Advertisement

Population Genomics of Crop Domestication: Current State and Perspectives

  • Philippe Cubry
  • Yves VigourouxEmail author
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Genomics has enabled access to unprecedented amounts of genomic and transcriptomic data. Studies of crop domestication have benefited from these datasets for deeper insights into when, where, and how crops were domesticated. Although genomics makes it possible to answer such questions, it also creates new technical and methodological challenges. Such large genomic and transcriptomic datasets provide the opportunity to advance from descriptive to hypothesis testing studies. Several model-based methods are now available to test hypotheses and to trace the history of crops. Studies of gene expression and of ancient DNA are new very active fields which hold great promise. Here, we review some key questions concerning crop domestication and discuss how genomics can help answer these questions and what interesting new approaches could be used in the future. As genomics data continue to become available, domestication studies will advance our knowledge not only of well-known domestication models, such as rice and maize, but also of other currently less widely studied crops. We will then be able to test general hypotheses associated with domestication across species.

Keywords

Crop plants Domestication Evolution Genomes Inference of evolutionary history Population genomics Selection 

References

  1. Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors. Commun Biol. 2018;1:79.  https://doi.org/10.1038/s42003-018-0085-8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–7.  https://doi.org/10.1126/science.aan0032.CrossRefPubMedGoogle Scholar
  3. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics. Genetics. 2002;162:2025–35.PubMedPubMedCentralGoogle Scholar
  4. Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J. Recent demography drives changes in linked selection across the maize genome. Nat Plants. 2016;2:16084.  https://doi.org/10.1038/nplants.2016.84.CrossRefPubMedGoogle Scholar
  5. Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, Minio A, Rau D, Rodriguez M, Panziera A, Venturini L, Attene G, Albertini E, Jackson SA, Nanni L, Fernie AR, Nikoloski Z, Bertorelle G, Delledonne M, Papa R. Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell. 2014;26:1901–12.  https://doi.org/10.1105/tpc.114.124040.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berthouly-Salazar C, Mariac C, Couderc M, Pouzadoux J, Floc’h J-B, Vigouroux Y. Genotyping-by-sequencing SNP identification for crops without a reference genome: using transcriptome based mapping as an alternative strategy. Front Plant Sci. 2016;7:777.  https://doi.org/10.3389/fpls.2016.00777.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brandenburg J-T, Mary-Huard T, Rigaill G, Hearne SJ, Corti H, Joets J, Vitte C, Charcosset A, Nicolas SD, Tenaillon MI. Independent introductions and admixtures have contributed to adaptation of European maize and its American counterparts. PLoS Genet. 2017;13:e1006666.  https://doi.org/10.1371/journal.pgen.1006666.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. Genome Res. 2010;20:393–402.  https://doi.org/10.1101/gr.100545.109.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Choi JY, Purugganan MD. Multiple origin but single domestication led to Oryza sativa. G3 (Bethesda). 2018;8:797–803.  https://doi.org/10.1534/g3.117.300334.CrossRefGoogle Scholar
  10. Civáň P, Craig H, Cox CJ, Brown TA. Three geographically separate domestications of Asian rice. Nat Plants. 2015;1:15164.  https://doi.org/10.1038/nplants.2015.164.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet. 2006;38:594–7.  https://doi.org/10.1038/ng1784.CrossRefPubMedGoogle Scholar
  12. Clotault J, Thuillet A-C, Buiron M, De Mita S, Couderc M, Haussmann BIG, Mariac C, Vigouroux Y. Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol. 2012;29:1199–212.  https://doi.org/10.1093/molbev/msr287.CrossRefPubMedGoogle Scholar
  13. Cornille A, Gladieux P, Smulders MJM, Roldán-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L, Gabrielyan I, Zhang X-G, Tenaillon MI, Giraud T. New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet. 2012;8:e1002703.  https://doi.org/10.1371/journal.pgen.1002703.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P. The domestication and evolutionary ecology of apples. Trends Genet. 2014;30:57–65.  https://doi.org/10.1016/j.tig.2013.10.002.CrossRefPubMedGoogle Scholar
  15. Csilléry K, Blum MGB, Gaggiotti OE, François O. Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol (Amst). 2010;25:410–8.  https://doi.org/10.1016/j.tree.2010.04.001.CrossRefGoogle Scholar
  16. Cubry P, Tranchant-Dubreuil C, Thuillet AC, Monat C, Ndjiondjop MN, Labadi K, Cruaud C, Engelen S, Scarcelli N, Rhoné B, Burgarella C, Dupuy C, Larmande P, Wincker P, François O, Sabot F, Vigouroux Y. The rise and fall of African rice cultivation revealed by analysis of 246 new genomes. Curr Biol. 2018;28(14):2274–2282.e6.CrossRefGoogle Scholar
  17. da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MC, Hufnagel DE, Korneliussen TS, Vieira FG, Jakobsson M, Arriaza B, Willerslev E, Nielsen R, Hufford MB, Albrechtsen A, Ross-Ibarra J, Gilbert MTP. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:14003.  https://doi.org/10.1038/nplants.2014.3.CrossRefPubMedGoogle Scholar
  18. Dixon LE, Greenwood JR, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain SM, Boden SA. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell. 2018;30:563–81.  https://doi.org/10.1105/tpc.17.00961.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form. Plant Cell. 1998;10:1075–82.CrossRefGoogle Scholar
  20. Doebley J, Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991;129:285–95.PubMedPubMedCentralGoogle Scholar
  21. Doebley J, Stec A, Wendel J, Edwards M. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci U S A. 1990;87:9888–92.CrossRefGoogle Scholar
  22. Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995;141:333–46.PubMedPubMedCentralGoogle Scholar
  23. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386:485–8.  https://doi.org/10.1038/386485a0.CrossRefPubMedGoogle Scholar
  24. Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.  https://doi.org/10.1016/j.cell.2006.12.006.CrossRefPubMedGoogle Scholar
  25. Durvasula A, Hoffman PJ, Kent TV, Liu C, Kono TJY, Morrell PL, Ross-Ibarra J. angsd-wrapper: utilities for analysing next-generation sequencing data. Mol Ecol Resour. 2016;16:1449–54.  https://doi.org/10.1111/1755-0998.12578.CrossRefPubMedGoogle Scholar
  26. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.  https://doi.org/10.1371/journal.pone.0019379.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905.  https://doi.org/10.1371/journal.pgen.1003905.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nat Rev Genet. 2007;8:610–8.  https://doi.org/10.1038/nrg2146.CrossRefPubMedGoogle Scholar
  29. Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol Biol Evol. 2014;31:1275–91.  https://doi.org/10.1093/molbev/msu077.CrossRefPubMedPubMedCentralGoogle Scholar
  30. François O, Blum MGB, Jakobsson M, Rosenberg NA. Demographic history of European populations of Arabidopsis thaliana. PLoS Genet. 2008;4:e1000075.  https://doi.org/10.1371/journal.pgen.1000075.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Garud NR, Messer PW, Buzbas EO, Petrov DA. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 2015;11:e1005004.  https://doi.org/10.1371/journal.pgen.1005004.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gerbault P, Allaby RG, Boivin N, Rudzinski A, Grimaldi IM, Pires JC, Vigueira CC, Dobney K, Gremillion KJ, Barton L, Arroyo-Kalin M, Purugganan MD, de Casas RR, Bollongino R, Burger J, Fuller DQ, Bradley DG, Balding DJ, Richerson PJ, Gilbert MTP, Larson G, Thomas MG. Storytelling and story testing in domestication. Proc Natl Acad Sci U S A. 2014;111:6159–64.  https://doi.org/10.1073/pnas.1400425111.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.  https://doi.org/10.1371/journal.pgen.1000695.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Handley LJL, Manica A, Goudet J, Balloux F. Going the distance: human population genetics in a clinal world. Trends Genet. 2007;23:432–9.  https://doi.org/10.1016/j.tig.2007.07.002.CrossRefPubMedGoogle Scholar
  35. Hein J, Schierup M, Wiuf C. Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford: Oxford University Press; 2004.Google Scholar
  36. Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol Evol. 2017;8:700–16.  https://doi.org/10.1111/2041-210X.12808.CrossRefGoogle Scholar
  37. Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F. Site of einkorn wheat domestication identified by DNA fingerprinting. Science. 1997;278:1312–4.  https://doi.org/10.1126/science.278.5341.1312.CrossRefGoogle Scholar
  38. Hu M, Lv S, Wu W, Fu Y, Liu F, Wang B, Li W, Gu P, Cai H, Sun C, Zhu Z. The domestication of plant architecture in African rice. Plant J. 2018;94:661–9.  https://doi.org/10.1111/tpj.13887.CrossRefPubMedGoogle Scholar
  39. Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490:497–501.  https://doi.org/10.1038/nature11532.CrossRefPubMedGoogle Scholar
  40. Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia J-M, Cartwright RA, Elshire RJ, Glaubitz JC, Guill KE, Kaeppler SM, Lai J, Morrell PL, Shannon LM, Song C, Springer NM, Swanson-Wagner RA, Tiffin P, Wang J, Zhang G, Doebley J, McMullen MD, Ware D, Buckler ES, Yang S, Ross-Ibarra J. Comparative population genomics of maize domestication and improvement. Nat Genet. 2012;44:808–11.  https://doi.org/10.1038/ng.2309.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jaenicke-Després V, Buckler ES, Smith BD, Gilbert MTP, Cooper A, Doebley J, Pääbo S. Early allelic selection in maize as revealed by ancient DNA. Science. 2003;302:1206–8.  https://doi.org/10.1126/science.1089056.CrossRefPubMedGoogle Scholar
  42. Kofler R, Langmüller AM, Nouhaud P, Otte KA, Schlötterer C. Suitability of different mapping algorithms for genome-wide polymorphism scans with Pool-Seq data. G3. 2016;6:3507–15.  https://doi.org/10.1534/g3.116.034488.CrossRefPubMedGoogle Scholar
  43. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science. 2006;312:1392–6.  https://doi.org/10.1126/science.1126410.CrossRefPubMedGoogle Scholar
  44. Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356.  https://doi.org/10.1186/s12859-014-0356-4.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kremling KAG, Chen S-Y, Su M-H, Lepak NK, Romay MC, Swarts KL, Lu F, Lorant A, Bradbury PJ, Buckler ES. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature. 2018;555:520–3.  https://doi.org/10.1038/nature25966.CrossRefPubMedGoogle Scholar
  46. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.  https://doi.org/10.1038/nmeth.1923.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lemmon ZH, Bukowski R, Sun Q, Doebley JF. The role of cis regulatory evolution in maize domestication. PLoS Genet. 2014;10:e1004745.  https://doi.org/10.1371/journal.pgen.1004745.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. arXiv:1303.3997 [q-bio].Google Scholar
  49. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.  https://doi.org/10.1093/bioinformatics/btp324.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.  https://doi.org/10.1038/nature10231.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science. 2006;311:1936–9.  https://doi.org/10.1126/science.1123604.CrossRefPubMedGoogle Scholar
  52. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009;25:1966–7.  https://doi.org/10.1093/bioinformatics/btp336.CrossRefPubMedGoogle Scholar
  53. Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J. Parallel domestication of the Shattering1 genes in cereals. Nat Genet. 2012;44:720–4.  https://doi.org/10.1038/ng.2281.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu X, Fu Y-X. Exploring population size changes using SNP frequency spectra. Nat Genet. 2015;47:555–9.  https://doi.org/10.1038/ng.3254.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Liu Q, Zhou Y, Morrell PL, Gaut BS. Deleterious variants in Asian rice and the potential cost of domestication. Mol Biol Evol. 2017;34:908–24.  https://doi.org/10.1093/molbev/msw296.CrossRefPubMedGoogle Scholar
  56. Lu J, Tang T, Tang H, Huang J, Shi S, Wu C-I. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet. 2006;22:126–31.  https://doi.org/10.1016/j.tig.2006.01.004.CrossRefPubMedGoogle Scholar
  57. Lukens L, Doebley J. Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol. 2001;18:627–38.  https://doi.org/10.1093/oxfordjournals.molbev.a003843.CrossRefPubMedGoogle Scholar
  58. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 2011;21:936–9.  https://doi.org/10.1101/gr.111120.110.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Magwa RA, Zhao H, Yao W, Xie W, Yang L, Xing Y, Bai X. Genomewide association analysis for awn length linked to the seed shattering gene qSH1 in rice. J Genet. 2016;95:639–46.CrossRefGoogle Scholar
  60. Makino T, Rubin C-J, Carneiro M, Axelsson E, Andersson L, Webster MT. Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol Evol. 2018;10:276–90.  https://doi.org/10.1093/gbe/evy004.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mariac C, Scarcelli N, Pouzadou J, Barnaud A, Billot C, Faye A, Kougbeadjo A, Maillol V, Martin G, Sabot F, Santoni S, Vigouroux Y, Couvreur TLP. Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Mol Ecol Resour. 2014;14:1103–13.  https://doi.org/10.1111/1755-0998.12258.CrossRefPubMedGoogle Scholar
  62. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A. 2002;99:6080–4.  https://doi.org/10.1073/pnas.052125199.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013;14:840–52.  https://doi.org/10.1038/nrg3605.CrossRefPubMedGoogle Scholar
  64. Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, Amas J, Dorph K, Barretto A, Gross B, Fuller DQ, Bimpong IK, Ndjiondjop M-N, Hazzouri KM, Gregorio GB, Purugganan MD. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet. 2016;48:1083–8.  https://doi.org/10.1038/ng.3633.CrossRefPubMedGoogle Scholar
  65. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD. Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci U S A. 2011;108:8351–6.  https://doi.org/10.1073/pnas.1104686108.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Moreira PA, Mariac C, Scarcelli N, Couderc M, Rodrigues DP, Clement CR, Vigouroux Y. Chloroplast sequence of treegourd (Crescentia cujete, Bignoniaceae) to study phylogeography and domestication. Appl Plant Sci. 2016;4:1600048.  https://doi.org/10.3732/apps.1600048.CrossRefGoogle Scholar
  67. Moreira PA, Aguirre-Dugua X, Mariac C, Zekraoui L, Couderc M, Rodrigues DP, Casas A, Clement CR, Vigouroux Y. Diversity of treegourd (Crescentia cujete) suggests introduction and prehistoric dispersal routes into Amazonia. Front Ecol Evol. 2017a;5:150.  https://doi.org/10.3389/fevo.2017.00150.CrossRefGoogle Scholar
  68. Moreira PA, Mariac C, Zekraoui L, Couderc M, Rodrigues DP, Clement CR, Vigouroux Y. Human management and hybridization shape treegourd fruits in the Brazilian Amazon Basin. Evol Appl. 2017b;10:577–89.  https://doi.org/10.1111/eva.12474.CrossRefGoogle Scholar
  69. Moyers BT, Morrell PL, McKay JK. Genetic costs of domestication and improvement. J Hered. 2018;109:103–16.  https://doi.org/10.1093/jhered/esx069.CrossRefPubMedGoogle Scholar
  70. Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H, Nidelet S, Ghesquière A, Santoni S, David J, Glémin S. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol Ecol. 2014;23:2210–27.  https://doi.org/10.1111/mec.12738.CrossRefPubMedGoogle Scholar
  71. Nakagome S, Alkorta-Aranburu G, Amato R, Howie B, Peter BM, Hudson RR, Rienzo AD. Estimating the ages of selection signals from different epochs in human history. Mol Biol Evol. 2016;33:657–69.  https://doi.org/10.1093/molbev/msv256.CrossRefPubMedGoogle Scholar
  72. Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C. Genomic scans for selective sweeps using SNP data. Genome Res. 2005;15:1566–75.  https://doi.org/10.1101/gr.4252305.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ohta T. Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci U S A. 2002;99:16134–7.  https://doi.org/10.1073/pnas.252626899.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, Liu SC, Stansel JW, Irvine JE. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science. 1995;269:1714–8.  https://doi.org/10.1126/science.269.5231.1714.CrossRefPubMedGoogle Scholar
  75. Peter BM, Slatkin M. Detecting range expansions from genetic data. Evolution. 2013;67:3274–89.  https://doi.org/10.1111/evo.12202.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Peter BM, Slatkin M. The effective founder effect in a spatially expanding population. Evolution. 2015;69:721–34.  https://doi.org/10.1111/evo.12609.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Poncet V, Martel E, Allouis S, Devos M, Lamy F, Sarr A, Robert T. Comparative analysis of QTLs affecting domestication traits between two domesticated x wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor Appl Genet. 2002;104:965–75.  https://doi.org/10.1007/s00122-002-0889-1.CrossRefPubMedGoogle Scholar
  78. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T. Evolution of the grain dispersal system in barley. Cell. 2015;162:527–39.  https://doi.org/10.1016/j.cell.2015.07.002.CrossRefPubMedGoogle Scholar
  79. Przeworski M. Estimating the time since the fixation of a beneficial allele. Genetics. 2003;164:1667–76.PubMedPubMedCentralGoogle Scholar
  80. Purugganan MD, Fuller DQ. The nature of selection during plant domestication. Nature. 2009;457:843–8.  https://doi.org/10.1038/nature07895.CrossRefPubMedGoogle Scholar
  81. Ray N, Currat M, Foll M, Excoffier L. SPLATCHE2: a spatially explicit simulation framework for complex demography, genetic admixture and recombination. Bioinformatics. 2010;26:2993–4.  https://doi.org/10.1093/bioinformatics/btq579.CrossRefPubMedGoogle Scholar
  82. Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.  https://doi.org/10.1038/nature01140.CrossRefPubMedGoogle Scholar
  83. Sarah G, Homa F, Pointet S, Contreras S, Sabot F, Nabholz B, Santoni S, Sauné L, Ardisson M, Chantret N, Sauvage C, Tregear J, Jourda C, Pot D, Vigouroux Y, Chair H, Scarcelli N, Billot C, Yahiaoui N, Bacilieri R, Khadari B, Boccara M, Barnaud A, Péros J-P, Labouisse J-P, Pham J-L, David J, Glémin S, Ruiz M. A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives. Mol Ecol Resour. 2017;17:565–80.  https://doi.org/10.1111/1755-0998.12587.CrossRefPubMedGoogle Scholar
  84. Scarcelli N, Mariac C, Couvreur TLP, Faye A, Richard D, Sabot F, Berthouly-Salazar C, Vigouroux Y. Intra-individual polymorphism in chloroplasts from NGS data: where does it come from and how to handle it? Mol Ecol Resour. 2016;16:434–45.  https://doi.org/10.1111/1755-0998.12462.CrossRefPubMedGoogle Scholar
  85. Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat Genet. 2014;46:919–25.  https://doi.org/10.1038/ng.3015.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Schrider DR, Kern AD. S/HIC: robust identification of soft and hard sweeps using machine learning. PLoS Genet. 2016;12:e1005928.  https://doi.org/10.1371/journal.pgen.1005928.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schrider DR, Kern AD. Soft sweeps are the dominant mode of adaptation in the human genome. Mol Biol Evol. 2017;34:1863–77.  https://doi.org/10.1093/molbev/msx154.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sedlazeck FJ, Rescheneder P, von Haeseler A. NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics. 2013;29:2790–1.  https://doi.org/10.1093/bioinformatics/btt468.CrossRefPubMedGoogle Scholar
  89. Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013;195:693–702.  https://doi.org/10.1534/genetics.113.154138.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Smith J, Coop G, Stephens M, Novembre J. Estimating time to the common ancestor for a beneficial allele. Mol Biol Evol. 2018;35:1003–17.  https://doi.org/10.1093/molbev/msy006.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011;43:1160–3.  https://doi.org/10.1038/ng.942.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, Kruse-Peeples M, Lepak N, Prim L, Romay MC, Ross-Ibarra J, Sanchez-Gonzalez JJ, Schmidt C, Schuenemann VJ, Krause J, Matson RG, Weigel D, Buckler ES, Burbano HA. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science. 2017;357:512–5.  https://doi.org/10.1126/science.aam9425.CrossRefPubMedGoogle Scholar
  93. Ta KN, Sabot F, Adam H, Vigouroux Y, De Mita S, Ghesquière A, Do NV, Gantet P, Jouannic S. miR2118-triggered phased siRNAs are differentially expressed during the panicle development of wild and domesticated African rice species. Rice (N Y). 2016;9:10.  https://doi.org/10.1186/s12284-016-0082-9.CrossRefPubMedCentralGoogle Scholar
  94. Tajima F. The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics. 1996;143:1457–65.PubMedPubMedCentralGoogle Scholar
  95. Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet. 2008;40:1360–4.  https://doi.org/10.1038/ng.197.CrossRefPubMedGoogle Scholar
  96. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS. Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol. 2004;21:1214–25.  https://doi.org/10.1093/molbev/msh102.CrossRefPubMedGoogle Scholar
  97. Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017;49:303–9.  https://doi.org/10.1038/ng.3748.CrossRefPubMedGoogle Scholar
  98. Tong W, Kim T-S, Park Y-J. Rice chloroplast genome variation architecture and phylogenetic dissection in diverse Oryza species assessed by whole-genome resequencing. Rice. 2016;9:57.  https://doi.org/10.1186/s12284-016-0129-y.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Vavilov NI, Vavylov MI, Vavílov NÍ, Dorofeev VF. Origin and geography of cultivated plants. Cambridge: Cambridge University Press; 1992.Google Scholar
  100. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci U S A. 2002;99:9650–5.  https://doi.org/10.1073/pnas.112324299.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Vitti JJ, Grossman SR, Sabeti PC. Detecting natural selection in genomic data. Annu Rev Genet. 2013;47:97–120.  https://doi.org/10.1146/annurev-genet-111212-133526.CrossRefPubMedGoogle Scholar
  102. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF. The origin of the naked grains of maize. Nature. 2005;436:714–9.  https://doi.org/10.1038/nature03863.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 2017;18:215.  https://doi.org/10.1186/s13059-017-1346-4.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wang RL, Stec A, Hey J, Lukens L, Doebley J. The limits of selection during maize domestication. Nature. 1999;398:236–9.  https://doi.org/10.1038/18435.CrossRefGoogle Scholar
  105. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis KC, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat VJ, Borja FN, Mendoza JR, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo MEB, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J-C, Zhang J, Li J, Hamilton RS, Wing RA, Ruan J, Zhang G, Wei C, Alexandrov N, McNally KL, Li Z, Leung H. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. 2018;557:43–9.  https://doi.org/10.1038/s41586-018-0063-9.CrossRefPubMedGoogle Scholar
  106. Win KT, Yamagata Y, Doi K, Uyama K, Nagai Y, Toda Y, Kani T, Ashikari M, Yasui H, Yoshimura A. A single base change explains the independent origin of and selection for the nonshattering gene in African rice domestication. New Phytol. 2017;213:1925–35.  https://doi.org/10.1111/nph.14290.CrossRefPubMedGoogle Scholar
  107. Wu W, Liu X, Wang M, Meyer RS, Luo X, Ndjiondjop M-N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants. 2017;3:17064.  https://doi.org/10.1038/nplants.2017.64.CrossRefPubMedGoogle Scholar
  108. Xie Q, Li N, Yang Y, Lv Y, Yao H, Wei R, Sparkes DL, Ma Z. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta. 2018;247:1089–98.  https://doi.org/10.1007/s00425-018-2847-4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Recherche pour le développementUniversité de MontpellierMontpellierFrance

Personalised recommendations