Skip to main content

Population Genomics of Birds: Evolutionary History and Conservation

  • Chapter
  • First Online:
Book cover Population Genomics: Wildlife

Part of the book series: Population Genomics ((POGE))

Abstract

The use of genome-scale data to understand the evolutionary history of birds has provided important progress in the field of evolutionary biology and conservation. Here we review the conceptual advances of avian genomics, along with key examples from the literature. In each section, we contrast studies that utilized only a small number of genetic markers to studies that incorporated many independent loci across the genome. We discuss the important characteristics of avian genome architecture, and we explore the connections between DNA sequence variation and ecologically relevant phenotypes, such as color and morphology. We ask how environmental factors have left their mark on the genomes of birds and how genomic data can be used to reconstruct histories across multiple species. We outline how admixture and reticulate evolutionary histories have been an important source of variation and review cases in which hybridization has possibly led to the formation of new species. Finally, we discuss how genomic data have helped delineate population structure and inform conservation actions in declining avian species. Like in other taxonomic groups, the ever-expanding molecular toolbox for avian biologists is at once becoming more accessible in cost and more powerful in its applications. Therefore, the study of avian genomes will continue to provide important insights into many aspects of ecology, evolutionary history, and conservation biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott RJ, Albach D, Ansell S, Arntzen JW, SJE B, Bierne N, et al. Hybridization and speciation. J Evol Biol. 2013;26:229–46.

    PubMed  CAS  Google Scholar 

  • Abbott RJ, Barton NH, Good JM. Genomics of hybridization and its evolutionary consequences. Mol Ecol. 2016;25:2325–32.

    PubMed  Google Scholar 

  • Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ. Bmp4 and morphological variation of beaks in Darwin’s finches. Science. 2004;305:1462–5.

    PubMed  CAS  Google Scholar 

  • Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature. 2006;442:563–7.

    PubMed  CAS  Google Scholar 

  • Alerstam T. Conflicting evidence about long-distance animal navigation. Science. 2006;313:791–4.

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK. The problems with hybrids: setting conservation guidelines. Trends Ecol Evol. 2001;16:613–22.

    Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Angeloni F, Wagemaker N, Vergeer P, Ouborg J. Genomic toolboxes for conservation biologists. Evo Appl. 2012;5:130–43.

    CAS  Google Scholar 

  • Arrieta RS, Lijtmaer DA, Tubaro PL. Evolution of postzygotic reproductive isolation in galliform birds: analysis of first and second hybrid generations and backcrosses. Biol J Linn Soc. 2013;110:528–42.

    Google Scholar 

  • Avise JC. Perspective: conservation genetics enters the genomics era. Cons Gen. 2010;11:665–9.

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst. 1987;18:489–522.

    Google Scholar 

  • Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13:729–44.

    PubMed  Google Scholar 

  • Barrera-Guzmán AO, Aleixo A, Shawkey MD, Weir JT. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc Natl Acad Sci. 2017;115:E218–25.

    PubMed  PubMed Central  Google Scholar 

  • Barsh G. Evolution: sex, diet and red ketocarotenoids. Curr Biol. 2016;26:R1145–7.

    PubMed  CAS  Google Scholar 

  • Barton NH, Hewitt GM. The genetic basis of hybrid inviability in the grasshopper Podisma pedestris. Heredity. 1981;47:367–83.

    Google Scholar 

  • Barton NH, Hewitt GM. Analysis of hybrid zones. Annu Rev Ecol Syst. 1985;16:113–48.

    Google Scholar 

  • Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, et al. Predicting responses to contemporary environmental change using evolutionary response architectures. Am Nat. 2017;189:463–73.

    PubMed  Google Scholar 

  • Bay RA, Harrigan RJ, Le Underwood V, Gibbs HL, Smith TB, Ruegg K. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science. 2018;359:83–6.

    PubMed  CAS  Google Scholar 

  • Boag PT, Grant PR. Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galapagos. Science. 1981;214:82–5.

    PubMed  CAS  Google Scholar 

  • Bradshaw WE, Holzapfel CM. Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci. 2001;98:14509–11.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brelsford A, Toews DPL, Irwin DE. Admixture mapping in a hybrid zone reveals loci associated with avian feather coloration. Proc R Soc B. 2017. https://doi.org/10.1098/rspb.2017.1106.

  • Buehler DA, Roth AM, Vallender R, Will TC, Confer JL, Canterbury RA, et al. Status and conservation priorities of golden-winged warbler (Vermivora chrysoptera) in North America. Auk. 2007;124:1439–45.

    Google Scholar 

  • Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 2015;25:1656–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Burt DW. Origin and evolution of avian microchromosomes. Cytogenet Genome Res. 2002;96:97–112.

    PubMed  CAS  Google Scholar 

  • Calderón L, Campagna L, Wilke T, Lormee H, Eraud C, Dunn JC, et al. Genomic evidence of demographic fluctuations and lack of genetic structure across flyways in a long-distance migrant, the European turtle dove. BMC Evol Biol. 2016;16:237.

    PubMed  PubMed Central  Google Scholar 

  • Campagna L, Repenning M, Silveira LF, Fontana CS, Tubaro PL, Lovette IJ. Repeated divergent selection on pigmentation genes in a rapid finch radiation. Sci Adv. 2017. https://doi.org/10.1126/sciadv.1602404.

  • Carneiro M, Albert FW, Afonso S, Pereira RJ, Burbano H, Campos R, et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS Gen. 2014. https://doi.org/10.1371/journal.pgen.1003519.

  • Charlesworth B. The effect of life-history and mode of inheritance on neutral genetic variability. Genet Res. 2001;77:153–66.

    PubMed  CAS  Google Scholar 

  • Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10:783–96.

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Coyne JA, Barton NH. The relative rates of evolution of sex chromosomes and autosomes. Am Nat. 1987;130:113–46.

    Google Scholar 

  • Chen N, Cosgrove EJ, Bowman R, Fitzpatrick JW, Clark AG. Genomic consequences of population decline in the endangered Florida scrub-jay. Curr Biol. 2016;26:2974–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Connelly JW, Braun CE. Long-term changes in sage grouse Centrocercus urophasianus populations in western North America. Wildlife Biol. 1997;3:229–34.

    Google Scholar 

  • Connelly JW, Knick ST, Braun CE, Baker WL, Beever EA, Christiansen T, et al. Conservation of greater sage-grouse. Studies Avian Biol. 2011;38:549–63.

    Google Scholar 

  • Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133–57.

    PubMed  Google Scholar 

  • Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, et al. The biology of color. Science. 2017. https://doi.org/10.1126/science.aan0221.

  • Davis DM, Reese KP, Gardner SC, Bird KL. Genetic structure of greater sage-grouse (Centrocercus urophasianus) in a declining, peripheral population. Condor. 2015;117:530–44.

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J, Christie DA, Kirwan G, editors. Handbook of the birds of the world alive. Barcelona: Lynx Edicions; 2018. http://www.hbw.com/. Accessed 31 May 2018.

    Google Scholar 

  • Delmore KE, Hübner S, Kane NC, Schuster R, Andrew RL, Câmara F, et al. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol Ecol. 2015;24:1873–88.

    PubMed  CAS  Google Scholar 

  • Delmore KE, Toews DPL, Germain RR, Owens GL, Irwin DE. The genetics of seasonal migration and plumage color. Curr Biol. 2016;26:2167–73.

    PubMed  CAS  Google Scholar 

  • Diamond J. Biology of birds of paradise and bowerbirds. Annu Rev Ecol Syst. 1986;17:17–37.

    Google Scholar 

  • Drovetski SV, Zink RM, Rohwer S, Fadeev IV, Nesterov EV, Karagodin I. Complex biogeographic history of a Holarctic passerine. Proc R Soc B. 2004;271:545–51.

    PubMed  PubMed Central  Google Scholar 

  • Dupuis JR, Sperling FA. Hybrid dynamics in a species group of swallowtail butterflies. J Evol Biol. 2016;29:1932–51.

    PubMed  CAS  Google Scholar 

  • Edwards S, Bensch S. Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Mol Ecol. 2009;18:2930–3.

    PubMed  CAS  Google Scholar 

  • Elgvin TO, Trier CN, Tørresen OK, Hagen IJ, Lien S, Nederbragt AJ, et al. The genomic mosaicism of hybrid speciation. Sci Adv. 2017. https://doi.org/10.1126/sciadv.1602996.

  • Ellegren H. Evolutionary stasis: the stable chromosomes of birds. Trends Ecol Evol. 2010;25:283–91.

    PubMed  Google Scholar 

  • Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet. 2011;12:157–66.

    PubMed  CAS  Google Scholar 

  • Ellegren H. The evolutionary genomics of birds. Annu Rev Ecol Evol Syst. 2013;44:239–59.

    Google Scholar 

  • Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 2012;491:756–60.

    PubMed  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011. https://doi.org/10.1371/journal.pone.0019379.

  • Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012;61:717–26.

    PubMed  Google Scholar 

  • Frankham R. Where are we in conservation genetics and where do we need to go? Cons Gen. 2010;11:661–3.

    Google Scholar 

  • Fraser DJ, Bernatchez L. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol. 2001;10:2741–52.

    PubMed  CAS  Google Scholar 

  • Futuyma D. Evolution. Sunderland, MA: Sinauer Associates, Inc; 2013.

    Google Scholar 

  • Gibson D, Blomberg EJ, Atamian MT, Sedinger JS. Lek fidelity and movement among leks by male greater sage-grouse Centrocercus urophasianus: a capture-mark-recapture approach. Ibis. 2014;156:729–40.

    Google Scholar 

  • Grant PR, Grant BR. Hybridization of bird species. Science. 1992;256:193–7.

    PubMed  CAS  Google Scholar 

  • Grant PR, Grant BR. The secondary contact phase of allopatric speciation in Darwin’s finches. Proc Natl Acad Sci. 2009;106:2xs0141–8.

    Google Scholar 

  • Grant PR, Grant BR. 40 years of evolution: Darwin’s finches on Daphne Major Island. Princeton, NJ: Princeton University Press; 2014.

    Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, et al. Eukaryotic genome size databases. Nucleic Acids Res. 2007. https://doi.org/10.1093/nar/gkl828.

  • Haas F, Pointer MA, Saino N, et al. An analysis of population genetic differentiation and genotype–phenotype association across the hybrid zone of carrion and hooded crows using microsatellites and MC1R. Mol Ecol. 2009;18:294–305.

    PubMed  CAS  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763–8.

    PubMed  CAS  Google Scholar 

  • Haffer J. Speciation in Amazonian forest birds. Science. 1969;165:131–7.

    PubMed  CAS  Google Scholar 

  • Haldane JB. Sex ratio and unisexual sterility in hybrid animals. J Genet. 1922;12:101–9.

    Google Scholar 

  • Hare MP. Prospects for nuclear gene phylogeography. Trends Ecol Evol. 2001;16:700–6.

    Google Scholar 

  • Hare EE, Johnston JS. Genome size determination using flow cytometry of propidium iodide-stained nuclei. Mol Meth Evol Gen. 2011;772:3–12.

    CAS  Google Scholar 

  • Haring E, Gamauf A, Kryukov A. Phylogeographic patterns in widespread corvid birds. Mol Phylogenet Evol. 2007;45:840–62.

    PubMed  CAS  Google Scholar 

  • Harrison RG. Pattern and process in a narrow hybrid zone. Heredity. 1986;56:337–49.

    Google Scholar 

  • Harrison RG. Hybrid zones and the evolutionary process. Oxford: Oxford University Press; 1993.

    Google Scholar 

  • Helbig AJ. SE-and SW-migrating blackcap (Sylvia atricapilla) populations in Central Europe: orientation of birds in the contact zone. J Evol Biol. 1991;4:657–70.

    Google Scholar 

  • Hermansen JS, Saether SA, Elgvin TO, Borge T, Hjelle E, Saetre GP. Hybrid speciation in sparrows I: phenotypic intermediacy, genetic admixture and barriers to gene flow. Mol Ecol. 2011;20:3812–22.

    PubMed  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 2006;313:101–4.

    PubMed  CAS  Google Scholar 

  • Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–85.

    PubMed  CAS  Google Scholar 

  • Hooper DM, Price TD. Rates of karyotypic evolution in Estrildid finches differ between island and continental clades. Evolution. 2015;69:890–903.

    PubMed  Google Scholar 

  • Hubbard JK, Uy JA, Hauber ME, Hoekstra HE, Safran RJ. Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet. 2010;26:231–9.

    PubMed  CAS  Google Scholar 

  • Hung CM, Shaner PJ, Zink RM, Liu WC, Chu TC, Huang WS, Li SH. Drastic population fluctuations explain the rapid extinction of the passenger pigeon. Proc Natl Acad Sci. 2014;111:10636–41.

    PubMed  CAS  PubMed Central  Google Scholar 

  • International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.

    Google Scholar 

  • Irwin DE. Sex chromosomes and speciation in birds and other ZW systems. Mol Ecol. 2018. https://doi.org/10.1111/mec.14537.

  • Itoh Y, Kampf K, Balakrishnan CN, Arnold AP. Karyotypic polymorphism of the zebra finch Z chromosome. Chromosoma. 2011;120:255–64.

    PubMed  PubMed Central  Google Scholar 

  • Jahner JP, Gibson D, Weitzman CL, Blomberg EJ, Sedinger JS, Parchman TL. Fine-scale genetic structure among greater sage-grouse leks in central Nevada. BMC Evol Biol. 2016. https://doi.org/10.1186/s12862-016-0702-4.

  • Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston RA, Paxton KL, Moore FR, Wayne RK, Smith TB. Seasonal gene expression in a migratory songbird. Mol Ecol. 2016;25:5680–91.

    PubMed  CAS  Google Scholar 

  • Kawakami T, Smeds L, Backström N, Husby A, Qvarnström A, Mugal CF, et al. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol. 2014;23:4035–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kimball RT, Braun EL, Barker FK, Bowie RC, Braun MJ, Chojnowski JL, et al. A well-tested set of primers to amplify regions spread across the avian genome. Mol Phylogenet Evol. 2009;50:654–60.

    PubMed  CAS  Google Scholar 

  • Knick S, Connelly JW. Greater sage-grouse: ecology and conservation of a landscape species and its habitats, vol. 38. Berkeley, CA: University of California Press; 2011.

    Google Scholar 

  • Kovach RP, Gharrett AJ, Tallmon DA. Genetic change for earlier migration timing in a pink salmon population. Proc R Soc B. 2012;279:3870–8.

    PubMed  PubMed Central  Google Scholar 

  • Kraus RH, Wink M. Avian genomics: fledging into the wild! J Ornith. 2015;156:851–65.

    Google Scholar 

  • Kryukov AP, Suzuki H. Phylogeography of carrion, hooded, and jungle crows (Aves, Corvidae) inferred from partial sequencing of the mitochondrial DNA cytochrome b gene. Russ J Gen. 2000;36:922–9.

    CAS  Google Scholar 

  • Kryukov AP, Uphyrkina OV, Chelomina GN. Analysis of crow genomes (Corvidae, Passeriformes) from the zone of overlapping areas of habitation and hybridization. Genetika. 1992;28:136–40.

    Google Scholar 

  • Küpper C, Stocks M, Risse JE, dos Remedios N, Farrell LL, McRae SB, et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet. 2016;48:79–83.

    PubMed  Google Scholar 

  • Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature. 2015;518:371–5.

    PubMed  CAS  Google Scholar 

  • Lamichhaney S, Fan G, Widemo F, Gunnarsson U, Thalmann DS, Hoeppner MP, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2016a;48:84–8.

    PubMed  CAS  Google Scholar 

  • Lamichhaney S, Han F, Berglund J, Wang C, Almén MS, Webster MT, et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science. 2016b;352:470–4.

    PubMed  CAS  Google Scholar 

  • Lamichhaney S, Han F, Webster MT, Andersson L, Grant BR, Grant PR. Rapid hybrid speciation in Darwin’s finches. Science. 2018;359:224–8.

    PubMed  CAS  Google Scholar 

  • Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liedvogel M, Åkesson S, Bensch S. The genetics of migration on the move. Trends Ecol Evol. 2011;26:561–9.

    PubMed  Google Scholar 

  • Lijtmaer DA, Mahler B, Tubaro PL. Hybridization and postzygotic isolation patterns in pigeons and doves. Evolution. 2003;57:1411–8.

    PubMed  Google Scholar 

  • Lopes RJ, Johnson JD, Toomey MB, Ferreira MS, Araujo PM, Melo-Ferreira J, et al. Genetic basis for red coloration in birds. Curr Biol. 2016;26:1427–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17:142–52.

    PubMed  CAS  Google Scholar 

  • Manthey JD, Moyle RG, Boissinot S. Multiple and independent phases of transposable element amplification in the genomes of Piciformes (woodpeckers and allies). Genome Biol Evol. 2018. https://doi.org/10.1093/gbe/evy105.

  • McCormack JE, Tsai WL, Faircloth BC. Sequence capture of ultraconserved elements from bird museum specimens. Mol Ecol Resour. 2016;16:1189–203.

    PubMed  CAS  Google Scholar 

  • Moore WS. An evaluation of narrow hybrid zones in vertebrates. Q Rev Biol. 1977;52:263–77.

    Google Scholar 

  • Moritz C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol. 1994;9:373–5.

    PubMed  CAS  Google Scholar 

  • Mueller JC, Pulido F, Kempenaers B. Identification of a gene associated with avian migratory behaviour. Proc R Soc B. 2011;278:2848–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mundy NI. A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc R Soc B. 2005;272:1633–40.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mundy NI, Stapley J, Bennison C, Tucker R, Twyman H, Kim KW, et al. Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. Curr Biol. 2016;26:1435–40.

    PubMed  CAS  Google Scholar 

  • Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H. Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr Biol. 2015;25:1375–80.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25:1058–72.

    PubMed  PubMed Central  Google Scholar 

  • Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV. Origin of avian genome size and structure in non-avian dinosaurs. Nature. 2007;446:180–4.

    PubMed  CAS  Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW. Conservation genetics in transition to conservation genomics. Trends Genet. 2010;26:177–87.

    PubMed  CAS  Google Scholar 

  • Oyler-McCance SJ, Taylor SE, Quinn TW. A multilocus population genetic survey of the greater sage-grouse across their range. Mol Ecol. 2005;14:1293–310.

    PubMed  CAS  Google Scholar 

  • Oyler-McCance SJ, Cornman RS, Jones KL, Fike JA. Genomic single-nucleotide polymorphisms confirm that Gunnison and greater sage-grouse are genetically well differentiated and that the bi-state population is distinct. Condor. 2015;117:217–27.

    Google Scholar 

  • Oyler-McCance SJ, Oh KP, Langin KM, Aldridge CL. A field ornithologist’s guide to genomics: practical considerations for ecology and conservation. Auk. 2016;133:626–48.

    Google Scholar 

  • Pacheco-Sierra G, Gompert Z, Domínguez-Laso J, Vázquez-Domínguez E. Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol Ecol. 2016;25:3484–98.

    PubMed  Google Scholar 

  • Payseur BA. Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Mol Ecol Resour. 2010;10:806–20.

    PubMed  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ. The largest eukaryotic genome of them all? Botan J Linn Soc. 2010;164:10–5.

    Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0037135.

  • Picozzi N. Hybridization of carrion and hooded crows Corvus c. corone and Corvus c. cornix, in northeastern Scotland. Ibis. 1976;118:254–7.

    Google Scholar 

  • Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B, Müller I, et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science. 2014;344:1410–4.

    PubMed  CAS  Google Scholar 

  • Price TF. Speciation in birds. Greenwood Village, CO: Roberts and Company; 2008.

    Google Scholar 

  • Price TD, Bouvier MM. The evolution of F1 postzygotic incompatibilities in birds. Evolution. 2002;56:2083–9.

    PubMed  Google Scholar 

  • Primmer CR. From conservation genetics to conservation genomics. Annals NY Acad Sci. 2009;1162:357–68.

    CAS  Google Scholar 

  • Primmer CR, Møller AP, Ellegren H. A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol. 1996;5:365–78.

    PubMed  CAS  Google Scholar 

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526:569–73.

    PubMed  CAS  Google Scholar 

  • Qu Y, Luo X, Zhang R, Song G, Zou F, Lei F. Lineage diversification and historical demography of a montane bird Garrulax elliotii-implications for the Pleistocene evolutionary history of the eastern Himalayas. BMC Evol Biol. 2011. https://doi.org/10.1186/1471-2148-11-174.

  • Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst Biol. 2017;66:857–79.

    PubMed  CAS  Google Scholar 

  • Rheindt FE, Edwards SV. Genetic introgression: an integral but neglected component of speciation in birds. Auk. 2011;128:620–32.

    Google Scholar 

  • Ribas CC, Aleixo A, Nogueira AC, Miyaki CY, Cracraft J. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc R Soc B. 2012;279:681–9.

    PubMed  Google Scholar 

  • Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16:351–8.

    PubMed  Google Scholar 

  • Ruegg K, Anderson EC, Boone J, Pouls J, Smith TB. A role for migration-linked genes and genomic islands in divergence of a songbird. Mol Ecol. 2014;23:4757–69.

    PubMed  Google Scholar 

  • Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ, Whitfield M, et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol Lett. 2018. https://doi.org/10.1111/ele.12977.

  • Rull V. Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol. 2011;26:508–13.

    PubMed  Google Scholar 

  • Runemark A, Trier CN, Eroukhmanoff F, Hermansen JS, Matschiner M, Ravinet M, Elgvin TO, Sætre GP. Variation and constraints in hybrid genome formation. Nat Ecol Evo. 2018;2:549–56.

    Google Scholar 

  • Saino N, Villa S. Pair composition and reproductive success across a hybrid zone of carrion crows and hooded crows. Auk. 1992;109:543–55.

    Google Scholar 

  • Saino N, Lorenzini R, Fusco G, Randi E. Genetic-variability in a hybrid zone between carrion and hooded crows (Corvus corone corone and C. c. cornix, Passeriformes, Aves) in north-western Italy. Biochem Syst Ecol. 1992;20:605–13.

    Google Scholar 

  • Saino N, Wuster W, Thorpe RS. Congruence between morphological variation and altitudinal gradient across a hybrid zone between carrion and hooded crows. Ital J Zool. 1998;65:407–12.

    Google Scholar 

  • Scheffers BR, De Meester L, Bridge TC, Hoffmann AA, Pandolfi JM, Corlett RT, et al. The broad footprint of climate change from genes to biomes to people. Science. 2016. https://doi.org/10.1126/science.aaf7671.

  • Schroeder MA, Aldridge CL, Apa AD, Bohne JR, Braun CE, Bunnell SD, et al. Distribution of sage-grouse in North America. Condor. 2004;106:363–76.

    Google Scholar 

  • Schwander T, Libbrecht R, Keller L. Supergenes and complex phenotypes. Curr Biol. 2014;24:R288–94.

    PubMed  CAS  Google Scholar 

  • Shafer AB, Wolf JB, Alves PC, Bergström L, Bruford MW, Brännström I, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.

    PubMed  Google Scholar 

  • Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O, Hooper DM, et al. Stable recombination hotspots in birds. Science. 2015;350:928–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT. Target capture and massively parallel sequencing of ultraconserved elements (UCEs) for comparative studies at shallow evolutionary time scales. Syst Biol. 2013;63:83–95.

    PubMed  Google Scholar 

  • Somero GN. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol. 2010;213:912–20.

    PubMed  CAS  Google Scholar 

  • Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylo. 1999;12:105–14.

    CAS  Google Scholar 

  • Stryjewski KF, Sorenson MD. Mosaic genome evolution in a recent and rapid avian radiation. Nat Eco Evo. 2017. https://doi.org/10.1038/s41559-017-0364-7.

  • Swenson NG, Howard DJ. Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. Am Nat. 2005;166:581–91.

    PubMed  Google Scholar 

  • Taylor S, Campagna L. Avian supergenes. Science. 2016;351:446–7.

    PubMed  CAS  Google Scholar 

  • Thomas JW, Cáceres M, Lowman JJ, Morehouse CB, Short ME, Baldwin EL, et al. The chromosomal polymorphism linked to variation in social behavior in the white-throated sparrow (Zonotrichia albicollis) is a complex rearrangement and suppressor of recombination. Genetics. 2008;179:1455–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Toews DPL. Evolution: a genomic guide to bird population history. Curr Biol. 2015;25:R465–7.

    PubMed  CAS  Google Scholar 

  • Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30.

    PubMed  CAS  Google Scholar 

  • Toews DPL, Campagna L, Taylor SA, Balakrishnan CN, Baldassarre DT, Deane-Coe PE, et al. Genomic approaches to understanding population divergence and speciation in birds. Auk. 2016a;133:13–30.

    Google Scholar 

  • Toews DP, Taylor SA, Vallender R, Brelsford A, Butcher BG, Messer PW, Lovette IJ. Plumage genes and little else distinguish the genomes of hybridizing warblers. Curr Biol. 2016b;26:2313–8.

    PubMed  CAS  Google Scholar 

  • Toomey MB, Lopes RJ, Araújo PM, Johnson JD, Gazda MA, Afonso S, et al. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Proc Natl Acad Sci. 2017;114:5219–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tubaro PL, Lijtmaer DA. Hybridization patterns and the evolution of reproductive isolation in ducks. Biol J Linn Soc. 2002;77:193–200.

    Google Scholar 

  • Tuttle EM, Bergland AO, Korody ML, Brewer MS, Newhouse DJ, Minx P, et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr Biol. 2016;8:344–50.

    Google Scholar 

  • Twyford AD, Ennos RA. Next-generation hybridization and introgression. Heredity. 2012;108:179–89.

    PubMed  CAS  Google Scholar 

  • Uy JA, Cooper EA, Cutie S, Concannon MR, Poelstra JW, Moyle RG, Filardi CE. Mutations in different pigmentation genes are associated with parallel melanism in island flycatchers. Proc R Soc B. 2016. https://doi.org/10.1098/rspb.2016.0731.

  • Vallender R, Robertson RJ, Friesen VL, Lovette IJ. Complex hybridization dynamics between golden-winged and blue-winged warblers (Vermivora chrysoptera and Vermivora pinus) revealed by AFLP, microsatellite, intron and mtDNA markers. Mol Ecol. 2007;16:2017–29.

    PubMed  CAS  Google Scholar 

  • Vijay N, Bossu CM, Poelstra JW, Weissensteiner MH, Suh A, Kryukov AP, Wolf JB. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat Commun. 2016. https://doi.org/10.1038/ncomms13195.

  • Walsh J, Lovette IJ, Winder V, Elphick CS, Olsen BJ, Shriver G, Kovach AI. Subspecies delineation amid phenotypic, geographic and genetic discordance in a songbird. Mol Ecol. 2017;26:1242–55.

    PubMed  CAS  Google Scholar 

  • Wang W, McKay BD, Dai C, Zhao N, Zhang R, Qu Y, et al. Glacial expansion and diversification of an east Asian montane bird, the green-backed tit (Parus monticolus). J Biogeogr. 2013;40:1156–69.

    Google Scholar 

  • Waples RS. Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. Am Fish Soc Symp. 1995;17:8–27.

    Google Scholar 

  • Weir JT, Schluter D. Ice sheets promote speciation in boreal birds. Proc R Soc B. 2004;271:1881–7.

    PubMed  PubMed Central  Google Scholar 

  • Weir JT, Faccio MS, Pulido-Santacruz P, Barrera-Guzmán AO, Aleixo A. Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution. 2015;69:1823–34.

    PubMed  Google Scholar 

  • Weir JT, Haddrath O, Robertson HA, Colbourne RM, Baker AJ. Explosive ice age diversification of kiwi. Proc Natl Acad Sci. 2016;113:E5580–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wolf JB, Bayer T, Haubold B, Schilhabel M, Rosenstiel P, Tautz D. Nucleotide divergence vs. gene expression differentiation: comparative transcriptome sequencing in natural isolates from the carrion crow and its hybrid zone with the hooded crow. Mol Ecol. 2010;19:162–75.

    PubMed  CAS  Google Scholar 

  • Woolfenden GE, Fitzpatrick JW. Florida Scrub-Jay (Aphelocoma coerulescens), version 2.0. In: Poole AF, Gill FB, editors. The birds of North America. Ithaca, NY: Cornell Lab of Ornithology; 1996. https://doi.org/10.2173/bna.228.

    Chapter  Google Scholar 

  • Zhan X, Pan S, Wang J, Dixon A, He J, Muller MG, et al. Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat Genet. 2013;45:563–6.

    PubMed  CAS  Google Scholar 

  • Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014a;346:1311–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang G, Li B, Li C, Gilbert MT, Jarvis ED, Wang J. Comparative genomic data of the Avian Phylogenomics Project. Gigascience. 2014b. https://doi.org/10.1186/2047-217X-3-26.

  • Zink RM, Barrowclough GF. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol. 2008;17:2107–21.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

DPLT was supported by an NSERC Banting Postdoctoral Fellowship. JW was supported by NSF Postdoctoral Research Fellowship in Biology. The authors would like to thank Irby J. Lovette and the Fuller Evolutionary Biology Program for intellectual support and thank Eliot Miller, Gavin M. Leighton, and Paul Hohenlohe for comments on a previous version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. L. Toews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toews, D.P.L., Walsh, J., Campagna, L. (2018). Population Genomics of Birds: Evolutionary History and Conservation. In: Hohenlohe, P.A., Rajora, O.P. (eds) Population Genomics: Wildlife. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_33

Download citation

  • DOI: https://doi.org/10.1007/13836_2018_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63488-9

  • Online ISBN: 978-3-030-63489-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics