Advertisement

Paleogenomics pp 325-351 | Cite as

An Ancient DNA Perspective on Horse Evolution

  • Ludovic OrlandoEmail author
Chapter
Part of the Population Genomics book series (POGE)

Abstract

With the development of fast transportation and cavalry, the horse represents the domestic animal that most influenced human history. Yet, the evolutionary history of the horse was not limited to the last 5,500 years since it was first domesticated. It is rooted within a 55 million-year-long time span, where a large number of lineages radiated and became extinct. Together with zebras, hemiones, and donkeys, the horse belongs to the genus Equus, the only remaining equine lineage living in the planet. Even though the survival of exploitable ancient DNA molecules is at best limited to the last million years, the sequencing of short mitochondrial and nuclear DNA fragments, as well as of complete genome sequence from archaeological and paleontological material, has illuminated our understanding of the evolutionary history of the horse family. Such work has not only revisited the evolutionary tempo of Equus and the phylogenetic relationships within and outside the genus but also revealed how past climates and human activities have shaped the genetic makeup of the horse species.

Keywords

Ancient DNA Climate change Conservation Domestication Equus Horses Speciation 

References

  1. Achilli A, Olivieri A, Soares P, et al. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. Proc Natl Acad Sci U S A. 2012;109:2449–54.PubMedPubMedCentralGoogle Scholar
  2. Alberdi MT, Prado JL. Review of the genus Hippidion Owen, 1869 (Mammalia: Perissofactyla) from the Pleistocene of South America. Zool J Linn Soc. 1993;108:1–22.Google Scholar
  3. Alberdi MT, Prado JL. Comments on Pleistocene horses from Tarija, Bolivia, and the validity of the genus Onohippidium (Mammalia: Equidae), by B.J. MacFadden. J Vert Paleontol. 1998;18:669–72.Google Scholar
  4. Alberdi MT, Prado JL, Prieto A. Considerations on the paper “morphological convergence in Hippidion and Equus (Amerhippus) South American equids elucidated by ancient DNA analysis”, by Ludovic Orlando, Véra Eisenmann, Frédéric Reynier, Paul Sondaar, Catherine Hänni. J Mol Evol. 2005;61:145–7.PubMedGoogle Scholar
  5. Almathen F, Charruau P, Mohandesan E, et al. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci U S A. 2016;113:6707–12.PubMedPubMedCentralGoogle Scholar
  6. Andersson LS, Larhammar M, Memic F, et al. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature. 2012;488:642–6.PubMedPubMedCentralGoogle Scholar
  7. Anthony DW. The horse, the wheel and language. Oxford: Princeton University Press; 2007.Google Scholar
  8. Anthony DW, Brown DE. The secondary products revolution, horse-riding, and mounted warfare. J World Prehist. 2011;24:131.Google Scholar
  9. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.PubMedPubMedCentralGoogle Scholar
  10. Beja-Pereira A, England PR, Ferrand N, et al. African origins of the domestic donkey. Science. 2004;304:1781.PubMedGoogle Scholar
  11. Benecke N, von den Driesch A. Horse exploitation in the Kazakh steppes during the Eneolithic and Bronze Age. In: Levine M, Renfrew C, Boyle K, editors. Prehistoric steppe adaptation and the horse. Cambridge: McDonald Institute for Archaeological Research; 2003. p. 69–82.Google Scholar
  12. Bennett EA, Champlot S, Peters J, et al. Taming the late Quaternary phylogeography of the Eurasiatic wild ass through ancient and modern DNA. BioArXiv. 2017.  https://doi.org/10.1101/090928.
  13. Bertolini F, Scimone C, Geraci C, Schiavo G, Utzeri VJ, Chiofalo V, Fontanesi L. Next generation semiconductor based sequencing of the donkey (Equus asinus) genome provided comparative sequence data against the horse genome and a few millions of single nucleotide polymorphisms. PLoS One. 2015;10:e0131925.PubMedPubMedCentralGoogle Scholar
  14. Bellone RR, Holl H, Setaluri V, et al. Evidence for a retroviral insertion in TRPM1 as the cause of congenital stationary night blindness and leopard complex spotting in the horse. PLoS One. 2013;8:e78280.PubMedPubMedCentralGoogle Scholar
  15. Bower MA, McGivney BA, Campana MG, et al. The genetic origin and history of speed in the Thoroughbred racehorse. Nat Commun. 2012;3:643.PubMedGoogle Scholar
  16. Boyd L, Houpt KA. Przewalski’s horse: the history and biology of an endangered species. Albany, New York: State University of New York Press; 1994. isbn:10-ISBN 0-791-41889-8; 13-ISBN 978-0-791-41889-5; OCLC 28256312.Google Scholar
  17. Braud M, Magee DA, Park SD, et al. Genome-wide microRNA binding site variation between extinct wild aurochs and modern cattle identifies candidate microRNA-regulated domestication genes. Front Genet. 2017;8:3.PubMedPubMedCentralGoogle Scholar
  18. Brooks SA, Bailey E. Exon skipping in the KIT gene causes a Sabino spotting pattern in horses. Mamm Genome. 2005;16:893–902.PubMedGoogle Scholar
  19. Brooks SA, Terry RB, Bailey E. A PCR-RFLP for KIT associated with tobiano spotting pattern in horses. Anim Genet. 2002;33:301–3.PubMedGoogle Scholar
  20. Brunberg E, Andersson L, Cothran G, et al. A missense mutation in PMEL17 is associated with the silver coat color in the horse. BMC Genet. 2006;7:46.PubMedPubMedCentralGoogle Scholar
  21. Cardoso JL, Vilstrup JT, Eisenman V, et al. First evidence of Equus asinus L. in the chalcolithic disputes the Phoenicians as the first to introduce donkeys into the Iberian Peninsula. J Archaeol Sci. 2013;40:4483–90.Google Scholar
  22. Carpenter ML, Buenrostro JD, Valdiosera C, et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet. 2013;93:852–64.PubMedPubMedCentralGoogle Scholar
  23. Chowdary BP. Equine genomics. Oxford: Wiley-Blackwell; 2013.Google Scholar
  24. Cieslak M, Pruvost M, Benecke N, et al. Origin and history of mitochondrial DNA lineages in domestic horses. PLoS One. 2010;5:e15311.PubMedPubMedCentralGoogle Scholar
  25. Cruz-Dávalos DI, Llamas B, Gaunitz C, et al. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol Ecol Resour. 2016.  https://doi.org/10.1111/1755-0998.
  26. Cucchi T, Mohaseb A, Debue K, et al. Detecting taxonomic and phylogenetic signals in equids cheek teeth with geometric morphometrics: towards new paleontological and archaeological proxies. R Soc Open Sci. 2017;4:160997.  https://doi.org/10.1098/rsos.160997.PubMedPubMedCentralGoogle Scholar
  27. Da Fonseca RA, Smith BD, Wales N, et al. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:14003.Google Scholar
  28. Der Sarkissian C, Vilstrup JT, Schubert M, et al. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids. Biol Lett. 2015a;11.Google Scholar
  29. Der Sarkissian C, Ermini L, Schubert M, et al. Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr Biol. 2015b;25:2577–83.Google Scholar
  30. Durand EY, Patterson N, Reich D, et al. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28:2239–52.PubMedPubMedCentralGoogle Scholar
  31. Eisenman V. Folivores et tondeurs d’herbe: forme de la symphyse mandibulaire des Equidés et des Tapiridés (Perissodactyla, Mammalia). Geobios. 1998;31:113–23.Google Scholar
  32. Eisenman V. Pliocene and Pleistocene Equids: palaeontology versus molecular biology. Cour Forsch Inst Senckenberg. 2006;256:71–89.Google Scholar
  33. Eisenman V. Sussemionus, a new subgenus of Equus (Perissodactyla, Mammalia). C R Biol. 2010;333:235–40.Google Scholar
  34. Eisenmann V, Baylac M. Extant and fossil Equus (Mammalia, Perissodactyla) skulls: a morphometric definition of the subgenus Equus. Zool Scr. 2000;29:89–100.Google Scholar
  35. Elsner J, Deschler-Erb S, Stopp B, et al. Mitochondrial d-loop variation, coat colour and sex identification of Late Iron Age horses in Switzerland. J Archaeol Sci. 2016;6:386–96.Google Scholar
  36. Ermini L, Der Sarkissian C, Willerslev E, et al. Major transitions in human evolution revisited: a tribute to ancient DNA. J Hum Evol. 2015;79:4–20.PubMedGoogle Scholar
  37. Frantz LA, Mullin VE, Pionnier-Capitan M, et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science. 2016;352:1228–31.Google Scholar
  38. Franzen JL. The rise of the horse family. Baltimore, MD: Johns Hopkins University Press; 2010.Google Scholar
  39. Froese DG, Westgate JA, Reyes AV, et al. Ancient permafrost and a future, warmer Arctic. Science. 2008;321:1648.PubMedGoogle Scholar
  40. Fu Q, Meyer M, Gao X, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc Natl Acad Sci U S A. 2013;110:2223–7.PubMedPubMedCentralGoogle Scholar
  41. Gaunitz C, Fages A, Hanghøj K, et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science. 2018.  https://doi.org/10.1126/science.aao3297.PubMedGoogle Scholar
  42. Geigl EM, Grange T. Eurasian wild asses in time and space: morphological versus genetic diversity. Ann Anat. 2012;194:88–102.PubMedGoogle Scholar
  43. Gallego Llorente M, Jones ER, Eriksson A, et al. Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science. 2015;350:820–2.PubMedGoogle Scholar
  44. Gokhman D, Meshorer E, Carmel L. Epigenetics: it’s getting old. Past meets future in Paleoepigenetics. Trends Ecol Evol. 2016;31:290–300.PubMedGoogle Scholar
  45. Green RE, Krause J, Briggs AW, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.PubMedPubMedCentralGoogle Scholar
  46. Groves CP, Willoughby DP. Studies on the taxonomy and phylogeny of the genus Equus-1. Subgeneric classification of the recent species. Mammalia. 1981;45:321–54.Google Scholar
  47. Guthrie RD. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature. 2003;426:169–71.PubMedGoogle Scholar
  48. Guthrie RD. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature. 2006;441:207–9.PubMedGoogle Scholar
  49. Haak W, Lazaridis I, Patterson N, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–11.PubMedPubMedCentralGoogle Scholar
  50. Haile J, Froese DG, Macphee RD, et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc Natl Acad Sci U S A. 2009;106:22352–7.PubMedPubMedCentralGoogle Scholar
  51. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–13.PubMedPubMedCentralGoogle Scholar
  52. Higuchi R, Bowman B, Freiberger M, et al. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984;312:282–4.Google Scholar
  53. Hill EW, Gu J, Eivers SS, et al. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS One. 2010;5:e8645.PubMedPubMedCentralGoogle Scholar
  54. Hofreiter M, Paijmans JL, Goodchild H, et al. The future of ancient DNA: technical advances and conceptual shifts. BioEssays. 2015;37:284–93.PubMedGoogle Scholar
  55. Huang J, Zhao Y, Bai D, et al. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci Rep. 2015;5:14106.PubMedPubMedCentralGoogle Scholar
  56. Imsland F, McGowan K, Rubin CJ, et al. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nat Genet. 2016;48:152–8.PubMedGoogle Scholar
  57. Jansen T, Forster P, Levine MA, et al. Mitochondrial DNA and the origins of the domestic horse. Proc Natl Acad Sci U S A. 2002;99:10905–10.PubMedPubMedCentralGoogle Scholar
  58. Johnstone C (2004) A biometric study of equids in the Roman world. PhD. Department of Archaeology, University of York.Google Scholar
  59. Jónsson H, Schubert M, Seguin-Orlando A, et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc Natl Acad Sci U S A. 2014;111:18655–60.PubMedPubMedCentralGoogle Scholar
  60. Kelekna P. The horse in human history. Cambridge: Cambridge University Press; 2009.Google Scholar
  61. Keyser C, Hollard C, Gonzalez A, et al. The ancient Yakuts: a population genetic enigma. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130385.Google Scholar
  62. Kimura B, Marshall FB, Chen S, et al. Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proc Biol Sci. 2011;278:50–7.PubMedGoogle Scholar
  63. Langdon J. Horses, oxen and technological innovation: the use of draught animals in English farming from 1066-1500. Cambridge: Cambridge University Press; 2006.Google Scholar
  64. Larson G, Fuller DQ. The evolution of animal domestication. Annu Rev Ecol Evol Syst. 2014;45:115–36.Google Scholar
  65. Lawling AM, Polly PD. Geometric morphometrics: recent applications to the study of evolution and development. J Zool. 2010;280:1–7.Google Scholar
  66. Lindgren G, Backström N, Swinburne J, et al. Limited number of patrilines in horse domestication. Nat Genet. 2004;36:335–6.PubMedGoogle Scholar
  67. Leonard JA, Rohland N, Glaberman S, et al. A rapid loss of stripes: the evolutionary history of the extinct quagga. Biol Lett. 2005;1:291–5.PubMedPubMedCentralGoogle Scholar
  68. Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.PubMedPubMedCentralGoogle Scholar
  69. Librado P, Der Sarkissian C, Ermini L, et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc Natl Acad Sci U S A. 2015;112:E6889–97.PubMedPubMedCentralGoogle Scholar
  70. Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S, Khan N, Hanghøj K, Alquraishi SA, Alfarhan AH, Al-Rasheid KA, Der Sarkissian C, Schubert M, Orlando L. The evolutionary origin and genetic makeup of domestic horses. Genetics. 2016;204:423–34.PubMedPubMedCentralGoogle Scholar
  71. Librado P, Gamba C, Gaunitz C, et al. Ancient genomic changes associated with domestication of the horse. Science. 2017;356:442–5.PubMedPubMedCentralGoogle Scholar
  72. Lippold S, Matzke NJ, Reissmann M, et al. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evol Biol. 2011a;11:328.PubMedPubMedCentralGoogle Scholar
  73. Lippold S, Knapp M, Kuznetsova T, et al. Discovery of lost diversity of paternal horse lineages using ancient DNA. Nat Commun. 2011b;2:450.PubMedGoogle Scholar
  74. Lira J, Linderholm A, Olaria C, et al. Ancient DNA reveals traces of Iberian Neolithic and Bronze Age lineages in modern Iberian horses. Mol Ecol. 2010;19:64–78.PubMedGoogle Scholar
  75. Llamas B, Willerslev E, Orlando L. Human evolution: a tale from ancient genomes. Philos Trans R Soc Lond Ser B Biol Sci. 2017;372.Google Scholar
  76. Lorenzen ED, Nogués-Bravo D, Orlando L, et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature. 2011;479:359–64.PubMedPubMedCentralGoogle Scholar
  77. Ludwig A, Pruvost M, Reissmann M, et al. Coat color variation at the beginning of horse domestication. Science. 2009;324:485.PubMedPubMedCentralGoogle Scholar
  78. Ludwig A, Reissmann M, Benecke N, et al. Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130386.Google Scholar
  79. MacFadden BJ. Pleistocene horses from Tarija, Bolivia, and the validity of the genus Onohippidium (Mammalia: Equidae). J Vert Paleontol. 1997;17:199–218.Google Scholar
  80. MacFadden BJ, Carranza-Castaneda O. Cranium of Dinohippus mexicanus (Mammalia Equidae) from the early Pliocene (latest Hemphillian) of central Mexico and the origin of Equus. Bull Florida Mus Nat Hist. 2002;43:163–85.Google Scholar
  81. MacHugh DE, Larson G, Orlando L, et al. Taming the past: ancient DNA and the study of animal domestication. Annu Rev Anim Biosci. 2017;5:329–51.Google Scholar
  82. Mailund T, Halager AE, Westergaard M, et al. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genet. 2012;8:e1003125.PubMedPubMedCentralGoogle Scholar
  83. Makvandi-Nejad S, Hoffman GE, Allen JJ, et al. Four loci explain 83% of size variation in the horse. PLoS One. 2012;7:e39929.PubMedPubMedCentralGoogle Scholar
  84. Maricic T, Whitten M, Pääbo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One. 2010;5:e14004.PubMedPubMedCentralGoogle Scholar
  85. Mathieson I, Lazaridis I, Rohland N, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503.PubMedPubMedCentralGoogle Scholar
  86. McCue ME, Valberg SJ, Miller MB, et al. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics. 2008;91:458–66.PubMedPubMedCentralGoogle Scholar
  87. McCue ME, Bannasch DL, Petersen JL, et al. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet. 2012;8:e1002451.PubMedPubMedCentralGoogle Scholar
  88. McGivney BA, McGettigan PA, Browne JA, et al. Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC Genomics. 2010;11:398.PubMedPubMedCentralGoogle Scholar
  89. McKenzie VJ, Song SJ, Delsuc F, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017;57:690–704.PubMedPubMedCentralGoogle Scholar
  90. Metcalf JL, Song SJ, Morton JT, et al. Evaluating the impact of domestication and captivity on the horse gut microbiome. Sci Rep. 2017;7:15497.PubMedPubMedCentralGoogle Scholar
  91. Metzger J, Philipp U, Lopes MS, et al. Analysis of copy number variants by three detection algorithms and their association with body size in horses. BMC Genomics. 2013;14:487.PubMedPubMedCentralGoogle Scholar
  92. Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–6.PubMedPubMedCentralGoogle Scholar
  93. Miller W, Drautz DI, Ratan A, et al. Sequencing the nuclear genome of the extinct woolly mammoth. Nature. 2008;456:387–90.Google Scholar
  94. Mohandesan E, Speller CF, Peters J, et al. Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel. Mol Ecol Resour. 2017;17:300–13.PubMedGoogle Scholar
  95. Nagasawa M, Mitsui S, En S, et al. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science. 2015;348:333–6.PubMedPubMedCentralGoogle Scholar
  96. Orlando L. Equids. Curr Biol. 2015;25:R973–8.PubMedGoogle Scholar
  97. Orlando L, Eisenmann V, Reynier F, et al. Morphological convergence in Hippidion and Equus (Amerhippus) South American equids elucidated by ancient DNA analysis. J Mol Evol. 2003;57(suppl 1):S29–40.PubMedGoogle Scholar
  98. Orlando L, Mashkour M, Burke A, et al. Geographic distribution of an extinct equid (Equus hydruntinus: Mammalia, Equidae) revealed by morphological and genetical analyses of fossils. Mol Ecol. 2006;15:2083–93.PubMedGoogle Scholar
  99. Orlando L, Metcalf JL, Alberdi MT, et al. Revising the recent evolutionary history of equids using ancient DNA. Proc Natl Acad Sci U S A. 2009;106:21754–9.PubMedPubMedCentralGoogle Scholar
  100. Orlando L, Ginolhac A, Raghavan M, et al. True single-molecule DNA sequencing of a pleistocene horse bone. Genome Res. 2011;21:1705–19.PubMedPubMedCentralGoogle Scholar
  101. Orlando L, Ginolhac A, Zhang G, et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–8.Google Scholar
  102. Orlando L, Gilbert MT, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16:395–408.Google Scholar
  103. Outram AK, Stear NA, Bendrey R, et al. The earliest horse harnessing and milking. Science. 2009;323:1332–5.PubMedGoogle Scholar
  104. Park SD, Magee DA, McGettigan PA, et al. Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle. Genome Biol. 2015;16:234.PubMedPubMedCentralGoogle Scholar
  105. Patterson N, Moorjani P, Luo Y, et al. Ancient admixture in human history. Genetics. 2012;192:1065–93.PubMedPubMedCentralGoogle Scholar
  106. Petersen JL, Mickelson JR, Rendahl AK, et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013;9:e1003211.PubMedPubMedCentralGoogle Scholar
  107. Pedersen MW, Overballe-Petersen S, Ermini L, et al. Ancient and modern environmental DNA. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130383.Google Scholar
  108. Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.PubMedPubMedCentralGoogle Scholar
  109. Promerová M, Andersson LS, Juras R, et al. Worldwide frequency distribution of the ‘Gait keeper’ mutation in the DMRT3 gene. Anim Genet. 2014;45:274–82.PubMedGoogle Scholar
  110. Pruvost M, Bellone R, Benecke N, et al. Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art. Proc Natl Acad Sci U S A. 2011;108:18626–30.PubMedPubMedCentralGoogle Scholar
  111. Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol. 2016;26:3195–201.Google Scholar
  112. Rasmussen M, Li Y, Lindgreen S, et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature. 2010;463:757–62.PubMedPubMedCentralGoogle Scholar
  113. Rasmussen M, Guo X, Wang Y, et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science. 2011;334:94–8.PubMedPubMedCentralGoogle Scholar
  114. Rasmussen M, Anzick SL, Waters MR, et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature. 2014;506:225–9.PubMedPubMedCentralGoogle Scholar
  115. Reich D, Green RE, Kircher M, et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468:1053–60.PubMedPubMedCentralGoogle Scholar
  116. Reissmann M, Bierwolf J, Brockmann GA. Two SNPs in the SILV gene are associated with silver coat colour in ponies. Anim Genet. 2007;38:1–6.PubMedGoogle Scholar
  117. Renaud G, Petersen B, Seguin-Orlando A, Bertelsen MF, Waller A, Newton R, Paillot R, Bryant N, Vaudin M, Librado P, Orlando L. Improved de novo genomic assembly for the domestic donkey. Sci Adv. 2018;4:eaaq0392.  https://doi.org/10.1126/sciadv.aaq0392.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Rivero JL, Hill EW. Skeletal muscle adaptations and muscle genomics of performance horses. Vet J. 2016;209:5–13.PubMedGoogle Scholar
  119. Rossel S, Marshall F, Peters J, et al. Domestication of the donkey: timing, processes, and indicators. Proc Natl Acad Sci U S A. 2008;105:3715–20.PubMedPubMedCentralGoogle Scholar
  120. Scheu A (2017) Neolithic animal domestication as seen from ancient DNA. Quat Int.  https://doi.org/10.1016/j.quaint.2017.02.009.Google Scholar
  121. Schubert M, Jónsson H, Chang D, et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A. 2014;111:E5661–9.PubMedPubMedCentralGoogle Scholar
  122. Schubert M, Mashkour M, Gaunitz C, et al. Fast, accurate and sensitive pipeline to genetically identify equine F1-hybrids in archaeological assemblages. J Archaeol Sci. 2017;78:147–57.Google Scholar
  123. Steiner CC, Mitelberg A, Tursi R, et al. Molecular phylogeny of extant equids and effects of ancestral polymorphism in resolving species-level phylogenies. Mol Phylogenet Evol. 2012;65:573–81.PubMedGoogle Scholar
  124. Signer-Hasler H, Flury C, Haase B, et al. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One. 2012;7:e37282.PubMedPubMedCentralGoogle Scholar
  125. Skoglund P, Ersmark E, Palkopoulou E. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr Biol. 2015;25:1515–9.PubMedGoogle Scholar
  126. Sommer RS, Benecke L, Lougas O, et al. Holocene survival of the wild horse in Europe: a matter of open landscape? J Quat Sci. 2011;26:1099–417.Google Scholar
  127. Stoneking M, Krause J. Learning about human population history from ancient and modern genomes. Nat Rev Genet. 2011;12:603–14.PubMedGoogle Scholar
  128. Stuart AJ. Late quaternary megafaunal extinctions on the continents. Geol J. 2015;50:338–63.Google Scholar
  129. Tozaki T, Miyake T, Kakoi H, et al. A genome-wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim Genet. 2010;41(suppl 2):28–35.PubMedGoogle Scholar
  130. Vilà C, Leonard JA, Gotherstrom A, et al. Widespread origins of domestic horse lineages. Science. 2001;291:474–7.PubMedGoogle Scholar
  131. Vigne FD, Helmer D, Peters J. First steps of animal domestication: new archaeozoological approaches. Oxford: Oxbow Books; 2005.Google Scholar
  132. Vilstrup JT, Seguin-Orlando A, Stiller M, et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS One. 2013;8:e55950.PubMedPubMedCentralGoogle Scholar
  133. Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009;326:865–7.PubMedPubMedCentralGoogle Scholar
  134. Wakefield S, Knowles J, Zimmermann W, et al. Status and action plan for the Przewalski’s horse (Equus ferus przewalskii). In: Moehlman P, editor. Equids: zebras, asses and horses, vol. 2002. Cambridge: IUNC/SSC Equid Specialist Group, IUCN Publications Services Unit; 2012. p. 82–92.Google Scholar
  135. Warmuth V, Eriksson A, Bower MA, et al. European domestic horses originated in two holocene refugia. PLoS One. 2011;6:e18194.PubMedPubMedCentralGoogle Scholar
  136. Warmuth V, Eriksson A, Bower MA, et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe. Proc Natl Acad Sci U S A. 2012;109:8202–6.PubMedPubMedCentralGoogle Scholar
  137. Warinner C, Speller C, Collins M. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20130376.Google Scholar
  138. Weinstock J, Willerslev E, Sher A, et al. Evolution, systematics, and phylogeography of pleistocene horses in the new world: a molecular perspective. PLoS Biol. 2005;3:e241.PubMedPubMedCentralGoogle Scholar
  139. Wilkins AS, Wrangham RW, Fitch WT. The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics. 2014;197:795–808.PubMedPubMedCentralGoogle Scholar
  140. Willerslev E, Davison J, Moora M, et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature. 2014;506:47–51.Google Scholar
  141. Wallner B, Vogl C, Shukla P, et al. Identification of genetic variation on the horse y chromosome and the tracing of male founder lineages in modern breeds. PLoS One. 2013;8:e60015.PubMedPubMedCentralGoogle Scholar
  142. Wutke S, Benecke N, Sandoval-Castellanos E, et al. Spotted phenotypes in horses lost attractiveness in the Middle Ages. Sci Rep. 2016a;6:38548.PubMedPubMedCentralGoogle Scholar
  143. Wutke S, Andersson L, Benecke N, et al. The origin of ambling horses. Curr Biol. 2016b;26:R697–9.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for GeoGenetics, Natural History Museum of DenmarkCopenhagenDenmark
  2. 2.Laboratoire AMIS, CNRS UMRUniversité de Toulouse, Université Paul Sabatier (UPS)ToulouseFrance

Personalised recommendations