Wang JJ, Wang L, Zhang L, Li G, Yang X, Ma X, Sun X, Cai J, Zhang J. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell. 2013;153(4):773–84.PubMedPubMedCentralGoogle Scholar
  183. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;5(6):e1000530.PubMedPubMedCentralGoogle Scholar
  184. Johnsen Ø, Kvaalen H, Yakovlev IA, Dæhlen OG, Fossdal CG, Skrøppa T. An epigenetic memory from time of embryo development affects climatic adaptation in Norway spruce. Plant cold hardiness. From the laboratory to the field. Wallingford: CABI; 2009. p. 99–107.Google Scholar
  185. Johnson LJ, Tricker PJ. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity. 2010;105(1):113–21.PubMedGoogle Scholar
  186. Jones P, Taylor S. Cellular differentiation, cytidine analogs and DNA methylation. Cell. 1980;20(1):85–93.PubMedGoogle Scholar
  187. Jost D, Carrivain P, Cavalli G, Vaillant C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 2014;42(15):9553–61.PubMedPubMedCentralGoogle Scholar
  188. Kacmarczyk TJ, Fall MP, Zhang X, Xin Y, Li Y, Alonso A, et al. “Same difference”: comprehensive evaluation of four DNA methylation measurement platforms. Epigenetics Chromatin. 2018;11(1):21.PubMedPubMedCentralGoogle Scholar
  189. Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, et al. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun. 2012;3:886.PubMedGoogle Scholar
  190. Kaidery N, Tarannum S, Thomas B. Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics. 2013;10(4):698–708.Google Scholar
  191. Kaikkonen MU, Lam MTY, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res. 2011;90(3):430–40.PubMedPubMedCentralGoogle Scholar
  192. Karius T, Schnekenburger M, Dicato M, Diederich M. MicroRNAs in cancer management and their modulation by dietary agents. Biochem Pharmacol. 2012;83(12):1591–601.PubMedGoogle Scholar
  193. Karsy M, Arslan E, Moy F. Current progress on understanding microRNAs in glioblastoma multiforme. Genes Cancer. 2012;3(1):3–15.PubMedPubMedCentralGoogle Scholar
  194. Kawakatsu T, Huang S-SC, Jupe F, Sasaki E, Schmitz RJ, Urich MA, et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell. 2016a;166(2):492–505.PubMedPubMedCentralGoogle Scholar
  195. Kawakatsu T, Stuart T, Valdes M, Breakfield N, Schmitz RJ, Nery JR, et al. Unique cell-type-specific patterns of DNA methylation in the root meristem. Nat Plants. 2016b;2(5):16058.PubMedPubMedCentralGoogle Scholar
  196. Kazazian HH. Mobile elements and disease. Curr Opin Genet Dev. 1998;8(3):343–50.PubMedGoogle Scholar
  197. Keller M, Hopp L, Liu X, Wohland T, Rohde K, Cancello R, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metabolism. 2017;6(1):86–100.Google Scholar
  198. Kelly DE, Hansen MEB, Tishkoff SA. Global variation in gene expression and the value of diverse sampling. Curr Opin Syst Biol. 2017;1:102–8.PubMedPubMedCentralGoogle Scholar
  199. Kermicle JL. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics. 1970;66(1):69–85.PubMedPubMedCentralGoogle Scholar
  200. Keverne EB. Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience. 2014;264:207–17.PubMedGoogle Scholar
  201. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72.PubMedPubMedCentralGoogle Scholar
  202. Kiefer JC. Epigenetics in development. Dev Dyn. 2007;236(4):1144–56.PubMedGoogle Scholar
  203. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009;10(2):126–39.PubMedGoogle Scholar
  204. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465(7295):182–7.PubMedPubMedCentralGoogle Scholar
  205. King GJ, Amoah S, Kurup S. Exploring and exploiting epigenetic variation in crops. Genome. 2010;53(11):856–68.PubMedGoogle Scholar
  206. Klironomos FD, Berg J, Collins S. How epigenetic mutations can affect genetic evolution: model and mechanism: problems & paradigms. Bioessays. 2013;35(6):571–8.PubMedGoogle Scholar
  207. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468(7325):839–43.PubMedPubMedCentralGoogle Scholar
  208. Ko Y, Mohtat D, Suzuki M, Park A, Izquierdo M. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol. 2013;14:R108.  https://doi.org/10.1186/gb-2013-14-10-r108.CrossRefPubMedPubMedCentralGoogle Scholar
  209. Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9(1):29.PubMedPubMedCentralGoogle Scholar
  210. Kou HP, Li Y, Song XX, Ou XF, Xing SC, Ma J, Von Wettstein D, Liu B. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol. 2011;168(14):1685–93.PubMedGoogle Scholar
  211. Kraus TFJ, Greiner A, Steinmaurer M, Dietinger V, Guibourt V, Kretzschmar HA. Genetic characterization of ten-eleven-translocation methylcytosine dioxygenase alterations in human glioma. J Cancer. 2015;6(9):832–42.PubMedPubMedCentralGoogle Scholar
  212. Kremer D, Metzger S, Kolb-Bachofen V. Quantitative measurement of genome-wide DNA methylation by a reliable and cost-efficient enzyme-linked immunosorbent assay technique. Anal Biochem. 2012;422(2):74–8.PubMedGoogle Scholar
  213. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.PubMedPubMedCentralGoogle Scholar
  214. Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev. 2017;2(1):33–45.PubMedPubMedCentralGoogle Scholar
  215. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–2.PubMedPubMedCentralGoogle Scholar
  216. Kuchino Y, Hanyu N, Nishimura S. Analysis of modified nucleosides and nucleotide sequence of tRNA. Methods Enzymol. 1987;155:379–96.PubMedGoogle Scholar
  217. Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res. 2011;717(1–2):77–84.PubMedGoogle Scholar
  218. Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 1980;8(20):4763–76.PubMedPubMedCentralGoogle Scholar
  219. Kurdyukov S, Bullock M. DNA methylation analysis: choosing the right method. Biology. 2016;5(1):3.  https://doi.org/10.3390/biology5010003.CrossRefPubMedPubMedCentralGoogle Scholar
  220. Kvaalen H, Johnsen Ø. Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol. 2008;177(1):49–59.PubMedGoogle Scholar
  221. Lahtz C, Pfeifer G. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 2011;3(1):51–8.PubMedPubMedCentralGoogle Scholar
  222. Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene. 2010;29(4):576–88.PubMedGoogle Scholar
  223. Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci. 2015;9:58.PubMedPubMedCentralGoogle Scholar
  224. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.PubMedPubMedCentralGoogle Scholar
  225. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.PubMedPubMedCentralGoogle Scholar
  226. Latzel V, Allan E, Bortolini Silveira A, Colot V, Fischer M, Bossdorf O. Epigenetic diversity increases the productivity and stability of plant populations. Nat Commun. 2013;4:2875.PubMedGoogle Scholar
  227. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):204–20.PubMedPubMedCentralGoogle Scholar
  228. Le T, Kim K-P, Fan G, Faull KF. A sensitive mass spectrometry method for simultaneous quantification of DNA methylation and hydroxymethylation levels in biological samples. Anal Biochem. 2011;412(2):203–9.PubMedPubMedCentralGoogle Scholar
  229. Lee MK, Hong Y, Kim SY, Kim WJ, London SJ. Epigenome-wide association study of chronic obstructive pulmonary disease and lung function in Koreans. Epigenomics. 2017;9(7):971–84.PubMedPubMedCentralGoogle Scholar
  230. Lele L, Ning D, Cuiping P, Xiao G, Weihua G. Genetic and epigenetic variations associated with adaptation to heterogeneous habitat conditions in a deciduous shrub. Ecol Evol. 2018;8(5):2594–606.PubMedPubMedCentralGoogle Scholar
  231. Lentini A, Lagerwall C, Vikingsson S, Mjoseng HK, Douvlataniotis K, Vogt H, et al. A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods. 2018;15(7):499–504.PubMedGoogle Scholar
  232. Leto K, Arancillo M, Becker E, Buffo A, Chiang C. Consensus paper: cerebellar development. Cerebellum. 2016;15(6):789–828.PubMedGoogle Scholar
  233. Lewis LC, Lo PCK, Foster JM, Dai N, Corrêa IR, Durczak PM, et al. Dynamics of 5-carboxylcytosine during hepatic differentiation: potential general role for active demethylation by DNA repair in lineage specification. Epigenetics. 2017;12(4):277–86.PubMedPubMedCentralGoogle Scholar
  234. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013. https://arxiv.org/pdf/1303.3997.pdf.
  235. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.PubMedPubMedCentralGoogle Scholar
  236. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.PubMedPubMedCentralGoogle Scholar
  237. Li J, Poi MJ, Tsai M-D. The regulatory mechanisms of tumor suppressor p16INK4 and relevance to cancer. Biochemistry. 2012;50(25):5566–82.  https://doi.org/10.1021/bi200642e.CrossRefGoogle Scholar
  238. Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell. 2009a;137(3):509–21.PubMedPubMedCentralGoogle Scholar
  239. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009b;25(1 Pt 2):1653–4.Google Scholar
  240. Li Y, Kong D, Wang Z, Sarkar FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res. 2010;27(6):1027–41.PubMedPubMedCentralGoogle Scholar
  241. Li H, Liu F, Ren C, Bo X, Shu W. Genome-wide identification and characterisation of HOT regions in the human genome. BMC Genomics. 2016;17(1):733.PubMedPubMedCentralGoogle Scholar
  242. Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, et al. Single-base-resolution methylomes of populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet. 2014;15(Suppl 1):1–11.Google Scholar
  243. Lindsay S, Bird AP. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature. 1987;327(6120):336–8.PubMedGoogle Scholar
  244. Ling C, Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58(12):2718–25.PubMedPubMedCentralGoogle Scholar
  245. Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PC. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One. 2010;5(4):e10326.PubMedPubMedCentralGoogle Scholar
  246. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell. 2008;133(3):523–36.PubMedPubMedCentralGoogle Scholar
  247. Liu J, Zhu Y, Luo G-Z, Wang X, Yue Y, Wang X, et al. Abundant DNA 6mA methylation during early embryogenesis of zebrafish and pig. Nat Commun. 2016;7:13052.PubMedPubMedCentralGoogle Scholar
  248. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.PubMedPubMedCentralGoogle Scholar
  249. Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun. 2001;69(12):7197–204.PubMedPubMedCentralGoogle Scholar
  250. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ. Elucidation of the small RNA component of the transcriptome. Science. 2005;309(5740):1567–9.PubMedGoogle Scholar
  251. Lu H, Liu X, Deng Y, Hong Q. DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci. 2013;5:85.  https://doi.org/10.3389/fnagi.2013.00085.CrossRefPubMedPubMedCentralGoogle Scholar
  252. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.PubMedGoogle Scholar
  253. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.Google Scholar
  254. Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population genomics: advancing understanding of nature. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG, part of Springer Nature; 2018.Google Scholar
  255. Lujambio A, Calin G, Villanueva A, Ropero S, Sánchez-Céspedes M. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105(36):13556–1.PubMedPubMedCentralGoogle Scholar
  256. Lunyak VV, Rosenfeld MG. Epigenetic regulation of stem cell fate. Hum Mol Genet. 2008;17(R1):R28–36.PubMedGoogle Scholar
  257. Luo G-Z, He C. DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander? Nat Struct Mol Biol. 2017;24(6):503–6.PubMedGoogle Scholar
  258. Luo G-Z, Blanco MA, Greer EL, He C, Shi Y. DNA N(6)-methyladenine: a new epigenetic mark in eukaryotes? Nat Rev Mol Cell Biol. 2015;16(12):705–10.PubMedPubMedCentralGoogle Scholar
  259. Maamar MB, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic transgenerational inheritance of altered sperm histone retention sites. Sci Rep. 2018;8(1):5308.PubMedPubMedCentralGoogle Scholar
  260. Maes T, Tirapu I, Estiarte A, Ciceri F, Lunardi S, Wiseman D. ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell. 2018;33(3):495–511.PubMedGoogle Scholar
  261. Magaña AA, Wrobel K, Caudillo YA, Zaina S, Lund G, Wrobel K. High-performance liquid chromatography determination of 5-methyl-2′-deoxycytidine, 2′-deoxycytidine, and other deoxynucleosides and nucleosides in DNA digests. Anal Biochem. 2008;374(2):378–85.PubMedGoogle Scholar
  262. Maiques-Diaz A, Somervaille TC. LSD1: biologic roles and therapeutic targeting. Epigenomics. 2016;8(8):1103–16.PubMedPubMedCentralGoogle Scholar
  263. Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011;286(41):35334–8.PubMedPubMedCentralGoogle Scholar
  264. Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell. 2009;136(4):656–68.PubMedPubMedCentralGoogle Scholar
  265. Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 2009;137(3):522–35.PubMedPubMedCentralGoogle Scholar
  266. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.Google Scholar
  267. Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.PubMedGoogle Scholar
  268. Martinez SR, Gay MS, Zhang L. Epigenetic mechanisms in heart development and disease. Drug Discov Today. 2015;20(7):799–811.PubMedPubMedCentralGoogle Scholar
  269. Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One. 2009;4(8):e6617.PubMedPubMedCentralGoogle Scholar
  270. Matkovich SJ, Hu Y, Eschenbacher WH, Dorn LE, Dorn GW. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy. Circ Res. 2012;111(5):521–31.PubMedPubMedCentralGoogle Scholar
  271. Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, et al. Structure of histone-based chromatin in Archaea. Science. 2017;357(6351):609–12.PubMedPubMedCentralGoogle Scholar
  272. Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15(6):394–408.PubMedGoogle Scholar
  273. McClay JL, Shabalin AA, Dozmorov MG, Adkins DE, Kumar G, Nerella S, Clark SL, Bergen SE, Hultman CM, Magnusson PK, Sullivan PF. High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol. 2015;16(1):291.PubMedPubMedCentralGoogle Scholar
  274. McClintock B. Chromosome organization and genic expression. In: Cold Spring Harbor symposia on quantitative biology, vol. 16. New York: Cold Spring Harbor Laboratory Press; 1951. p. 13–47.Google Scholar
  275. Medrano M, Herrera CM, Bazaga P. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol Ecol. 2014;23(20):4926–38.PubMedGoogle Scholar
  276. Meeks KA, Henneman P, Venema A, Burr T, Galbete C, Danquah I, Schulze MB, Mockenhaupt FP, Owusu-Dabo E, Rotimi CN, Addo J. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics. 2017;9(1):103.PubMedPubMedCentralGoogle Scholar
  277. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005;33(18):5868–77.PubMedPubMedCentralGoogle Scholar
  278. Meng D, Dubin M, Zhang P, Osborne EJ, Stegle O, Clark RM, et al. Limited contribution of DNA methylation variation to expression regulation in Arabidopsis thaliana. PLoS Genet. 2016;12(7):e1006141.PubMedPubMedCentralGoogle Scholar
  279. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007;448(7153):553–60.PubMedPubMedCentralGoogle Scholar
  280. Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011;20(15):3067–78.PubMedGoogle Scholar
  281. Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O. Implications of DNA methylation in Parkinson’s disease. Front Mol Neurosci. 2017;10:225.  https://doi.org/10.3389/fnmol.2017.00225.CrossRefPubMedPubMedCentralGoogle Scholar
  282. Mirbahai L, Chipman JK. Epigenetic memory of environmental organisms: a reflection of lifetime stressor exposures. Mutat Res. 2014;764–765:10–7.Google Scholar
  283. Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell. 2002;110(6):689–99.PubMedGoogle Scholar
  284. Moison C, Assemat F, Daunay A, Arimondo PB, Tost J. DNA methylation analysis of ChIP products at single nucleotide resolution by Pyrosequencing®. In: Lehmann U, Tost J, editors. Pyrosequencing: methods and protocols. New York: Springer; 2015. p. 315–33.  https://doi.org/10.1007/978-1-4939-2715-9_22.CrossRefGoogle Scholar
  285. Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development. 1987;99(3):371–82.PubMedGoogle Scholar
  286. Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics. 2016;8:57.  https://doi.org/10.1186/s13148-016-0223-4 PubMedPubMedCentralGoogle Scholar
  287. Morris T, Beck S. Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450k) data. Methods. 2015;72(11):3–8.PubMedPubMedCentralGoogle Scholar
  288. Movassagh M, Choy M, Knowles D, Cordeddu L, Haider S. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011;124(22):2411–22.PubMedPubMedCentralGoogle Scholar
  289. Murrell A, Hurd PJ, Wood IC. Epigenetic mechanisms in development and disease. Biochem Soc Trans. 2013;41(3):697–9.PubMedGoogle Scholar
  290. Nakatochi M, Ichihara S, Yamamoto K, Naruse K, Yokota S, Asano H, Matsubara T, Yokota M. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics. 2017;9(1):54.PubMedPubMedCentralGoogle Scholar
  291. Nano J, Ghanbari M, Wang W, de Vries P, Dhana K. Epigenome-wide association study identifies methylation sites associated with liver enzymes and hepatic steatosis. Gastroenterology. 2017;153(4):1096–106.  https://doi.org/10.1053/j.gastro.2017.06.003.CrossRefPubMedGoogle Scholar
  292. Neri F, Incarnato D, Krepelova A, Parlato C, Oliviero S. Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc. 2016;11(7):1191–205.PubMedGoogle Scholar
  293. Nestor C, Ruzov A, Meehan R, Dunican D. Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA. Biotechniques. 2010;48(4):317–9.PubMedGoogle Scholar
  294. Newman EM, Morgan RJ, Kummar S, Beumer JH, Blanchard MS, Ruel C, El-Khoueiry AB, Carroll MI, Hou JM, Li C, Lenz HJ. A phase I, pharmacokinetic, and pharmacodynamic evaluation of the DNA methyltransferase inhibitor 5-fluoro-2′-deoxycytidine, administered with tetrahydrouridine. Cancer Chemother Pharmacol. 2015;75(3):537–46.PubMedPubMedCentralGoogle Scholar
  295. Ng RK, Gurdon JB. Epigenetic inheritance of cell differentiation status. Cell Cycle. 2008;7(9):1173–7.PubMedGoogle Scholar
  296. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15(12):684–92.PubMedGoogle Scholar
  297. Niederhuth CE, Bewick AJ, Ji L, Alabady MS, Kim KD, Li Q, et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 2016;17(1):1–19.Google Scholar
  298. Nightingale KP, O’Neill LP, Turner BM. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev. 2006;16(2):125–36.PubMedGoogle Scholar
  299. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One. 2012;7(5):e36129.PubMedPubMedCentralGoogle Scholar
  300. Novak P, Jensen T, Oshiro MM, Wozniak RJ, Nouzova M, Watts GS, et al. Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res. 2006;66(22):10664–70.PubMedGoogle Scholar
  301. O’Brown ZK, Greer EL. N6-methyladenine: a conserved and dynamic DNA mark. In: Jeltsch A, Jurkowska RZ, editors. DNA methyltransferases – role and function. Cham: Springer International Publishing; 2016. p. 213–46.  https://doi.org/10.1007/978-3-319-43624-1_10.CrossRefGoogle Scholar
  302. Oakeley EJ. DNA methylation analysis: a review of current methodologies. Pharmacol Ther. 1999;84(3):389–400.  https://doi.org/10.1016/S0163-7258(99)00043-1.CrossRefPubMedGoogle Scholar
  303. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.PubMedGoogle Scholar
  304. Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006;22(1):1–5.PubMedGoogle Scholar
  305. Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110(50):20164–9.PubMedPubMedCentralGoogle Scholar
  306. Patel SR, Dressler GR. The genetics and epigenetics of kidney development. Semin Nephrol. 2013;33(4):314–26.  https://doi.org/10.1016/j.semnephrol.2013.05.004.CrossRefPubMedPubMedCentralGoogle Scholar
  307. Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol. 2010;27(11):2465–73.PubMedPubMedCentralGoogle Scholar
  308. Pecinka A, Scheid OM. Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol. 2012;53(5):801–8.PubMedPubMedCentralGoogle Scholar
  309. Pei J-H, Luo S-Q, Zhong Y, Chen J-H, Xiao H-W, Hu W-X. The association between non-Hodgkin lymphoma and methylation of p73. Tumor Biol. 2011;32(6):1133.Google Scholar
  310. Petersen AK, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters A, et al. Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits. Hum Mol Genet. 2014;23(2):534–45.PubMedGoogle Scholar
  311. Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol. 2004;14(14):R546–51.Google Scholar
  312. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7(5):e37135.PubMedPubMedCentralGoogle Scholar
  313. Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013;242(4):360–70.PubMedGoogle Scholar
  314. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet. 2002;36:233–78.PubMedGoogle Scholar
  315. Platt A, Gugger PF, Pellegrini M, Sork VL. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol Ecol. 2015;24(15):3823–30.PubMedGoogle Scholar
  316. Pollard KS, Salama SR, Lambert N, Lambot M-A, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature. 2006;443(7108):167–72.PubMedGoogle Scholar
  317. Pomraning KR, Smith KM, Freitag M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods. 2009;47(3):142–50.PubMedGoogle Scholar
  318. Postberg J, Forcob S, Chang W-J, Lipps HJ. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms. BMC Evol Biol. 2010;10:259.PubMedPubMedCentralGoogle Scholar
  319. Price TD, Qvarnström A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc R Soc Lond B Biol Sci. 2003;270(1523):1433–40.Google Scholar
  320. Przybilski R, Gräf S, Lescoute A, Nellen W, Westhof E. Functional hammerhead ribozymes naturally encoded in the genome of Arabidopsis thaliana. Plant Cell. 2005;17(7):1877–85.PubMedPubMedCentralGoogle Scholar
  321. Qiao W, Guo B, Zhou H, Xu W, Chen Y, Liang Y, et al. miR-124 suppresses glioblastoma growth and potentiates chemosensitivity by inhibiting AURKA. Biochem Biophys Res Commun. 2017;486(1):43–8.PubMedGoogle Scholar
  322. Quinkler M, Stewart PM. Hypertension and the cortisol-cortisone shuttle. J Clin Endocrinol Metab. 2003;88(6):2384–92.PubMedGoogle Scholar
  323. Rahavi SMR, Kovalchuk I. Changes in homologous recombination frequency in Arabidopsis thaliana plants exposed to stress depend on time of exposure during development and on duration of stress exposure. Physiol Mol Biol Plants. 2013;19(4):479–88.PubMedPubMedCentralGoogle Scholar
  324. Raj S, Bräutigam K, Hamanishi ET, Wilkins O, Thomas BR, Schroeder W, et al. Clone history shapes Populus drought responses. Proc Natl Acad Sci U S A. 2011;108(30):12521–6.PubMedPubMedCentralGoogle Scholar
  325. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12(8):529–41.PubMedPubMedCentralGoogle Scholar
  326. Ramsawhook A, Lewis L, Coyle B, Ruzov A. Medulloblastoma and ependymoma cells display increased levels of 5-carboxylcytosine and elevated TET1 expression. Clin Epigenetics. 2017;9:18.PubMedPubMedCentralGoogle Scholar
  327. Ramsawhook A, Ruzov A, Coyle B. Wilms’ tumor protein 1 and enzymatic oxidation of 5-methylcytosine in brain tumors: potential perspectives. Front Cell Dev Biol. 2018;6:26.  https://doi.org/10.3389/fcell.2018.00026.CrossRefPubMedPubMedCentralGoogle Scholar
  328. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14(4):411–3.PubMedPubMedCentralGoogle Scholar
  329. Rando OJ, Verstrepen KJ. Timescales of genetic and epigenetic inheritance. Cell. 2007;128(4):655–68.PubMedGoogle Scholar
  330. Rangasamy S, D’Mello SR, Narayanan V. Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics. 2013;10(4):742–56.PubMedPubMedCentralGoogle Scholar
  331. Reddy MA, Natarajan R. Epigenetics in diabetic kidney disease. J Am Soc Nephrol. 2011;22(12):2182–5.PubMedPubMedCentralGoogle Scholar
  332. Rehimi R, Nikolic M, Cruz-Molina S, Tebartz C, Frommolt P, Mahabir E, et al. Epigenomics-based identification of major cell identity regulators within heterogeneous cell populations. Cell Rep. 2016;17(11):3062–76.PubMedGoogle Scholar
  333. Reich E, Schibli A. High-performance thin-layer chromatography for the analysis of medicinal plants. Stuttgart: Thieme; 2007.Google Scholar
  334. Reik W. Genomic imprinting and genetic disorders in man. Trends Genet. 1989;5(10):331–6.PubMedGoogle Scholar
  335. Reinders J, Wulff BBH, Mirouze M, Mari-Ordonez A, Dapp M, Rozhon W, et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 2009;23(8):939–50.PubMedPubMedCentralGoogle Scholar
  336. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24(17):4348–70.PubMedGoogle Scholar
  337. Relyea RA. Costs of phenotypic plasticity. Am Nat. 2002;159(3):272–82.PubMedGoogle Scholar
  338. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL. Genome-wide location and function of DNA binding proteins. Science. 2000;290(5500):2306–9.PubMedGoogle Scholar
  339. Rey T, Laporte P, Bonhomme M, Jardinaud M-F, Huguet S, Balzergue S, et al. MtNF-YA1, a central transcriptional regulator of symbiotic nodule development, is also a determinant of medicago truncatula susceptibility toward a root pathogen. Front Plant Sci. 2016;7:1837.PubMedPubMedCentralGoogle Scholar
  340. Reyna-Lopez G, Simpson J, Ruiz-Herrera J, Genetics M. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet. 1997;253(6):703–10.PubMedGoogle Scholar
  341. Richards EJ. Inherited epigenetic variation – revisiting soft inheritance. Nat Rev Genet. 2006;7(5):395–401.PubMedGoogle Scholar
  342. Richards EJ. Population epigenetics. Curr Opin Genet Dev. 2008;18(2):221–6.PubMedGoogle Scholar
  343. Richards CL, Bossdorf O, Verhoeven KJF. Understanding natural epigenetic variation. New Phytol. 2010;187(3):562–4.PubMedGoogle Scholar
  344. Richards CL, Schrey AW, Pigliucci M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol Lett. 2012;15(9):1016–25.PubMedGoogle Scholar
  345. Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M, et al. Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett. 2017;20(12):1576–90.PubMedGoogle Scholar
  346. Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 1975;14(1):9–25.PubMedGoogle Scholar
  347. Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155(1):39–55.PubMedGoogle Scholar
  348. Roach DA, Wulff RD. Maternal effects in plants. Annu Rev Ecol Syst. 1987;18(1):209–35.Google Scholar
  349. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.PubMedCentralGoogle Scholar
  350. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.PubMedPubMedCentralGoogle Scholar
  351. Rodriguez J, Frigola J, Vendrell E, Risques R-A, Fraga MF, Morales C, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66(17):8462–8.PubMedGoogle Scholar
  352. Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–9.  https://doi.org/10.1038/nm.2305.CrossRefPubMedGoogle Scholar
  353. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1(1):19–25.PubMedPubMedCentralGoogle Scholar
  354. Ross JP, Rand KN, Molloy PL. Hypomethylation of repeated DNA sequences in cancer. Epigenomics. 2010;2(2):245–69.PubMedGoogle Scholar
  355. Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J, Bai Y, et al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 2011;21(9):1332–42.PubMedPubMedCentralGoogle Scholar
  356. Ryan D, Ehninger D. Bison: bisulfite alignment on nodes of a cluster. BMC Bioinformatics. 2014;15:337.  https://doi.org/10.1186/1471-2105-15-337.CrossRefPubMedPubMedCentralGoogle Scholar
  357. Sáez-Laguna E, Guevara M-Á, Díaz L-M, Sánchez-Gómez D, Collada C, Aranda I, et al. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One. 2014;9(8):e103145.PubMedPubMedCentralGoogle Scholar
  358. Salojärvi J. Computational tools for population genomics. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG, part of Springer Nature; 2018.Google Scholar
  359. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.PubMedGoogle Scholar
  360. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.PubMedPubMedCentralGoogle Scholar
  361. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci U S A. 1984;81(22):6993–7.PubMedPubMedCentralGoogle Scholar
  362. Santos F, Dean W. Using immunofluorescence to observe methylation changes in mammalian preimplantation embryos. In: Nuclear reprogramming. Totowa, NJ: Humana Press; 2006. p. 129–38.Google Scholar
  363. Satoh M, et al. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy. J Card Fail. 2010;16(5):404–10.  https://doi.org/10.1016/j.cardfail.2010.01.002.CrossRefPubMedGoogle Scholar
  364. Sawan C, Herceg Z. 3-Histone modifications and cancer. Adv Genet. 2010;70(70):57–85.PubMedGoogle Scholar
  365. Schield D, Walsh M, Card D, Andrew A, Adams R, Castoe T. EpiRADseq: scalable analysis of genomewide patterns of methylation using next-generation sequencing. Methods Ecol Evol. 2016;7(1):60–9.Google Scholar
  366. Schlichting CD, Wund MA. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution. 2014;68(3):656–72.PubMedGoogle Scholar
  367. Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 2011;334(6054):369–73.PubMedPubMedCentralGoogle Scholar
  368. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, et al. Patterns of population epigenomic diversity. Nature. 2013a;495(7440):193–8.PubMedPubMedCentralGoogle Scholar
  369. Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013b;23(10):1663–74.PubMedPubMedCentralGoogle Scholar
  370. Schönberger B, Chen X, Mager S, Ludewig U. Site-dependent differences in DNA methylation and their impact on plant establishment and phosphorus nutrition in Populus trichocarpa. PLoS One. 2016;11(12):e0168623.PubMedPubMedCentralGoogle Scholar
  371. Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D, et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature. 2015;523(7559):212–6.PubMedPubMedCentralGoogle Scholar
  372. Seehafer C, Kalweit A, Steger G, Gräf S, Hammann C. From alpaca to zebrafish: hammerhead ribozymes wherever you look. RNA. 2011;17(1):21–6.PubMedPubMedCentralGoogle Scholar
  373. Shafi A, Mitrea C, Nguyen T, Draghici S. A survey of the approaches for identifying differential methylation using bisulfite sequencing data. Brief Bioinform. 2018;19(5):737–53.  https://doi.org/10.1093/bib/bbx013.CrossRefPubMedGoogle Scholar
  374. Shao Z, Zhang Y, Yuan G-C, Orkin SH, Waxman DJ. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets. Genome Biol. 2012;13(3):R16.PubMedPubMedCentralGoogle Scholar
  375. Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. Prog Biophys Mol Biol. 2013;113(3):439–46.  https://doi.org/10.1016/j.pbiomolbio.2012.12.003.CrossRefPubMedGoogle Scholar
  376. Sharma U, Rando OJ. Metabolic inputs into the epigenome. Cell Metab. 2017;25(3):544–58.PubMedGoogle Scholar
  377. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26(10):1135–45.PubMedGoogle Scholar
  378. Shimada-Sugimoto M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, Iwamoto K, Tochigi M, Kasai K, Kaiya H, Tanii H. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9(1):6.PubMedPubMedCentralGoogle Scholar
  379. Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells. 2002;7(9):961–9.  https://doi.org/10.1046/j.1365-2443.2002.00574.x.CrossRefPubMedGoogle Scholar
  380. Simpson J, Workman R, Zuzarte P, David M, Dursi L, Detecting D, et al. Cytosine methylation using nanopore sequencing. Nat Methods. 2017;14(4):407–10.  https://doi.org/10.1038/nmeth.4184.CrossRefPubMedGoogle Scholar
  381. Singh NN, Luo D, Singh RN. Pre-mRNA splicing modulation by antisense oligonucleotides. In: Exon skipping and inclusion therapies. New York, NY: Humana Press; 2018. p. 415–37.Google Scholar
  382. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457(7228):396–404.PubMedGoogle Scholar
  383. Siomi MC, Sato K, Pezic D, Aravin AA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12(4):246–58.PubMedGoogle Scholar
  384. Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136(3):461–72.PubMedPubMedCentralGoogle Scholar
  385. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.PubMedPubMedCentralGoogle Scholar
  386. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.PubMedGoogle Scholar
  387. Smith P, Al H, Girard J, Delay C, Hébert S. In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem. 2011;116(2):240–7.PubMedGoogle Scholar
  388. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit. 2010;16(3):CR149–55.PubMedGoogle Scholar
  389. Soejima H, Higashimoto K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J Hum Genet. 2013;58(7):402–9.PubMedGoogle Scholar
  390. Sollars ESA, Buggs RJA. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. BMC Genomics. 2018;19(1):502.PubMedPubMedCentralGoogle Scholar
  391. Song X, Cao X. Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol. 2017;36:111–8.PubMedGoogle Scholar
  392. Song C-X, He C. Potential functional roles of DNA demethylation intermediates. Trends Biochem Sci. 2013;38(10):480–4.PubMedPubMedCentralGoogle Scholar
  393. Song L, James SR, Kazim L, Karpf AR. Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem. 2005;77(2):504–10.PubMedGoogle Scholar
  394. Song Y, Ci D, Tian M, Zhang D. Stable methylation of a non-coding RNA gene regulates gene expression in response to abiotic stress in Populus simonii. J Exp Bot. 2016;67(5):1477–92.PubMedGoogle Scholar
  395. Soppa J. Protein acetylation in archaea, bacteria, and eukaryotes. Archaea. 2010. pii: 820681.  https://doi.org/10.1155/2010/820681.Google Scholar
  396. Spencer C, Su Z, Donnelly P, Marchini J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477.  https://doi.org/10.1371/journal.pgen.1000477.CrossRefPubMedPubMedCentralGoogle Scholar
  397. Springer NM, Schmitz RJ. Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet. 2017;18(9):563–75.PubMedGoogle Scholar
  398. Srivastava A, Karpievitch Y, Eichten S, Borevitz J, Lister R. HOME: a histogram based machine learning approach for effective identification of differentially methylated regions. BioRxi. 2017.  https://doi.org/10.1101/228221.
  399. Stark R, Brown G. DiffBind: differential binding analysis of ChIP-Seq peak data. 2011. http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf.
  400. Steinhauser S, Kurzawa N, Eils R, Herrmann C. A comprehensive comparison of tools for differential ChIP-seq analysis. Brief Bioinform. 2016;17(6):953–66.PubMedPubMedCentralGoogle Scholar
  401. Stöger R, Ruzov A. Beyond CpG methylation: new modifications in eukaryotic DNA. Front Cell Dev Biol. 2018;6:87.  https://doi.org/10.3389/fcell.2018.00087.CrossRefPubMedPubMedCentralGoogle Scholar
  402. Storz G. An expanding universe of noncoding RNAs. Science. 2002;296(5571):1260–3.PubMedGoogle Scholar
  403. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.PubMedGoogle Scholar
  404. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123(1):8–13.PubMedGoogle Scholar
  405. Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. Elife. 2013;2:e00354. https://elifesciences.org/articles/00354 PubMedPubMedCentralGoogle Scholar
  406. Studholme DJ. Deep sequencing of small RNAs in plants: applied bioinformatics. Brief Funct Genomics. 2012;11(1):71–85.PubMedGoogle Scholar
  407. Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000;5(12):537–42.PubMedGoogle Scholar
  408. Sultan SE. Phenotypic plasticity in plants: a case study in ecological development. Evol Dev. 2003;5(1):25–33.PubMedGoogle Scholar
  409. Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol. 2010;21(12):2069–80.  https://doi.org/10.1681/ASN.2010060633.CrossRefPubMedPubMedCentralGoogle Scholar
  410. Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D. N6-methyladenine functions as a potential epigenetic mark in eukaryotes. Bioessays. 2015;37(11):1155–62.PubMedGoogle Scholar
  411. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.PubMedGoogle Scholar
  412. Szyf M, Pakneshan P, Rabbani SA. DNA methylation and breast cancer. Biochem Pharmacol. 2004;68(6):1187–97.PubMedGoogle Scholar
  413. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.PubMedPubMedCentralGoogle Scholar
  414. Takahashi S, Osabe K, Fukushima N, Takuno S, Miyaji N, Shimizu M, et al. Genome-wide characterization of DNA methylation, small RNA expression, and histone H3 lysine nine di-methylation in Brassica rapa L. DNA Res. 2018;  https://doi.org/10.1093/dnares/dsy021.PubMedPubMedCentralGoogle Scholar
  415. Talbert PB, Ahmad K, Almouzni G, Ausió J, Berger F, Bhalla PL, et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin. 2012;5:7.PubMedPubMedCentralGoogle Scholar
  416. Talbot B, Chen T-W, Zimmerman S, Joost S, Eckert AJ, Crow TM, et al. Combining genotype, phenotype, and environment to infer potential candidate genes. J Hered. 2017;108(2):207–16.PubMedGoogle Scholar
  417. Tang Y, Xiong J, Jiang H-P, Zheng S-J, Feng Y-Q, Yuan B-F. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis. Anal Chem. 2014;86(15):7764–72.PubMedGoogle Scholar
  418. Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet. 2016;17(6):319–32.PubMedGoogle Scholar
  419. Teschendorff AE, Zheng SC. Cell-type deconvolution in epigenome-wide association studies: a review and recommendations. Epigenomics. 2017;9(5):757–68.PubMedGoogle Scholar
  420. Thon N, Kreth S, Kreth F. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. OncoTargets Ther. 2013;6:1363–72.Google Scholar
  421. Thorson JLM, Smithson M, Beck D, Sadler-Riggleman I, Nilsson E, Dybdahl M, et al. Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci Rep. 2017;7(1):1–11.Google Scholar
  422. Tsai M, Manor O, Wan Y, Mosammaparast N, Wang J. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.PubMedPubMedCentralGoogle Scholar
  423. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116(4):737–50.PubMedGoogle Scholar
  424. Udali S, Guarini P, Moruzzi S, Choi S, Friso S. Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol Aspects Med. 2013;34(4):883–901.PubMedGoogle Scholar
  425. Underwood CJ, Henderson IR, Martienssen RA. Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr Opin Plant Biol. 2017;36:135–41.PubMedPubMedCentralGoogle Scholar
  426. Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313(5785):320–4.PubMedGoogle Scholar
  427. Valente S, Mai A. Small-molecule inhibitors of histone deacetylase for the treatment of cancer and non-cancer diseases: a patent review (2011–2013). Expert Opin Ther Pat. 2014;24(4):401–15.PubMedGoogle Scholar
  428. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods. 2008;5(9):829–34.PubMedPubMedCentralGoogle Scholar
  429. Van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC, et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci U S A. 2015;112(21):6676–81.PubMedPubMedCentralGoogle Scholar
  430. Van Dooren T, Silveira A, Gilbaut E, Jimenez-Gomez JM, Martin A, Bach L, et al. Mild drought induces phenotypic and DNA methylation plasticity but no transgenerational effects in Arabidopsis. BioRxiv. 2018.  https://doi.org/10.1101/370320.
  431. Van Oppen MJH, Gates RD, Blackall LL, Cantin N, Chakravarti LJ, Chan WY, et al. Shifting paradigms in restoration of the world’s coral reefs. Glob Chang Biol. 2017;23(9):3437–48.PubMedGoogle Scholar
  432. Van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A. 2006;103(48):18255–60.PubMedPubMedCentralGoogle Scholar
  433. Vanyushin BF, Belozersky AN, Kokurina NA, Kadirova DX. 5-Methylcytosine and 6-methylamino-purine in bacterial DNA. Nature. 1968;218(5146):1066–7.PubMedGoogle Scholar
  434. Vaughn MW, Tanurdžić M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 2007;5(7):1617–29.Google Scholar
  435. Vergeer P, Ouborg NJ. Evidence for an epigenetic role in inbreeding depression. Biol Lett. 2012;8(5):798–801.  https://doi.org/10.1098/rsbl.2012.0494.CrossRefPubMedPubMedCentralGoogle Scholar
  436. Verhoeven KJF, Jansen JJ, Van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185(4):1108–18.PubMedGoogle Scholar
  437. Verhoeven KJF, von Holdt BM, Sork VL. Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol. 2016;25(8):1631–8.PubMedGoogle Scholar
  438. Vogt G. Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ Epigenet. 2017;3(1):1–17.Google Scholar
  439. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 2002;297(5588):1833–7.PubMedGoogle Scholar
  440. Waalwijk C, Flavell RA. MspI, an isoschizomer of hpaII which cleaves both unmethylated and methylated hpaII sites. Nucleic Acids Res. 1978;5(9):3231–6.PubMedPubMedCentralGoogle Scholar
  441. Waddington CH. The epigenotype. Int J Epidemiol. 2012;41(1):10–3.PubMedGoogle Scholar
  442. Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway to cancer. Ann Surg. 2001;234(1):10–20.PubMedPubMedCentralGoogle Scholar
  443. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.PubMedPubMedCentralGoogle Scholar
  444. Wang X, Song S, Wu Y-S, Li Y-L, Chen T, Huang Z, et al. Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes. J Exp Bot. 2015;66(21):6651–63.PubMedPubMedCentralGoogle Scholar
  445. Wang Y, Sheng Y, Liu Y, Pan B, Huang J, Warren A, et al. N6-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila. Eur J Protistol. 2017;58:94–102.PubMedGoogle Scholar
  446. Watanabe A, Yamada Y, Yamanaka S. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20120292.PubMedPubMedCentralGoogle Scholar
  447. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853–62.PubMedGoogle Scholar
  448. Wedd L, Maleszka R. DNA methylation and gene regulation in honeybees: from genome-wide analyses to obligatory epialleles. Adv Exp Med Biol. 2016;945:193–211.  https://doi.org/10.1007/978-3-319-43624-1_9. In: Jeltsch A, Jurkowska R, editors. DNA methyltransferases – role and functionCrossRefPubMedGoogle Scholar
  449. Weinmann A, Farnham P. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods. 2002;26(1):37–47.PubMedGoogle Scholar
  450. Weksberg R, Smith AC, Squire J, Sadowski P. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development. Hum Mol Genet. 2003;12(Spec No 1):R61–8.Google Scholar
  451. Weng MK, Natarajan K, Scholz D, Ivanova VN, Sachinidis A, Hengstler JG, et al. Lineage-specific regulation of epigenetic modifier genes in human liver and brain. PLoS One. 2014;9(7):e102035.PubMedPubMedCentralGoogle Scholar
  452. West-Eberhard M. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J Exp Zool Mol Dev Evol. 2005;304(6):610–8.Google Scholar
  453. Wheldon LL, Abakir A, Ferjentsik Z. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep. 2014;7(5):1353–61.PubMedGoogle Scholar
  454. Whipple AV, Holeski LM. Epigenetic inheritance across the landscape. Front Genet. 2016;7:189.PubMedPubMedCentralGoogle Scholar
  455. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19.PubMedPubMedCentralGoogle Scholar
  456. Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife. 2016;5 https://elifesciences.org/articles/13546
  457. Wijetunga NA, Delahaye F, Zhao YM, Golden A, Mar JC, Einstein FH, et al. The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat Commun. 2014;5:5195.PubMedPubMedCentralGoogle Scholar
  458. Wilson ME, Sengoku T. Developmental regulation of neuronal genes by DNA methylation: environmental influences. Int J Dev Neurosci. 2013;31(6):448–51.PubMedPubMedCentralGoogle Scholar
  459. Wion D, Casadesús J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol. 2006;4(3):183–92.PubMedPubMedCentralGoogle Scholar
  460. Wong H-L, Byun H-M, Kwan JM, Campan M, Ingles SA, Laird PW, et al. Rapid and quantitative method of allele-specific DNA methylation analysis. Biotechniques. 2006;41(6):734–9.PubMedGoogle Scholar
  461. Woodward C, Hansen L, Beckwith F, Redman R, Rodriguez R. Symbiogenics: an epigenetic approach to mitigating impacts of climate change on plants. HortScience. 2012;47(6):699–703.Google Scholar
  462. Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156(1–2):45–68.PubMedPubMedCentralGoogle Scholar
  463. Wyatt GR, Cohen SS. A new pyrimidine base from bacteriophage nucleic acids. Nature. 1952;170(4338):1072–3.PubMedGoogle Scholar
  464. Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics. 2009;10:232. http://link.springer.com/article/10.1186/1471-2105-10-232 PubMedPubMedCentralGoogle Scholar
  465. Xia J, Joyce CE, Bowcock AM, Zhang W. Noncanonical microRNAs and endogenous siRNAs in normal and psoriatic human skin. Hum Mol Genet. 2013;22(4):737–48.PubMedGoogle Scholar
  466. Xiao S, Cao X, Zhong S. Comparative epigenomics: defining and utilizing epigenomic variations across species, time-course, and individuals. Wiley interdisciplinary reviews. Syst Biol Med. 2014;6(5):345–52.Google Scholar
  467. Xiao C-L, Zhu S, He M-H, Chen Y, Yu G-L, Chen D, et al. N6-methyladenine DNA modification in human genome. BioRxiv. 2017;176958.Google Scholar
  468. Xiao CL, Zhu S, He M, Chen, Zhang Q, Chen Y, Yu G, Liu J, Xie SQ, Luo F, Liang Z, Wang DP, Bo XC, Gu XF, Wang K, Yan GR. N(6)-methyladenine DNA modification in the human genome. Mol Cell. 2018;71:306–18 e7.PubMedGoogle Scholar
  469. Xie HJ, Li H, Liu D, Dai WM, He JY, Lin S, et al. ICE1 demethylation drives the range expansion of a plant invader through cold tolerance divergence. Mol Ecol. 2015;24(4):835–50.PubMedGoogle Scholar
  470. Xing X, Cai W, Luo L, Liu L, Shi H. The prognostic value of p16 hypermethylation in cancer: a meta-analysis. Plos One. 2013;8(6):e54970. http://pubmedcentralcanada.ca/pmcc/articles/PMC3689792/ Google Scholar
  471. Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013;105(10):694–700.PubMedPubMedCentralGoogle Scholar
  472. Xu S, Grullon S, Ge K, Peng W. Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. In: Kidder BL, editor. Stem cell transcriptional networks: methods and protocols. New York: Springer; 2014. p. 97–111.  https://doi.org/10.1007/978-1-4939-0512-6_5.CrossRefGoogle Scholar
  473. Xue K, Gu JJ, Zhang Q, Mavis C, Hernandez-Ilizaliturri FJ, Czuczman MS, et al. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents. J Cancer Res Clin Oncol. 2016;142(2):379–87.PubMedGoogle Scholar
  474. Yaish MW, Peng M, Rothstein SJ. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). Methods Mol Biol. 2014;1062:285–98.PubMedGoogle Scholar
  475. Yakovlev IA, Fossdal CG. In silico analysis of small RNAs suggest roles for novel and conserved miRNAs in the formation of epigenetic memory in somatic embryos of Norway spruce. Front Plant Physiol. 2017;8:674.Google Scholar
  476. Yakovlev I, Fossdal CG, Skrøppa T, Olsen JE, Jahren AH, Johnsen Ø. An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci Res. 2012;22:63–6.Google Scholar
  477. Yakovlev IA, Carneros E, Lee Y, Olsen JE, Fossdal CG. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta. 2016;243(5):1237–49.PubMedGoogle Scholar
  478. Yan H, Simola DF, Bonasio R, Liebig J, Berger SL, Reinberg D. Eusocial insects as emerging models for behavioural epigenetics. Nat Rev Genet. 2014;15(10):677–88.PubMedGoogle Scholar
  479. Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu Rev Entomol. 2015;60:435–52.PubMedGoogle Scholar
  480. Yang IV, Richards A, Davidson EJ, Stevens AD, Kolakowski CA, Martin RJ, et al. The nasal methylome: a key to understanding allergic asthma. Am J Respir Crit Care Med. 2017;195(6):829–31.PubMedPubMedCentralGoogle Scholar
  481. Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37.PubMedGoogle Scholar
  482. Yu M, Hon G, Szulwach K, Song C, Jin P. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc. 2012;7(12):2159–70.  https://doi.org/10.1038/nprot.2012.137.CrossRefPubMedPubMedCentralGoogle Scholar
  483. Yung PYK, Elsässer SJ. Evolution of epigenetic chromatin states. Curr Opin Chem Biol. 2017;41:36–42.PubMedGoogle Scholar
  484. Zas R, Cendán C, Sampedro L. Mediation of seed provisioning in the transmission of environmental maternal effects in Maritime pine (Pinus pinaster Aiton). Heredity. 2013;111(3):248–55.PubMedPubMedCentralGoogle Scholar
  485. Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol. 2010;20(17):R780–5.PubMedGoogle Scholar
  486. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328(5980):916–9.PubMedPubMedCentralGoogle Scholar
  487. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW-L, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126(6):1189–201.PubMedPubMedCentralGoogle Scholar
  488. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.PubMedPubMedCentralGoogle Scholar
  489. Zhang Y, et al. APP processing in Alzheimer’s disease. Mol Brain. 2011;4(1):3.  https://doi.org/10.1186/1756-6606-4-3.CrossRefPubMedPubMedCentralGoogle Scholar
  490. Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012a;5(1):102–14.PubMedGoogle Scholar
  491. Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu G-L, et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol. 2012b;8(4):328–30.PubMedPubMedCentralGoogle Scholar
  492. Zhang Y, Zhang X-O, Chen T, Xiang J-F, Yin Q-F, Xing Y-H, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013a;51(6):792–806.PubMedGoogle Scholar
  493. Zhang Y-Y, Fischer M, Colot V, Bossdorf O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 2013b;197(1):314–22.PubMedGoogle Scholar
  494. Zhang L, Chen W, Iyer LM, Hu J, Wang G, Fu Y, et al. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. J Am Chem Soc. 2014;136(13):4801–4.PubMedPubMedCentralGoogle Scholar
  495. Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, et al. N6-methyladenine DNA modification in Drosophila. Cell. 2015a;161(4):893–906.PubMedGoogle Scholar
  496. Zhang J, Liu Y, Xia E-H, Yao Q-Y, Liu X-D, Gao L-Z. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci U S A. 2015b;112(50):E7022–9.PubMedPubMedCentralGoogle Scholar
  497. Zhang H, Lang Z, Zhu J-K. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol. 2018;19(8):489–506.PubMedGoogle Scholar
  498. Zhao J, Goldberg J, Bremner JD, Vaccarino V. Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes. 2011.  https://doi.org/10.2337/db11-1048.PubMedGoogle Scholar
  499. Zheng X, Chen L, Xia H, Wei H, Lou Q, Li M, et al. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep. 2017;7(1):39843. http://www.nature.com/articles/srep39843 PubMedPubMedCentralGoogle Scholar
  500. Zhong X. Comparative epigenomics: a powerful tool to understand the evolution of DNA methylation. New Phytol. 2016;210(1):76–80.PubMedGoogle Scholar
  501. Zhu J-K. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009;43:143–66.PubMedPubMedCentralGoogle Scholar
  502. Zhu X, Shan L, Wang F, Wang J, Shen G, Liu X, et al. Hypermethylation of BRCA1 gene: implication for prognostic biomarker and therapeutic target in sporadic primary triple-negative breast cancer. Breast Cancer Res Treat. 2015;150(3):479–86.PubMedGoogle Scholar
  503. Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development. 2007;134:3959–65.  https://doi.org/10.1242/dev.001131.CrossRefPubMedGoogle Scholar
  504. Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500(7463):477–81.PubMedPubMedCentralGoogle Scholar
  505. Zimmerman KCK, Levitis DA, Pringle A. Beyond animals and plants: dynamic maternal effects in the fungus Neurospora crassa. J Evol Biol. 2016;29(7):1379–93.PubMedGoogle Scholar
  506. Zoghbi H, Beaudet A. Epigenetics and human disease. Cold Spring Harb Perspect Biol. 2016;8(2):479–510.  https://doi.org/10.1101/cshperspect.a019497.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ehren R. V. Moler
    • 1
  • Abdulkadir Abakir
    • 2
  • Maria Eleftheriou
    • 2
  • Jeremy S. Johnson
    • 3
  • Konstantin V. Krutovsky
    • 4
    • 5
    • 6
    • 7
  • Lara C. Lewis
    • 2
  • Alexey Ruzov
    • 2
  • Amy V. Whipple
    • 1
  • Om P. Rajora
    • 8
  1. 1.Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  2. 2.Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular SciencesUniversity of NottinghamNottinghamUK
  3. 3.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  4. 4.Department of Forest Genetics and Forest Tree BreedingGeorg-August University of GöttingenGöttingenGermany
  5. 5.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  6. 6.Laboratory of Population GeneticsN. I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  7. 7.Genome Research and Education CenterSiberian Federal UniversityKrasnoyarskRussia
  8. 8.Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada

Personalised recommendations