Population Genomics of Human Viruses

  • Fernando González-Candelas
  • Juan Ángel Patiño-Galindo
  • Carlos Valiente-Mullor
Part of the Population Genomics book series (POGE)


Viruses, and a few RNA viruses in particular, represent one of the greatest threats for human health. High mutation rates, large population sizes, and short generation times contribute to their typically fast evolutionary rates. However, many additional processes operate on their genomes, often in opposite directions, driving their evolution and allowing them to adapt to diverse host populations and antiviral drugs. Until recently, the high levels of genetic variation of most viruses have been explored only at a few genes or genome regions. The recent advent and increasing affordability of next-generation sequencing techniques have allowed obtaining complete genome sequences of large numbers of viruses, mainly HIV, HCV, influenza A, and others associated with emerging infections, such as Zika, chikungunya, or dengue virus. This opens the possibility to explore the effects of the different processes affecting viral diversity and evolution at the genome level. Consequently, population genomics provides the conceptual and empirical tools necessary to interpret genetic variation in viruses and its dynamics and drivers and to transform these results into information that may complement the epidemiological surveillance of the virus and its disease. This chapter provides an overview of human viruses from a population genomics perspective, with a special emphasis on RNA viruses, and the potential benefits of “genomic surveillance” to establish public health policies that improve the control and monitoring of the diseases caused by these viruses.


Complete genome Epidemiology Genetic variation Mutation Next-generation sequencing Phylogeography Reassortment Recombination Secondary structure 



This work was supported by projects BFU2014-58656R and BFU2017-89594R from MINECO (Spanish Government) and PROMETEO2016-0122 from Generalitat Valenciana.


  1. Alcala N, Jensen JD, Telenti A, Vuilleumier S. The genomic signature of population reconnection following isolation: from theory to HIV. G3 (Bethesda). 2016;6(1):107–20.Google Scholar
  2. Alizon S, Fraser C. Within-host and between-host evolutionary rates across the HIV-1 genome. Retrovirology. 2013;10(1):49.PubMedPubMedCentralGoogle Scholar
  3. Alizon S, Hurford A, Mideo N, van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009;22(2):245–59.PubMedGoogle Scholar
  4. Anisimova M, Nielsen R, Yang Z. Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics. 2003;164(3):1229–36.PubMedPubMedCentralGoogle Scholar
  5. Assis R. Strong epistatic selection on the RNA secondary structure of HIV. PLoS Pathog. 2014;10(9):e1004363.PubMedPubMedCentralGoogle Scholar
  6. Avise JC. Phylogeography. The history and formation of species. 1st ed. Cambridge: Harvard University Press; 2000.Google Scholar
  7. Baird HA, Galetto R, Gao Y, Simon-Loriere E, Abreha M, Archer J, et al. Sequence determinants of breakpoint location during HIV-1 intersubtype recombination. Nucleic Acids Res. 2006;34(18):5203–16.PubMedPubMedCentralGoogle Scholar
  8. Berry IM, Ribeiro R, Kothari M, Athreya G, Daniels M, Lee HY, et al. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: the evolutionary rate of HIV-1 slows down when the epidemic rate increases. J Virol. 2007;81(19):10625–35.PubMedCentralGoogle Scholar
  9. Blackley DJ, Wiley MR, Ladner JT, Fallah M, Lo T, Gilbert ML, et al. Reduced evolutionary rate in reemerged Ebola virus transmission chains. Sci Adv. 2016;2(4):e1600378.PubMedPubMedCentralGoogle Scholar
  10. Bradwell K, Combe M, Domingo-Calap P, Sanjuán R. Correlation between mutation rate and genome size in riboviruses: mutation rate of bacteriophage Qb. Genetics. 2013;195(1):243–51.PubMedPubMedCentralGoogle Scholar
  11. Brandes N, Linial M. Gene overlapping and size constraints in the viral world. Biol Direct. 2016;11(1):1–15.Google Scholar
  12. Brockman MA, Brumme ZL, Brumme CJ, Miura T, Sela J, Rosato PC, et al. Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. J Virol. 2010;84(22):11937–49.PubMedPubMedCentralGoogle Scholar
  13. Bullivant G, Martinou AF. Ascension Island: a survey to assess the presence of Zika virus vectors. J R Army Med Corps. 2017;163(5):347–54.PubMedGoogle Scholar
  14. Campo DS, Dimitrova Z, Mitchell RJ, Lara J, Khudyakov Y. Coordinated evolution of the hepatitis C virus. Proc Natl Acad Sci U S A. 2008;105(28):9685–90.PubMedPubMedCentralGoogle Scholar
  15. Chabria SB, Gupta S, Kozal MJ. Deep sequencing of HIV: clinical and research applications. Annu Rev Genomics Hum Genet. 2014;15(1):295–325.PubMedGoogle Scholar
  16. Churko JM, Mantalas GL, Snyder MP, Wu JC. Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ Res. 2013;112(12):1613–23.PubMedGoogle Scholar
  17. Cobey S, Koelle K. Capturing escape in infectious disease dynamics. Trends Ecol Evol. 2008;23(10):572–7.PubMedGoogle Scholar
  18. Cuevas JM, Geller R, Garijo R, Lòpez-Aldeguer J, Sanjuán R. Extremely high mutation rate of HIV-1 in vivo. PLoS Biol. 2015;13(9):e1002251.PubMedPubMedCentralGoogle Scholar
  19. Cunha CB, Opal SM. Middle East respiratory syndrome (MERS): a new zoonotic viral pneumonia. Virulence. 2014;5(6):650–4.PubMedPubMedCentralGoogle Scholar
  20. Cuypers L, Li G, Neumann-Haefelin C, Piampongsant S, Libin P, Van Laethem K, et al. Mapping the genomic diversity of HCV subtypes 1a and 1b: implications of structural and immunological constraints for vaccine and drug development. Virus Evol. 2016;2(2):vew024.PubMedPubMedCentralGoogle Scholar
  21. De Maio N, Wu CH, O’Reilly KM, Wilson D. New routes to phylogeography: a Bayesian structured coalescent approximation. PLoS Genet. 2015;11(8):e1005421.PubMedPubMedCentralGoogle Scholar
  22. Dietz K. The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res. 1993;2(1):23–41.PubMedGoogle Scholar
  23. Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76(2):159–216.PubMedPubMedCentralGoogle Scholar
  24. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.PubMedPubMedCentralGoogle Scholar
  25. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):e88.PubMedPubMedCentralGoogle Scholar
  26. Duan S, Govorkova EA, Bahl J, Zaraket H, Baranovich T, Seiler P, et al. Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. Nat Commun. 2014;5:5029.PubMedPubMedCentralGoogle Scholar
  27. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008;9(4):267–76.PubMedGoogle Scholar
  28. Eigen M. On the nature of virus quasispecies. Trends Microbiol. 1996;4(6):216–8.PubMedGoogle Scholar
  29. Emmett KJ, Lee A, Khiabanian H, Rabadan R. High-resolution genomic surveillance of 2014 Ebolavirus using shared subclonal variants. PLoS Curr. Outbreaks 2015;7.Google Scholar
  30. Farci P, Shimoda A, Coiana A, Diaz G, Peddis G, Melpolder JC, et al. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science. 2000;288:339–44.PubMedGoogle Scholar
  31. Faria NR, Sabino EC, Nunes MRT, Alcantara LCJ, Loman NJ, Pybus OG. Mobile real-time surveillance of Zika virus in Brazil. Genome Med. 2016;8(1):97.PubMedPubMedCentralGoogle Scholar
  32. Faria NR, Quick J, Claro IM, Thézé J, de Jesus JG, Giovanetti M, et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature. 2017;546:406–10.PubMedPubMedCentralGoogle Scholar
  33. Feder AF, Rhee SY, Holmes SP, Shafer RW, Petrov DA, Pennings PS. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1. Elife. 2016;5:e10670.PubMedPubMedCentralGoogle Scholar
  34. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009;324(5934):1557–61.PubMedPubMedCentralGoogle Scholar
  35. Gaschen B, Taylor J, Yusim K, Foley B, Gao F, Lang D, et al. Diversity considerations in HIV-1 vaccine selection. Science. 2002;296(5577):2354–60.PubMedGoogle Scholar
  36. Geller R, Domingo-Calap P, Cuevas JM, Rossolillo P, Negroni M, Sanjuan R. The external domains of the HIV-1 envelope are a mutational cold spot. Nat Commun. 2015;6:8571.PubMedPubMedCentralGoogle Scholar
  37. Geller R, Estada Ú, Peris JB, Andreu I, Bou JV, Garijo R, et al. Highly heterogeneous mutation rates in the hepatitis C virus genome. Nat Microbiol. 2016;1(7):16045.PubMedGoogle Scholar
  38. Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science. 2014;345(6202):1369–72.PubMedPubMedCentralGoogle Scholar
  39. Goonetilleke N, Liu MKP, Salazar-Gonzalez JF, Ferrari G, Giorgi E, Ganusov VV, et al. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med. 2009;206(6):1253–72.PubMedPubMedCentralGoogle Scholar
  40. Gray R, Parker J, Lemey P, Salemi M, Katzourakis A, Pybus O. The mode and tempo of hepatitis C virus evolution within and among hosts. BMC Evol Biol. 2011;11(1):131.PubMedPubMedCentralGoogle Scholar
  41. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science. 2004;303(5656):327–32.PubMedGoogle Scholar
  42. Hall N. Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol. 2007;210(9):1518–25.PubMedGoogle Scholar
  43. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169(4):2335–52.PubMedPubMedCentralGoogle Scholar
  44. Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, et al. Phylogeography’s past, present, and future: 10 years after. Mol Phylogenet Evol. 2010;54(1):291–301.PubMedGoogle Scholar
  45. Holmes EC. Error thresholds and the constraints to RNA virus evolution. Trends Microbiol. 2003;11(12):543–6.PubMedGoogle Scholar
  46. Holmes EC. The phylogeography of human viruses. Mol Ecol. 2004;13(4):745–56.PubMedGoogle Scholar
  47. Holmes EC. Evolutionary history and phylogeography of human viruses. Annu Rev Microbiol. 2008;62(1):307–28.PubMedGoogle Scholar
  48. Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci U S A. 2004;101(42):15124–9.PubMedPubMedCentralGoogle Scholar
  49. Jackowiak P, Kuls K, Budzko L, Mania A, Figlerowicz M, Figlerowicz M. Phylogeny and molecular evolution of the hepatitis C virus. Infect Genet Evol. 2014;21(1):67–82.PubMedGoogle Scholar
  50. Joseph SB, Swanstrom R, Kashuba AD, Cohen MS. Bottlenecks in HIV-1 transmission: insights from the study of founder viruses. Nat Rev Microbiol. 2015;13(7):414–25.PubMedPubMedCentralGoogle Scholar
  51. Kamp C, Wilke CO, Adami C, Bornholdt S. Viral evolution under the pressure of an adaptive immune system: optimal mutation rates for viral escape. Complexity. 2002;8(2):28–33.Google Scholar
  52. Kearney M, Maldarelli F, Shao W, Margolick JB, Daar ES, Mellors JW, et al. Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol. 2009;83(6):2715–27.PubMedGoogle Scholar
  53. Khiabanian H, Carpenter Z, Kugelman J, Chan J, Trifonov V, Nagle E, et al. Viral diversity and clonal evolution from unphased genomic data. BMC Genomics. 2014;15(6):S17.PubMedPubMedCentralGoogle Scholar
  54. Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genet. 2011;7(2):e1001301.PubMedPubMedCentralGoogle Scholar
  55. Kubinak JL, Ruff JS, Hyzer CW, Slev PR, Potts WK. Experimental viral evolution to specific host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types. Proc Natl Acad Sci U S A. 2012;109(9):3422–7.PubMedPubMedCentralGoogle Scholar
  56. Lai MM. RNA recombination in animal and plant viruses. Microbiol Rev. 1992;51(1):61–79.Google Scholar
  57. Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput Biol. 2009;5(9):e1000520.PubMedPubMedCentralGoogle Scholar
  58. Levin BR, Bull JJ. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol. 1994;2(3):76–81.PubMedGoogle Scholar
  59. Li B, Gladden AD, Altfeld M, Kaldor JM, Cooper DA, Kelleher AD, et al. Rapid reversion of sequence polymorphisms dominates early human immunodeficiency virus type 1 evolution. J Virol. 2007;81(1):193–201.PubMedGoogle Scholar
  60. Liu Y, McNevin JP, Holte S, McElrath MJ, Mullins JI. Dynamics of viral evolution and CTL responses in HIV-1 infection. PLoS One. 2011;6(1):e15639.PubMedPubMedCentralGoogle Scholar
  61. Liu L, Fisher BE, Thomas DL, Cox AL, Ray SC. Spontaneous clearance of primary acute hepatitis C virus infection correlated with high initial viral RNA level and rapid HVR1 evolution. Hepatology. 2012;55(6):1684–91.PubMedPubMedCentralGoogle Scholar
  62. Luciani F, Alizon S. The evolutionary dynamics of a rapidly mutating virus within and between hosts: the case of hepatitis C virus. PLoS Comput Biol. 2009;5(11):e1000565.PubMedPubMedCentralGoogle Scholar
  63. Lythgoe KA, Fraser C. New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. Proc R Soc B. 2012;279(1741):3367–75.PubMedGoogle Scholar
  64. Martin M, Del Cacho E, Codina C, Tuset M, De Lazzari E, Mallolas J, et al. Relationship between adherence level, type of the antiretroviral regimen, and plasma HIV type 1 RNA viral load: a prospective cohort study. AIDS Res Human Retrovir. 2008;24(10):1263–8.Google Scholar
  65. Maynard-Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974;23(1):23–35.Google Scholar
  66. McDonald SM, Nelson MI, Turner PE, Patton JT. Reassortment in segmented RNA viruses: mechanisms and outcomes. Nat Rev Microbiol. 2016;14(7):448–60.PubMedPubMedCentralGoogle Scholar
  67. McGowan JE Jr. Economic impact of antimicrobial resistance. Emerg Infect Dis. 2001;7(2):286.PubMedPubMedCentralGoogle Scholar
  68. McHardy AC, Adams B. The role of genomics in tracking the evolution of influenza A virus. PLoS Pathog. 2009;5(10):e1000566.PubMedPubMedCentralGoogle Scholar
  69. Messer PW, Petrov DA. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol. 2013;28(11):659–69.PubMedGoogle Scholar
  70. Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM, et al. Zika virus evolution and spread in the Americas. Nature. 2017;546:411–5.PubMedPubMedCentralGoogle Scholar
  71. Miralles R, Gerrish PJ, Moya A, Elena SF. Clonal interference and the evolution of RNA viruses. Science. 1999;285:1745–7.PubMedGoogle Scholar
  72. Muller HJ. Some genetic aspects of sex. Am Nat. 1932;66:118–38.Google Scholar
  73. Murrell B, De Oliveira T, Seebregts C, Kosakovsky Pond SL, Scheffler K, Southern African Treatment and Resistance Network (SATuRN) Consortium. Modeling HIV-1 drug resistance as episodic directional selection. PLoS Comput Biol. 2012;8(5):e1002507.PubMedPubMedCentralGoogle Scholar
  74. Negroni M, Buc H. Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. Proc Natl Acad Sci U S A. 2000;97(12):6385–90.PubMedPubMedCentralGoogle Scholar
  75. Neogi U, Shet A, Sahoo PN, Bontell I, Ekstrand ML, Banerjea AC, Sonnerborg A. Human APOBEC3G-mediated hypermutation is associated with antiretroviral therapy failure in HIV-1 subtype C-infected individuals. J Int AIDS Soc. 2013;16(1):18472.PubMedCentralGoogle Scholar
  76. Neverov AD, Kryazhimskiy S, Plotkin JB, Bazykin GA. Coordinated evolution of influenza A surface proteins. PLoS Genet. 2015;11(8):e1005404.PubMedPubMedCentralGoogle Scholar
  77. Noguera-Julian M, Cozzi-Lepri A, Di Giallonardo F, Schuurman R, Däumer M, Aitken S, et al. Contribution of APOBEC3G/F activity to the development of low-abundance drug-resistant human immunodeficiency virus type 1 variants. Clin Microbiol Infect. 2016;22(2):191–200.PubMedGoogle Scholar
  78. Nomikou K, Hughes J, Wash R, Kellam P, Breard E, Zientara S, et al. Widespread reassortment shapes the evolution and epidemiology of bluetongue virus following European invasion. PLoS Pathog. 2015;11(8):e1005056.PubMedPubMedCentralGoogle Scholar
  79. Patiño Galindo JA, González-Candelas F. Comparative analysis of variation and selection in the HCV genome. Infect Genet Evol. 2017;49:104–10.PubMedGoogle Scholar
  80. Pennings PS, Kryazhimskiy S, Wakeley J. Loss and recovery of genetic diversity in adapting populations of HIV. PLoS Genet. 2014;10(1):e1004000.PubMedPubMedCentralGoogle Scholar
  81. Phillips PC. Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008;9(11):855–67.PubMedPubMedCentralGoogle Scholar
  82. Pybus OG, Rambaut A. Modelling: evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet. 2009;10:540–50.PubMedGoogle Scholar
  83. Pybus OG, Tatem AJ, Lemey P. Virus evolution and transmission in an ever more connected world. Proc Biol Sci. 2015;282(1821):20142878.PubMedPubMedCentralGoogle Scholar
  84. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC. The genomic and epidemiological dynamics of human influenza A virus. Nature. 2008;453(7195):615.PubMedPubMedCentralGoogle Scholar
  85. Ramirez BC, Simon-Loriere E, Galetto R, Negroni M. Implications of recombination for HIV diversity. Virus Res. 2008;134(1):64–73.PubMedGoogle Scholar
  86. Renzette N, Caffrey DR, Zeldovich KB, Liu P, Gallagher GR, Aiello D, et al. Evolution of the influenza A virus genome during development of oseltamivir resistance in vitro. J Virol. 2014;88(1):272–81.PubMedPubMedCentralGoogle Scholar
  87. Ridenhour B, Kowalik JM, Shay DK. Unraveling R0: considerations for public health applications. Am J Public Health. 2014;104(2):e32–41.PubMedPubMedCentralGoogle Scholar
  88. Rogozin I, Spiridonov A, Sorokin A, Wolf Y, Jordan I, Tatusov R, et al. Purifying and directional selection in overlapping prokaryotic genes. Trends Genet. 2002;18(5):228–32.PubMedGoogle Scholar
  89. Ross HA, Rodrigo AG. Immune-mediated positive selection drives human immunodeficiency virus type 1 molecular variation and predicts disease duration. J Virol. 2002;76(22):11715–20.PubMedPubMedCentralGoogle Scholar
  90. Rothenberger S, Torriani G, Johansson MU, Kunz S, Engler O. Conserved endonuclease function of hantavirus L polymerase. Viruses. 2016;8(5):108.PubMedCentralGoogle Scholar
  91. Sanjuán R, Bordería AV. Interplay between RNA structure and protein evolution in HIV-1. Mol Biol Evol. 2011;28(4):1333–8.PubMedGoogle Scholar
  92. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84(19):9733–48.PubMedPubMedCentralGoogle Scholar
  93. Shen S, Shi J, Wang J, Tang S, Wang H, Hu Z, Deng F. Phylogenetic analysis revealed the central roles of two African countries in the evolution and worldwide spread of Zika virus. Virol Sin. 2016;31(2):118–30.PubMedGoogle Scholar
  94. Simmonds P, Tuplin A, Evans DJ. Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: implications for virus evolution and host persistence. RNA. 2004;10(9):1337–51.PubMedPubMedCentralGoogle Scholar
  95. Simon-Loriere E, Holmes EC. Why do RNA viruses recombine? Nat Rev Microbiol. 2011;9(8):617–26.PubMedPubMedCentralGoogle Scholar
  96. Simon-Loriere E, Holmes EC, Pagán I. The effect of gene overlapping on the rate of RNA virus evolution. Mol Biol Evol. 2013;30(8):1916–28.PubMedPubMedCentralGoogle Scholar
  97. Smyth RP, Davenport MP, Mak J. The origin of genetic diversity in HIV-1. Virus Res. 2012;169(2):415–29.PubMedGoogle Scholar
  98. Snoeck J, Fellay J, Bartha I, Douek D, Telenti A. Mapping of positive selection sites in the HIV-1 genome in the context of RNA and protein structural constraints. Retrovirology. 2011;8(1):87.PubMedPubMedCentralGoogle Scholar
  99. Sobel Leonard A, McClain MT, Smith GJD, Wentworth DE, Halpin RA, Lin X, et al. Deep sequencing of influenza A virus from a human challenge study reveals a selective bottleneck and only limited intrahost genetic diversification. J Virol. 2016;90(24):11247–58.PubMedPubMedCentralGoogle Scholar
  100. Sobel Leonard A, McClain MT, Smith GJD, Wentworth DE, Halpin RA, Lin X, et al. The effective rate of influenza reassortment is limited during human infection. PLoS Pathog. 2017;13(2):e1006203.PubMedPubMedCentralGoogle Scholar
  101. Steel J, Lowen AC. Influenza A virus reassortment. In: Influenza pathogenesis and control – volume I. Cham: Springer; 2014. p. 377–401.Google Scholar
  102. Thurner C, Witwer C, Hofacker IL, Stadler PF. Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol. 2004;85(5):1113–24.PubMedGoogle Scholar
  103. Van Valen L. A new evolutionary law. Evol Theory. 1973;1:1–30.Google Scholar
  104. Veeramachaneni V, Makalowski W, Galdzicki M, Sood R, Makalowska I. Mammalian overlapping genes: the comparative perspective. Genome Res. 2004;14(2):280–6.PubMedPubMedCentralGoogle Scholar
  105. Vrancken B, Baele G, Vandamme AM, Van Laethem K, Suchard MA, Lemey P. Disentangling the impact of within-host evolution and transmission dynamics on the tempo of HIV-1 evolution. AIDS. 2015;29(12):1549–56.PubMedPubMedCentralGoogle Scholar
  106. Vuilleumier S, Bonhoeffer S. Contribution of recombination to the evolutionary history of HIV. Curr Opin HIV AIDS. 2015;10(2):84–9.PubMedGoogle Scholar
  107. Wang W, Zhang X, Xu Y, Weinstock GM, Di Bisceglie AM, Fan X. High-resolution quantification of hepatitis C virus genome-wide mutation load and its correlation with the outcome of peginterferon-alpha2a and ribavirin combination therapy. PLoS One. 2014;9(6):e100131.PubMedPubMedCentralGoogle Scholar
  108. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature. 2009;460(7256):711–6.PubMedPubMedCentralGoogle Scholar
  109. WHO Scientific Working Group. Antimicrobial resistance. Bull World Health Organ. 1983;61(3):383–94.PubMedCentralGoogle Scholar
  110. Wilson BA, Garud NR, Feder AF, Assaf ZJ, Pennings PS. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol Ecol. 2016;25(1):42–66.PubMedGoogle Scholar
  111. Woelk CH, Holmes EC. Reduced positive selection in vector-borne RNA viruses. Mol Biol Evol. 2002;19(12):2333–6.PubMedGoogle Scholar
  112. Worobey M. Molecular mapping of Zika spread. Nature. 2017;546:355–7.PubMedGoogle Scholar
  113. Wright JK, Brumme ZL, Carlson JM, Heckerman D, Kadie CM, Brumme CJ, et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters. J Virol. 2010;84(20):10820–31.PubMedPubMedCentralGoogle Scholar
  114. Zanini F, Brodin J, Thebo L, Lanz C, Bratt G, Albert J, et al. Population genomics of intrapatient HIV-1 evolution. Elife. 2015;4:e11282.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fernando González-Candelas
    • 1
    • 2
  • Juan Ángel Patiño-Galindo
    • 1
    • 2
  • Carlos Valiente-Mullor
    • 1
    • 2
  1. 1.Joint Research Unit “Infection and Public Health” FISABIO-Universitat de València, Institute for Integrative Systems Biology, I2SysBio (CSIC-UV)ValenciaSpain
  2. 2.CIBER in Epidemiology and Public HealthMadridSpain

Personalised recommendations