Advertisement

pp 1-42 | Cite as

Population Genomics of Marine Zooplankton

  • Ann Bucklin
  • Kate R. DiVito
  • Irina Smolina
  • Marvin Choquet
  • Jennifer M. Questel
  • Galice Hoarau
  • Rachel J. O’Neill
Chapter
Part of the Population Genomics book series

Abstract

The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closely related species and diversity of genomic architecture, including highly replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.

Keywords

Evolution Population genetics Population genomics Transcriptomics Zooplankton 

Notes

Acknowledgements

This overview results from collaborative efforts with many colleagues and collaborators. We acknowledge and appreciate the contributions of Leocadio Blanco-Bercial (Bermuda Institute of Ocean Sciences), Peter H. Wiebe (Woods Hole Oceanographic Institution, USA), Paola G. Batta-Lona (CICESE, Mexico), and Nathaniel K. Jue (California State University, USA). Photographic images of living zooplankton species were provided by: L. P. Madin (Woods Hole Oceanographic Institution), C. Thompson (University of Maine, USA), Julie Ambler (Millersville University, USA), Uwe Kils (Rutgers University, USA), Dave Wrobel (www.wrobelphoto.com and http://jellieszone.com/), Russell R. Hopcroft (University of Alaska, Fairbanks, USA), and Peter Parks (Image Quest 3-D). Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982 and PLR-1643825) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway). This review is dedicated to David A. Egloff, whose teaching at Oberlin College (Oberlin, Ohio) inspired - and defined the life trajectory - of so many students, including the lead author (AB).

References

  1. Aarbakke ONS, Bucklin A, Halsband C, Norrbin F. Discovery of Pseudocalanus moultoni (Frost 1989) in Northeast Atlantic waters based on mitochondrial COI sequence variation. J Plankton Res. 2011;33:1487–95.  https://doi.org/10.1093/plankt/fbr057.CrossRefGoogle Scholar
  2. Aarbakke ONS, Bucklin A, Halsband C, Norrbin F. Comparative phylogeography and demographic history of five sibling species of Pseudocalanus (Copepoda: Calanoida) in the North Atlantic Ocean. J Exp Mar Biol Ecol. 2014;461:479–88.  https://doi.org/10.1016/j.jembe.2014.10.006.CrossRefGoogle Scholar
  3. Abad D, Albaina A, Aguirre M, et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar Biol. 2016;163(7):1–13.  https://doi.org/10.1007/s00227-016-2920-0.CrossRefGoogle Scholar
  4. Alberto F, Raimondi PT, Reed DC, et al. Isolation by oceanographic distance explains genetic structure for Macrocystis pyrifera in the Santa Barbara channel. Mol Ecol. 2011;20:2543–54.  https://doi.org/10.1111/j.1365-294X.2011.05117.x.PubMedCrossRefGoogle Scholar
  5. Alfsnes K, Leinaas HP, Hessen DO. Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans. Ecol Evol. 2017;7(15):5939–47.  https://doi.org/10.1002/ece3.3163.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Almeida AA, Tarrant AM. Vibrio elicits targeted transcriptional responses from copepod hosts. FEMS Microbiol Ecol. 2016;92.  https://doi.org/10.1093/femsec/fiw072.
  7. Ames CL, Ryan JF, Bely AE, et al. A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata: an emerging model for studying venom, vision and sex. BMC Genomics. 2016;17:650.  https://doi.org/10.1186/s12864-016-2944-3.CrossRefGoogle Scholar
  8. Andrews KR, Norton EL, Fernandez-Silva I, et al. Multilocus evidence for globally distributed cryptic species and distinct populations across ocean gyres in a mesopelagic copepod. Mol Ecol. 2014;23:5462–79.  https://doi.org/10.1111/mec.12950.PubMedCrossRefGoogle Scholar
  9. Avise JC. Phylogeography: retrospect and prospect. J Biogeogr. 2009;36:3–15.  https://doi.org/10.1111/j.1365-2699.2008.02032.x.CrossRefGoogle Scholar
  10. Avise JC, Bowen BW, Ayala FJ. In the light of evolution X: comparative phylogeography. Proc Natl Acad Sci U S A. 2016;113:7957–61.  https://doi.org/10.1073/pnas.1604338113.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bailey J, Rynearson T, Durbin EG. Species composition and abundance of copepods in the morphologically cryptic genus Pseudocalanus in the Bering Sea. Deep Sea Res Part II Top Stud Oceanogr. 2015;134:173–80.  https://doi.org/10.1016/j.dsr2.2015.04.017.ADSCrossRefGoogle Scholar
  12. Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:1–7.  https://doi.org/10.1371/journal.pone.0003376.CrossRefGoogle Scholar
  13. Baratti M, Cattonaro F, Di Lorenzo T, et al. Genomic resources notes accepted 1 October 2014–30 November 2014. Mol Ecol Resour. 2015;15:458–9.  https://doi.org/10.1111/1755-0998.12368.PubMedCrossRefGoogle Scholar
  14. Barreto FS, Moy GW, Burton RS. Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus. Mol Ecol. 2011;20:560–72.  https://doi.org/10.1111/j.1365-294X.2010.04963.x.PubMedCrossRefGoogle Scholar
  15. Batta-Lona PG, Bucklin A, Wiebe PH, et al. Population genetic variation of the Southern Ocean krill, Euphausia superba, in the western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs). Deep Sea Res Part II Top Stud Oceanogr. 2011;58:1652–61.  https://doi.org/10.1016/j.dsr2.2010.11.017.ADSCrossRefGoogle Scholar
  16. Batta-Lona PG, Maas AE, O’Neill RJ, et al. Transcriptomic profiles of spring and summer populations of the Southern Ocean salp, Salpa thompsoni, in the western Antarctic Peninsula region. Polar Biol. 2017;40:1261–76.  https://doi.org/10.1007/s00300-016-2051-6.CrossRefGoogle Scholar
  17. Beaugrand G. Plankton biodiversity and biogeography. In: Castellani C, Edwards M, editors. Marine plankton: a practical guide to ecology, methodology, and taxonomy. Oxford: Oxford University Press; 2017. p. 12–23.Google Scholar
  18. Beerli P. Migrate documentation version 3.2.1. Tallahasee: Florida State University; 2012.Google Scholar
  19. Bierne N, Roze D, Welch JJ. Pervasive selection or is it …? Why are FST outliers sometimes so frequent? Mol Ecol. 2013;33:2061–4.  https://doi.org/10.1111/mec.12241.CrossRefGoogle Scholar
  20. Bierne N, Bonhomme F, Arnaud-Haond AS. Dedicated population genomics for the silent world: the specific questions of marine population genetics. Curr Zool. 2016;62:545–50.  https://doi.org/10.1093/cz/zow107.CrossRefGoogle Scholar
  21. Bik HM, Porazinska DL, Creer S, et al. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol. 2012;27:233–43.  https://doi.org/10.1016/j.tree.2011.11.010.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Biscontin A, Frigato E, Sales G, et al. The opsin repertoire of the Antarctic krill Euphausia superba. Mar Genomics. 2016;29:61–8.  https://doi.org/10.1016/j.margen.2016.04.010.PubMedCrossRefGoogle Scholar
  23. Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol. 2001;46:441–69.  https://doi.org/10.1146/annurev.ento.46.1.441.PubMedCrossRefGoogle Scholar
  24. Blanco-Bercial L, Álvarez-Marqués F, Bucklin A. Comparative phylogeography and connectivity of sibling species of the marine copepod Clausocalanus (Calanoida). J Exp Mar Biol Ecol. 2011;404:108–15.  https://doi.org/10.1016/j.jembe.2011.05.011.CrossRefGoogle Scholar
  25. Blanco-Bercial L, Cornils A, Copley N, Bucklin A. DNA barcoding of marine copepods: assessment of analytical approaches to species identification. PLoS Curr. 2014;6.  https://doi.org/10.1371/currents.tol.cdf8b74881f87e3b01d56b43791626d2.
  26. Blanco-Bercial L, Bucklin A. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus. Mol Ecol. 2016;25:1566–80.  https://doi.org/10.1111/mec.13581.PubMedCrossRefGoogle Scholar
  27. Blanco-Bercial L, Maas AE. A transcriptomic resource for the northern krill Meganyctiphanes norvegica based on a short-term temperature exposure experiment. Mar Genomics. 2017.  https://doi.org/10.1016/j.margen.2017.05.013.
  28. Bolte S, Fuentes V, Haslob H, et al. Population genetics of the invasive ctenophore Mnemiopsis leidyi in Europe reveal source-sink dynamics and secondary dispersal to the Mediterranean Sea. Mar Ecol Prog Ser. 2013;485:25–36.  https://doi.org/10.3354/meps10321.ADSCrossRefGoogle Scholar
  29. Bortolotto E, Bucklin A, Mezzavilla M, et al. Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba. BMC Genet. 2011;12:32.  https://doi.org/10.1186/1471-2156-12-32.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brekhman V, Malik A, Haas B, et al. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics. 2015;16:74.  https://doi.org/10.1186/s12864-015-1320-z.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bron JE, Frisch D, Goetze E, et al. Observing copepods through a genomic lens. Front Zool. 2011;8:22.  https://doi.org/10.1186/1742-9994-8-22.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Bucklin A, Kaartvedt S. Population genetics of drifting (Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords. J Plankton Res. 2000;22:1237–51.  https://doi.org/10.1093/plankt/22.7.1237.CrossRefGoogle Scholar
  33. Bucklin A, Sundt RC, Dahle G. The population genetics of Calanus finmarchicus in the North Atlantic. Ophelia. 1996;44:29–45.CrossRefGoogle Scholar
  34. Bucklin A, Smolenack SB, Bentley AM, Wiebe PH. Gene flow patterns of the euphausiid, Meganyctiphanes norvegica, in the NW Atlantic based on mtDNA sequences for cytochrome b and cytochrome oxidase I. J Plankton Res. 1997;19:1763–81.  https://doi.org/10.1093/plankt/19.11.1763.CrossRefGoogle Scholar
  35. Bucklin A, Wiebe PH, Smolenack SB, et al. DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). J Plankton Res. 2007;29:483–93.  https://doi.org/10.1093/plankt/fbm031.CrossRefGoogle Scholar
  36. Bucklin A, Hopcroft RR, Kosobokova KN, et al. DNA barcoding of Arctic ocean holozooplankton for species identification and recognition. Deep Sea Res Part II Top Stud Oceanogr. 2010a;57:40–8.  https://doi.org/10.1016/j.dsr2.2009.08.005.ADSCrossRefGoogle Scholar
  37. Bucklin A, Ortman BD, Jennings RM, et al. A “Rosetta stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean). Deep Sea Res Part II Top Stud Oceanogr. 2010b;57:2234–47.  https://doi.org/10.1016/j.dsr2.2010.09.025.ADSCrossRefGoogle Scholar
  38. Bucklin A, Steinke D, Blanco-Bercial L. DNA barcoding of marine metazoa. Annu Rev Mar Sci. 2011;3:471–508.  https://doi.org/10.1146/annurev-marine-120308-080950.ADSCrossRefGoogle Scholar
  39. Bucklin A, Lindeque PK, Rodriguez-Ezpeleta N, et al. Metabarcoding of marine zooplankton: prospects, progress and pitfalls. J Plankton Res. 2016;38:393–400.  https://doi.org/10.1093/plankt/fbw023.CrossRefGoogle Scholar
  40. Burton RS, Byrne RJ, Rawson PD. Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus. Gene. 2007;403:53–9.  https://doi.org/10.1016/j.gene.2007.07.026.PubMedCrossRefGoogle Scholar
  41. Burton RS, Pereira RJ, Barreto FS. Cytonuclear genomic interactions and hybrid breakdown. Annu Rev Ecol Evol Syst. 2013;44:281–302.  https://doi.org/10.1146/annurev-ecolsys-110512-135758.CrossRefGoogle Scholar
  42. Bybee SM, Bracken-Grissom HD, Hermansen RA, et al. Directed next generation sequencing for phylogenetics: an example using Decapoda (Crustacea). Zool Anz. 2011;250:497–506.  https://doi.org/10.1016/j.jcz.2011.05.010.CrossRefGoogle Scholar
  43. Carlotti F, Bonnet D, Halsband-Lenk C. Development and growth rates of Centropages typicus. Prog Oceanogr. 2007;72:164–94.  https://doi.org/10.1016/j.pocean.2007.01.011.ADSCrossRefGoogle Scholar
  44. Castellani C, Lindley AJ, Wootton M, et al. Morphological and genetic variation in the North Atlantic copepod, Centropages typicus. J Mar Biol Assoc U K. 2012;92:99–106.  https://doi.org/10.1017/S0025315411000932.Google Scholar
  45. Caudill CC, Bucklin A. Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the Northwest Atlantic coast. Hydrobiologia. 2004;511:91–102.  https://doi.org/10.1023/B:HYDR.0000014032.05680.9d.CrossRefGoogle Scholar
  46. Chen G, Hare MP. Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa. Mol Ecol. 2008;17:1451–68.  https://doi.org/10.1111/j.1365-294X.2007.03657.x.PubMedCrossRefGoogle Scholar
  47. Chen G, Hare MP. Cryptic diversity and comparative phylogeography of the estuarine copepod Acartia tonsa on the US Atlantic coast. Mol Ecol. 2011;20:2425–41.  https://doi.org/10.1111/j.1365-294X.2011.05079.x.PubMedCrossRefGoogle Scholar
  48. Choquet M, Alves Monteiro HJ, Bengtsson-Palme J, Hoarau G. The complete mitochondrial genome of the copepod Calanus glacialis. Mitochondrial DNA Part B. 2017a;2:506–7.  https://doi.org/10.1080/23802359.2017.1361357.CrossRefGoogle Scholar
  49. Choquet M, Smolina I, Soreide JE, Hoarau G. New insight on the population structure of Calanus finmarchicus in the North Atlantic using next-generation sequencing technologies. In: Proceedings of the 13th international conference on Copepoda, Los Angeles, 2017b.Google Scholar
  50. Chust G, Villarino E, Chenuil A, et al. Dispersal similarly shapes both population genetics and community patterns in the marine realm. Sci Rep. 2016;6:28730.  https://doi.org/10.1038/srep28730.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  51. Clark MS, Thorne MAS, Toullec JY, et al. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One. 2011;6:1–17.  https://doi.org/10.1371/journal.pone.0015919.Google Scholar
  52. Cornils A, Wend-Heckmann B, Held C. Global phylogeography of Oithona similis s.l. (Crustacea, Copepoda, Oithonidae) – a cosmopolitan plankton species or a complex of cryptic lineages? Mol Phylogenet Evol. 2017;107:473–85.  https://doi.org/10.1016/j.ympev.2016.12.019.PubMedCrossRefGoogle Scholar
  53. Cowen RK, Sponaugle S. Larval dispersal and marine population connectivity. Annu Rev Mar Sci. 2009;1:443–66.  https://doi.org/10.1146/annurev.marine.010908.163757.ADSCrossRefGoogle Scholar
  54. Crawford DL, Oleksiak MF. Ecological population genomics in the marine environment. Brief Funct Genomics. 2016;15:342–51.  https://doi.org/10.1093/bfgp/elw008.PubMedCrossRefGoogle Scholar
  55. Cristescu ME. Genetic reconstructions of invasion history. Mol Ecol. 2015;24:2212–25.  https://doi.org/10.1111/mec.13117.PubMedCrossRefGoogle Scholar
  56. Davey JL, Blaxter MW. RADseq: next-generation population genetics. Brief Funct Genomics. 2010;9:416–23.  https://doi.org/10.1093/bfgp/elq031.PubMedCrossRefGoogle Scholar
  57. Dawson MN, Cieciel K, Decker MB, et al. Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms. Biol Invasions. 2015;17:851–67.  https://doi.org/10.1007/s10530-014-0732-z.CrossRefGoogle Scholar
  58. De Pittà C, Biscontin A, Albiero A, et al. The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions. PLoS One. 2013;8(7):e68652.  https://doi.org/10.1371/journal.pone.0068652.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  59. de Vargas C, Audic S, Henry N, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.  https://doi.org/10.1126/science.1261605.PubMedCrossRefGoogle Scholar
  60. De Wit P, Pespeni MH, Palumbi SR. SNP genotyping and population genomics from expressed sequences – current advances and future possibilities. Mol Ecol. 2015;24:2310–23.  https://doi.org/10.1111/mec.13165.PubMedCrossRefGoogle Scholar
  61. De Wit P, Dupont S, Thor P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol Appl. 2016;9:1112–23.  https://doi.org/10.1111/eva.12335.PubMedCrossRefGoogle Scholar
  62. de Young B, Barange M, Beaugrand G, et al. Regime shifts in marine ecosystems: detection, prediction and management. Trends Ecol Evol. 2008;23:402–9.  https://doi.org/10.1016/j.tree.2008.03.008.CrossRefGoogle Scholar
  63. Deagle BE, Faux C, Kawaguchi S, et al. Antarctic krill population genomics: apparent panmixia, but genome complexity and large population size muddy the water. Mol Ecol. 2015;24:4943–59.  https://doi.org/10.1111/mec.13370.PubMedCrossRefGoogle Scholar
  64. Denoeud F, Henriet S, Mungpakdee S. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science. 2010;80:1381–6.ADSCrossRefGoogle Scholar
  65. Drillet G, Goetze E, Jepsen PM, et al. Strain-specific vital rates in four Acartia tonsa cultures, I: strain origin, genetic differentiation and egg survivorship. Aquaculture. 2008;280:109–16.  https://doi.org/10.1016/j.aquaculture.2008.04.005.CrossRefGoogle Scholar
  66. Dufresne F, Jeffery N. A guided tour of large genome size in animals: what we know and where we are heading. Chromosom Res. 2011;19:925–38.  https://doi.org/10.1007/s10577-011-9248-x.CrossRefGoogle Scholar
  67. Edmands S. Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol. 2001;10:1743–50.  https://doi.org/10.1046/j.0962-1083.2001.01306.x.PubMedCrossRefGoogle Scholar
  68. Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107:1–15.  https://doi.org/10.1038/hdy.2010.152.PubMedCrossRefGoogle Scholar
  69. Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29:51–63.  https://doi.org/10.1016/j.tree.2013.09.008.PubMedCrossRefGoogle Scholar
  70. Elliott TA, Gregory TR. What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140331.  https://doi.org/10.1098/rstb.2014.0331.CrossRefGoogle Scholar
  71. Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:1–10.  https://doi.org/10.1371/journal.pone.0019379.CrossRefGoogle Scholar
  72. Escribano R, McLaren IA, Breteler WCMK. Innate and acquired variation of nuclear DNA contents of marine copepods. Genome. 1992;35:602–10.  https://doi.org/10.1139/g92-090.CrossRefGoogle Scholar
  73. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.  https://doi.org/10.1111/j.1755-0998.2010.02847.x.PubMedCrossRefGoogle Scholar
  74. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–91.  https://doi.org/10.1007/s00424-009-0730-7.PubMedPubMedCentralGoogle Scholar
  75. Eyun S, Young Soh H, Posavi M, et al. Evolutionary history of chemosensory-related gene families across the arthropoda. Mol Biol Evol. 2017;34:1838–62.  https://doi.org/10.1093/molbev/msx147.PubMedCrossRefGoogle Scholar
  76. Falk-Petersen S, Pavlov V, Timofeev S, Sargent J. Climate variability and possible effects on Arctic food chains: the role of Calanus. In: Arctic apline ecosystems and people in a changing environment. Berlin, Heidelberg: Springer; 2007. p. 147–66.CrossRefGoogle Scholar
  77. Faure E, Casanova JP. Comparison of chaetognath mitochondrial genomes and phylogenetical implications. Mitochondrion. 2006;6:258–62.  https://doi.org/10.1016/j.mito.2006.07.004.PubMedCrossRefGoogle Scholar
  78. Foley BR, Rose CG, Rundle DE, et al. A gene-based SNP resource and linkage map for the copepod Tigriopus californicus. BMC Genomics. 2011;12:568.  https://doi.org/10.1186/1471-2164-12-568.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977–93.  https://doi.org/10.1534/genetics.108.092221.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Francisco SM, Robalo JI, Levy A, Almada VC. In search of phylogeographic patterns in the northeastern Atlantic and adjacent seas. In: Evolutionary biology: genome evolution, speciation, coevolutions and origin of life. Cham: Springer; 2014. p. 323–38.Google Scholar
  81. Gagnaire PA, Gaggiotti OE. Detecting polygenic selection in marine populations by combining population genomics and quantitative genetics approaches. Curr Zool. 2016;62:603–16.  https://doi.org/10.1093/cz/zow088.CrossRefGoogle Scholar
  82. Gagnaire PA, Broquet T, Aurelle D, et al. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol Appl. 2015;8:769–86.  https://doi.org/10.1111/eva.12288.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Galindo HM, Pfeiffer-Herbert AS, McManus MA, et al. Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol Ecol. 2010;19:3692–707.  https://doi.org/10.1111/j.1365-294X.2010.04694.x.PubMedCrossRefGoogle Scholar
  84. Gayral P, Melo-Ferreira J, Glémin S, et al. Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genet. 2013;9(4):e1003457.  https://doi.org/10.1371/journal.pgen.1003457.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome sequence for 10000 vertebrate species. J Hered. 2009;100:659–74.  https://doi.org/10.1093/jhered/esp086.PubMedCentralCrossRefGoogle Scholar
  86. GIGA Community of Scientists. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. J Hered. 2014;105:1–18.  https://doi.org/10.1093/jhered/est084.CrossRefGoogle Scholar
  87. Goetze E. Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution. 2005;59:2378–98.  https://doi.org/10.1554/05-077.1.PubMedGoogle Scholar
  88. Goetze E, Ohman MD. Integrated molecular and morphological biogeography of the calanoid copepod family Eucalanidae. Deep Sea Res Part II Top Stud Oceanogr. 2010;57:2110–29.  https://doi.org/10.1016/j.dsr2.2010.09.014.ADSCrossRefGoogle Scholar
  89. Goetze E, Andrews KR, Peijnenburg KTCA, et al. Temporal stability of genetic structure in a mesopelagic copepod. PLoS One. 2015;10:1–16.  https://doi.org/10.1371/journal.pone.0136087.CrossRefGoogle Scholar
  90. Gregory TR. Animal genome size databse. 2017. http://www.genomesize.com. Accessed 20 Jun 2017.
  91. Gregory TR, Hebert PDN. The modulation of DNA content: proximate causes and ultimate consequences. Genome Res. 1999;9:317–24.  https://doi.org/10.1101/gr.9.4.317.PubMedGoogle Scholar
  92. Gregory TR, Hebert PDN, Kolasa J. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity. 2000;84:201–8.  https://doi.org/10.1046/j.1365-2540.2000.00661.x.PubMedCrossRefGoogle Scholar
  93. Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Res. 2013;41(13):e129.  https://doi.org/10.1093/nar/gkt371.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hansen MM, Hemmer-Hansen J. Landscape genetics goes to sea. J Biol. 2007;6:6.  https://doi.org/10.1186/jbiol59.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Havird JC, Santos SR. Here we are, but where do we go? A systematic review of crustacean transcriptomic studies from 2014–2015. Integr Comp Biol. 2016;56:1055–66.  https://doi.org/10.1093/icb/icw061.PubMedCrossRefGoogle Scholar
  96. Head EJH, Harris LR, Yashayaev I. Distributions of Calanus spp. and other mesozooplankton in the Labrador Sea in relation to hydrography in spring and summer (1995–2000). Prog Oceanogr. 2003;59:1–30.  https://doi.org/10.1016/S0079-6611(03)00111-3.ADSCrossRefGoogle Scholar
  97. Hedrick PW. Genetic polymorphism in heterogeneous environments: the age of genomics. Annu Rev Ecol Evol Syst. 2006;37:67–93.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110132.CrossRefGoogle Scholar
  98. Helfenbein KG, Fourcade HM, Vanjani RG, Boore JL. The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. Proc Natl Acad Sci U S A. 2004;101:10639–43.  https://doi.org/10.1073/pnas.0400941101.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  99. Hellberg ME. Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst. 2009;40:291–310.  https://doi.org/10.1146/annurev.ecolsys.110308.120223.CrossRefGoogle Scholar
  100. Helyar SJ, Hemmer-Hansen J, Bekkevold D, et al. Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour. 2011;11:123–36.  https://doi.org/10.1111/j.1755-0998.2010.02943.x.PubMedCrossRefGoogle Scholar
  101. Hemmer-Hansen J, Overgaard N, Hemmer-Hansen J, et al. Population genomics of marine fishes: next generation prospects and challenges. Biol Bull. 2014;227:117–32.  https://doi.org/10.1086/BBLv227n2p117.PubMedCrossRefGoogle Scholar
  102. Hessen DO, Persson J. Genome size as a determinant of growth and life-history traits in crustaceans. Biol J Linn Soc. 2009;98:393–9.  https://doi.org/10.1111/j.1095-8312.2009.01285.x.CrossRefGoogle Scholar
  103. Hirai J, Tsuda A. Metagenetic community analysis of epipelagic planktonic copepods in the tropical and subtropical pacific. Mar Ecol Prog Ser. 2015;534:65–78.  https://doi.org/10.3354/meps11404.ADSCrossRefGoogle Scholar
  104. Hirai J, Tsuda A, Goetze E. Extensive genetic diversity and endemism across the global range of the oceanic copepod Pleuromamma abdominalis. Prog Oceanogr. 2015;138:77–90.  https://doi.org/10.1016/j.pocean.2015.09.002.ADSCrossRefGoogle Scholar
  105. Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.  https://doi.org/10.1038/ng.2007.42.PubMedCrossRefGoogle Scholar
  106. Hwang D-S, Park E, Won Y-J, et al. Complete mitochondrial genome of the jellyfish, Chrysaora quinquecirrha (Cnidaria, Scyphozoa). Mitochondrial DNA. 2014;25:25–6.  https://doi.org/10.3109/19401736.2013.775272.PubMedCrossRefGoogle Scholar
  107. i5K Consortium. The i5K initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. J Hered. 2013;104:595–600.  https://doi.org/10.1093/jhered/est050.PubMedCentralCrossRefGoogle Scholar
  108. Iacchei M, Butcher E, Portner E, Goetze E. It’s about time: insights into temporal genetic patterns in oceanic zooplankton from biodiversity indices. Limnol Oceanogr. 2017;62(5):1836–52.  https://doi.org/10.1002/lno.10538.ADSCrossRefGoogle Scholar
  109. Jarman SN, Deagle BE. Genetics of Antarctic krill. In: Siegel V, editor. Biology and ecology of Antarctic krill, Advances in polar ecology. Cham: Springer; 2016. p. 247–77.CrossRefGoogle Scholar
  110. Jeffery NW. The first genome size estimates for six species of krill (Malacostraca, Euphausiidae): large genomes at the north and south poles. Polar Biol. 2012;35:959–62.  https://doi.org/10.1007/s00300-011-1137-4.CrossRefGoogle Scholar
  111. Jeffery NW. Genome size diversity and evolution in the crustacea. Guelph: University of Guelph; 2015.Google Scholar
  112. Jeffery NW, Ellis EA, Oakley TH, Gregory TR. The genome sizes of ostracod crustaceans correlate with body size and evolutionary history, but not environment. J Hered. 2017;108:701–6.  https://doi.org/10.1093/jhered/esx055.PubMedCrossRefGoogle Scholar
  113. Jepsen PM, Bjørbæk NS, Rayner TA, et al. Recommended feeding regime and light climate in live feed cultures of the calanoid copepod Acartia tonsa Dana. Aquac Int. 2017;25:635–54.  https://doi.org/10.1007/s10499-016-0063-4.CrossRefGoogle Scholar
  114. Johnson KM, Hofmann GE. A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica. Mar Genomics. 2016;28:25–8.  https://doi.org/10.1016/j.margen.2016.04.002.PubMedCrossRefGoogle Scholar
  115. Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol. 2016;25:185–202.  https://doi.org/10.1111/mec.13304.PubMedCrossRefGoogle Scholar
  116. Jue NK, Batta-Lona PG, Trusiak S, et al. Rapid evolutionary rates and unique genomic signatures discovered in the first reference genome for the southern ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Genome Biol Evol. 2016;8:3171–86.  https://doi.org/10.1093/gbe/evw215.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Jung SO, Lee YM, Park TJ, et al. The complete mitochondrial genome of the intertidal copepod Tigriopus sp. (Copepoda, Harpactidae) from Korea and phylogenetic considerations. J Exp Mar Bio Ecol. 2006;333:251–62.  https://doi.org/10.1016/j.jembe.2005.12.047.CrossRefGoogle Scholar
  118. Kang S, Ahn D, Lee JH, et al. The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis. Gigascience. 2017;6(1):1–9.  https://doi.org/10.1093/gigascience/giw010.CrossRefGoogle Scholar
  119. Kayal E, Bentlage B, Collins AG, et al. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol. 2011;4:1–12.  https://doi.org/10.1093/gbe/evr123.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ki JS, Lee KW, Park HG, et al. Phylogeography of the copepod Tigriopus japonicus along the Northwest Pacific rim. J Plankton Res. 2009;31:209–21.  https://doi.org/10.1093/plankt/fbn100.CrossRefGoogle Scholar
  121. Ki JS, Hop H, Kim SJ, et al. Complete mitochondrial genome sequence of the Arctic gammarid, Onisimus nanseni (Crustacea; Amphipoda): novel gene structures and unusual control region features. Comp Biochem Physiol Part D Genomics Proteomics. 2010;5:105–15.  https://doi.org/10.1016/j.cbd.2010.02.002.PubMedCrossRefGoogle Scholar
  122. Kim S, Kim J, Choi H-G, et al. Complete mitochondrial genome of the northern mauxia shrimp Acetes chinensis (Decapoda, Dendrobranchiata, Sergestoidae). Mitochondrial DNA. 2012;23:28–30.  https://doi.org/10.3109/19401736.2011.643878.PubMedCrossRefGoogle Scholar
  123. Kim S, Lim BJ, Min GS, Choi HG. The complete mitochondrial genome of Arctic Calanus hyperboreus (Copepoda, Calanoida) reveals characteristic patterns in calanoid mitochondrial genome. Gene. 2013;520:64–72.  https://doi.org/10.1016/j.gene.2012.09.059.PubMedCrossRefGoogle Scholar
  124. Kim HS, Lee BY, Won EJ, et al. Identification of xenobiotic biodegradation and metabolism-related genes in the copepod Tigriopus japonicus whole transcriptome analysis. Mar Genomics. 2015;24:207–8.  https://doi.org/10.1016/j.margen.2015.05.011.PubMedCrossRefGoogle Scholar
  125. Kim HS, Hwang DS, Lee BY, et al. De novo assembly and annotation of the marine mysid (Neomysis awatschensis) transcriptome. Mar Genomics. 2016;28:41–3.  https://doi.org/10.1016/j.margen.2016.05.001.PubMedCrossRefGoogle Scholar
  126. Knowles LL. Statistical phylogeography. Annu Rev Ecol Evol Syst. 2009;40:593–612.  https://doi.org/10.1146/annurev.ecolsys.38.091206.095702.CrossRefGoogle Scholar
  127. Koh HY, Lee JH, Han SJ, et al. A transcriptomic analysis of the response of the arctic pteropod Limacina helicina to carbon dioxide-driven seawater acidification. Polar Biol. 2015;38:1727–40.  https://doi.org/10.1007/s00300-015-1738-4.CrossRefGoogle Scholar
  128. Kohn AB, Citarella MR, Kocot KM, et al. Rapid evolution of the compact and unusual mitochondrial genome in the ctenophore, Pleurobrachia bachei. Mol Phylogenet Evol. 2012;63:203–7.  https://doi.org/10.1016/j.ympev.2011.12.009.PubMedCrossRefGoogle Scholar
  129. Kollias S, Poortvliet M, Smolina I, Hoarau G. Low cost sequencing of mitogenomes from museum samples using baits capture and ion torrent. Conserv Genet Resour. 2015;7:345–8.  https://doi.org/10.1007/s12686-015-0433-7.CrossRefGoogle Scholar
  130. Kool JT, Moilanen A, Treml EA. Population connectivity: recent advances and new perspectives. Landsc Ecol. 2013;28:165–85.  https://doi.org/10.1007/s10980-012-9819-z.CrossRefGoogle Scholar
  131. Kulagin DN, Stupnikova AN, Neretina TV, Mugue NS. Spatial genetic heterogeneity of the cosmopolitan chaetognath Eukrohnia hamata (Möbius, 1875) revealed by mitochondrial DNA. Hydrobiologia. 2014;721:197–207.  https://doi.org/10.1007/s10750-013-1661-z.CrossRefGoogle Scholar
  132. Kuriyama M, Nishida S. Species diversity and niche-partitioning in the pelagic copepods of the family Scolecitrichidae (Calanoida). Crustaceanna. 2006;79:293–317.CrossRefGoogle Scholar
  133. Laakmann S, Auel H, Kochzius M. Evolution in the deep sea: biological traits, ecology and phylogenetics of pelagic copepods. Mol Phylogenet Evol. 2012;65:535–46.  https://doi.org/10.1016/j.ympev.2012.07.007.PubMedCrossRefGoogle Scholar
  134. Lauritano C, Procaccini G, Ianora A. Gene expression patterns and stress response in marine copepods. Mar Environ Res. 2012;76:22–31.  https://doi.org/10.1016/j.marenvres.2011.09.015.PubMedCrossRefGoogle Scholar
  135. Lechner M, Marz M, Ihling C, et al. The correlation of genome size and DNA methylation rate in metazoans. Theory Biosci. 2013;132:47–60.  https://doi.org/10.1007/s12064-012-0167-y.PubMedCrossRefGoogle Scholar
  136. Lee BY, Kim HS, Choi BS, et al. RNA-seq based whole transcriptome analysis of the cyclopoid copepod Paracyclopina nana focusing on xenobiotics metabolism. Comp Biochem Physiol Part D Genomics Proteomics. 2015;15:12–9.  https://doi.org/10.1016/j.cbd.2015.04.002.PubMedCrossRefGoogle Scholar
  137. Lee CE. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution. 2000;54:2014–27.  https://doi.org/10.1111/j.0014-3820.2000.tb01245.x.PubMedCrossRefGoogle Scholar
  138. Lee CE. Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system. Evol Appl. 2016a;9:248–70.  https://doi.org/10.1111/eva.12334.PubMedCrossRefGoogle Scholar
  139. Lee JS. Transcriptome profiling of the Antarctic copepod Tigriopus kingsejongensis (Crustacea, Harpacticoida) by Illumina RNA-seq. BioProject Acc. No. PRJNA283925. Direct Submission 2016b. https://www.ncbi.nlm.nih.gov/nuccore/859378166
  140. Leinaas HP, Jalal M, Gabrielsen TM, Hessen DO. Inter- and intraspecific variation in body- and genome size in calanoid copepods from temperate and arctic waters. Ecol Evol. 2016;6:5585–95.  https://doi.org/10.1002/ece3.2302.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Lenz PH, Roncalli V, Hassett RP, et al. De novo assembly of a transcriptome for Calanus finmarchicus (crustacea, copepoda) – the dominant zooplankter of the North Atlantic Ocean. PLoS One. 2014;9(2):e88589.  https://doi.org/10.1371/journal.pone.0088589.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  142. Leray M, Knowlton N. Censusing marine eukaryotic diversity in the twenty-first century. Philos Trans R Soc London Ser B. 2016;371:1–9.  https://doi.org/10.1098/rstb.2015.0331.CrossRefGoogle Scholar
  143. Levasseur A, Orlando L, Bailly X, et al. Conceptual bases for quantifying the role of the environment on gene evolution: the participation of positive selection and neutral evolution. Biol Rev. 2007;82:551–72.  https://doi.org/10.1111/j.1469-185X.2007.00024.x.PubMedCrossRefGoogle Scholar
  144. Levin SA, Segel LA. Hypothesis for origin of planktonic patchiness. Nature. 1976;259:659.  https://doi.org/10.1038/259659a0.ADSCrossRefGoogle Scholar
  145. Li F, Ma L, Zhang H, et al. A thioredoxin from Antarctic microcrustacean (Euphausia superba): cloning and functional characterization. Fish Shellfish Immunol. 2017a;63:376–83.  https://doi.org/10.1016/j.fsi.2017.02.035.PubMedCrossRefGoogle Scholar
  146. Li P, Yang M, Ni S, et al. Complete mitochondrial genome sequence of the pelagic chaetognath, Sagitta ferox. Mitochondrial DNA. 2016;1736:1–2.  https://doi.org/10.3109/19401736.2015.1106508.Google Scholar
  147. Li Y, Zhou Z, Tian M, et al. Exploring single nucleotide polymorphism (SNP), microsatellite (SSR) and differentially expressed genes in the jellyfish (Rhopilema esculentum) by transcriptome sequencing. Mar Genomics. 2017b;34:31–7.  https://doi.org/10.1016/j.margen.2017.01.007.PubMedCrossRefGoogle Scholar
  148. Lima TG, Willett CS. Locally adapted populations of a copepod can evolve different gene expression patterns under the same environmental pressures. Ecol Evol. 2017;7:4312–25.  https://doi.org/10.1002/ece3.3016.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Lindeque PK, Parry HE, Harmer RA, et al. Next generation sequencing reveals the hidden diversity of zooplankton assemblages. PLoS One. 2013;8:1–14.  https://doi.org/10.1371/journal.pone.0081327.CrossRefGoogle Scholar
  150. Longhurst AR. Ecological geography of the sea. Amsterdam: Elsevier; 2007.Google Scholar
  151. Luikart G, England PR, Tallmon D, et al. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.  https://doi.org/10.1038/nrg1226.PubMedCrossRefGoogle Scholar
  152. Maas AE, Lawson GL, Tarrant AM. Transcriptome-wide analysis of the response of the thecosome pteropod Clio pyramidata to short-term CO2 exposure. Comp Biochem Physiol Part D Genomics Proteomics. 2015;16:1–9.  https://doi.org/10.1016/j.cbd.2015.06.002.PubMedCrossRefGoogle Scholar
  153. Machida RJ, Miya MU, Nishida M, Nishida S. Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea: Copepoda). Mar Biotechnol. 2002;4:406–17.  https://doi.org/10.1007/s10126-002-0033-x.PubMedCrossRefGoogle Scholar
  154. Madoui M-A, Poulain J, Sugier K, et al. New insights into global biogeography, population structure and natural selection from the genome of the epipelagic copepod Oithona. Mol Ecol. 2017;38:42–9.  https://doi.org/10.1111/mec.14214.Google Scholar
  155. Maricic T, Whitten M, Pääbo S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One. 2010;5:9–13.  https://doi.org/10.1371/journal.pone.0014004.CrossRefGoogle Scholar
  156. Marlétaz F, Parco Y, Shenglin L, Peijnenburg KTCA. Extreme mitogenomic variation in natural populations of chaetognaths. Genome Biol Evol. 2017;9:1–21.  https://doi.org/10.1093/gbe/evx090.CrossRefGoogle Scholar
  157. McGovern TM, Keever CC, Saski CA, et al. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species. Mol Ecol. 2010;19:5043–60.  https://doi.org/10.1111/j.1365-294X.2010.04854.x.PubMedCrossRefGoogle Scholar
  158. McLaren IA, Sevigny J-M, Corkett CJ. Body sizes, development rates, and genome sizes among Calanus species. Hydrobiologia. 1988;167/168:275–84.CrossRefGoogle Scholar
  159. McLaren IA, Laberge E, Corkett CJ, Sevigny J-M. Life cycles of four species of Pseudocalanus in Nova Scotia. Can J Zool. 1989;67:552–8.  https://doi.org/10.1139/z89-078.CrossRefGoogle Scholar
  160. Meyer B, Martini P, Biscontin A, et al. Pyrosequencing and de novo assembly of Antarctic krill (Euphausia superba) transcriptome to study the adaptability of krill to climate-induced environmental changes. Mol Ecol Resour. 2015;15:1460–71.  https://doi.org/10.1111/1755-0998.12408.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Miller B, von der Heyden S, Gibbons M. Significant population genetic structuring of the holoplanktic scyphozoan Pelagia noctiluca in the Atlantic Ocean. Afr J Mar Sci. 2012;34:425–30.  https://doi.org/10.2989/1814232X.2012.726646.CrossRefGoogle Scholar
  162. Milligan PJ, Stahl EA, Schizas NV, Turner JT. Phylogeography of the copepod Acartia hudsonica in estuaries of the northeastern United States. Hydrobiologia. 2011;666:155–65.  https://doi.org/10.1007/s10750-010-0097-y.CrossRefGoogle Scholar
  163. Minxiao W, Song S, Chaolun L, Xin S. Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: useful molecular markers for phylogenetic and population studies. BMC Genomics. 2011;12:73.  https://doi.org/10.1186/1471-2164-12-73.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Miyamoto H, Machida RJ, Nishida S. Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala (Fowler, 1904). Deep Res Part II Top Stud Oceanogr. 2010;57:2211–9.  https://doi.org/10.1016/j.dsr2.2010.09.023.ADSCrossRefGoogle Scholar
  165. Miyamoto H, Machida RJ, Nishida S. Global phylogeography of the deep-sea pelagic chaetognath Eukrohnia hamata. Prog Oceanogr. 2012;104:99–109.  https://doi.org/10.1016/j.pocean.2012.06.003.ADSCrossRefGoogle Scholar
  166. Moroz LL, Kocot KM, Citarella MR, et al. The ctenophore genome and the evolutionary origins of neutral systems. Nature. 2014;510:109–14.  https://doi.org/10.1038/nature13400.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  167. Munro JB, Posavi M, Brady A, et al. Sex-biased gene expression in the common copepod Eurytemora affinis. BioProject Acc. No. PRJNA278152. Direct Submission 2015. https://www.ncbi.nlm.nih.gov/nuccore/1102726653
  168. Narum SR, Buerkle CA, Davey JW, et al. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.  https://doi.org/10.1111/mec.12350.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D. Population genomics of marine fishes: identifying adaptive variation in space and time. Mol Ecol. 2009;18:3128–50.  https://doi.org/10.1111/j.1365-294X.2009.04272.x.PubMedCrossRefGoogle Scholar
  170. Nilsson B, Jepsen PM, Rewitz K, Hansen BW. Expression of hsp70 and ferritin in embryos of the copepod Acartia tonsa (Dana) during transition between subitaneous and quiescent state. J Plankton Res. 2014;36:513–22.  https://doi.org/10.1093/plankt/fbt099.CrossRefGoogle Scholar
  171. Norton EL, Goetze E. Equatorial dispersal barriers and limited population connectivity among oceans in a planktonic copepod. Limnol Oceanogr. 2013;58:1581–96.  https://doi.org/10.4319/lo.2013.58.5.1581.ADSCrossRefGoogle Scholar
  172. O’Grady JF, Hoelters LS, Swain MT, Wilcockson DC. Identification and temporal expression of putative circadian clock transcripts in the amphipod crustacean Talitrus saltator. Peer J. 2016;4:e2555.  https://doi.org/10.7717/peerj.2555.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Ogoh K, Ohmiya Y. Complete mitochondrial DNA sequence of the sea-firefly, Vargula hilgendorfii (Crustacea, Ostracoda) with duplicate control regions. Gene. 2004;327:131–9.  https://doi.org/10.1016/j.gene.2003.11.011.PubMedCrossRefGoogle Scholar
  174. Omori M, Hamner WM. Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar Biol. 1982;72:193–200.  https://doi.org/10.1007/BF00396920.CrossRefGoogle Scholar
  175. Papadopoulos LN, Peijnenburg KTCA, Luttikhuizen PC. Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations. Mar Biol. 2005;147:1353–65.  https://doi.org/10.1007/s00227-005-0038-x.CrossRefGoogle Scholar
  176. Papetti C, Zane L, Bortolotto E, et al. Genetic differentiation and local temporal stability of population structure in the euphausiid Meganyctiphanes norvegica. Mar Ecol Prog Ser. 2005;289:225–35.  https://doi.org/10.3354/meps289225.ADSCrossRefGoogle Scholar
  177. Papillon D, Perez Y, Caubit X, Le Parco Y. Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Mol Biol Evol. 2004;21:2122–9.  https://doi.org/10.1093/molbev/msh229.PubMedCrossRefGoogle Scholar
  178. Papot C, Cascella K, Toullec JY, Jollivet D. Divergent ecological histories of two sister Antarctic krill species led to contrasted patterns of genetic diversity in their heat-shock protein (hsp70) arsenal. Ecol Evol. 2016;6:1555–75.  https://doi.org/10.1002/ece3.1989.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Patarnello T, Papetti C, Zane L. Genetics of Northern krill (Megantyctiphanes norvegica Sars). In: Tarling G (ed) Biology of Northern krill, vol 57. Cambridge: Academic Press; 2010.Google Scholar
  180. Pearman JK, Irigoien X. Assessment of zooplankton community composition along a depth profile in the central Red Sea. PLoS One. 2015;10:1–14.  https://doi.org/10.1371/journal.pone.0133487.CrossRefGoogle Scholar
  181. Peijnenburg KTCA, Goetze E. High evolutionary potential of marine zooplankton. Ecol Evol. 2013;3:2765–83.  https://doi.org/10.1002/ece3.644.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Peijnenburg KTCA, Breeuwer JAJ, Pierrot-Bults AC, Menken SBJ. Phylogeography of the planktonic chaetognath Sagitta setosa reveals isolation in European seas. Evolution. 2004;58:1472–87.  https://doi.org/10.1554/03-638.PubMedCrossRefGoogle Scholar
  183. Peijnenburg KTCA, Van Haastrecht EK, Fauvelot C. Present-day genetic composition suggests contrasting demographic histories of two dominant chaetognaths of the North-East Atlantic, Sagitta elegans and S. setosa. Mar Biol. 2005;147:1279–89.  https://doi.org/10.1007/s00227-005-0041-2.CrossRefGoogle Scholar
  184. Peijnenburg KTCA, Fauvelot C, Breeuwer JAJ, Menken SBJ. Spatial and temporal genetic structure of the planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by mitochondrial and nuclear DNA markers. Mol Ecol. 2006;15:3319–38.  https://doi.org/10.1111/j.1365-294X.2006.03002.x.PubMedCrossRefGoogle Scholar
  185. Pereira RJ, Barreto FS, Pierce NT, et al. Transcriptome-wide patterns of divergence during allopatric evolution. Mol Ecol. 2016;25:1478–93.  https://doi.org/10.1111/mec.13579.PubMedCrossRefGoogle Scholar
  186. Pereira RJ, Sasaki MC, Burton RS. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity. Proc R Soc B Biol Sci. 2017;284:20170236.  https://doi.org/10.1098/rspb.2017.0236.CrossRefGoogle Scholar
  187. Peterson BK, Weber JN, Kay EH, et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7(5):e37135.  https://doi.org/10.1371/journal.pone.0037135.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  188. Petkeviciute E, Kania PW, Skovgaard A. Genetic responses of the marine copepod Acartia tonsa (Dana) to heat shock and epibiont infestation. Aquacult Rep. 2015;2:10–6.  https://doi.org/10.1016/j.aqrep.2015.04.001.CrossRefGoogle Scholar
  189. Pett W, Ryan JF, Pang K, et al. Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: insight from mtDNA and the nuclear genome. Mitochondrial DNA. 2011;22:130–42.  https://doi.org/10.3109/19401736.2011.624611.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Planque B, Graeme Hay IC, Ibanez F, Gamble JC. Large scale spatial variations in the seasonal abundance of Calanus finmarchicus. Deep Res Part I Top Stud Oceanogr. 1997;44:315–26.ADSCrossRefGoogle Scholar
  191. Pogson GH. Studying the genetic basis of speciation in high gene flow marine invertebrates. Curr Zool. 2016;62:643–53.  https://doi.org/10.1093/cz/zow093.CrossRefGoogle Scholar
  192. Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46:48–50.  https://doi.org/10.1139/g02-103.PubMedCrossRefGoogle Scholar
  193. Provan J, Beatty GE, Keating SL, et al. High dispersal potential has maintained long-term population stability in the North Atlantic copepod Calanus finmarchicus. Proc Biol Sci. 2009;276:301–7.  https://doi.org/10.1098/rspb.2008.1062.PubMedCrossRefGoogle Scholar
  194. Questel JM, Blanco-Bercial L, Hopcroft RR, Bucklin A. Phylogeography and connectivity of the Pseudocalanus (Copepoda: Calanoida) species complex in the eastern North Pacific and the Pacific Arctic region. J Plankton Res 2016; 1–14.  https://doi.org/10.1093/plankt/fbw025.
  195. Rahlff J, Peters J, Moyano M, et al. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp Biochem Physiol Part A Mol Integr Physiol. 2017;203:348–58.  https://doi.org/10.1016/j.cbpa.2016.11.001.CrossRefGoogle Scholar
  196. Raisuddin S, Kwok KWH, Leung KMY, et al. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol. 2007;83:161–73.  https://doi.org/10.1016/j.aquatox.2007.04.005.PubMedCrossRefGoogle Scholar
  197. Ramos AA, Weydmann A, Cox CJ, et al. A transcriptome resource for the copepod Calanus glacialis across a range of culture temperatures. Mar Genomics. 2015;23:27–9.  https://doi.org/10.1016/j.margen.2015.03.014.PubMedCrossRefGoogle Scholar
  198. Rasch EM, Lee CE, Wyngaard GA. DNA-Feulgen cytophotometric determination of genome size for the freshwater-invading copepod Eurytemora affinis. Genome. 2004;47:559–64.  https://doi.org/10.1139/G04-014.PubMedCrossRefGoogle Scholar
  199. Rawson PD, Brazeau DA, Burton RS. Isolation and characterization of cytochrome c from the marine copepod Tigriopus californicus. Gene. 2000;248:15–22.PubMedCrossRefGoogle Scholar
  200. Reitzel AM, Herrera S, Layden MJ, et al. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol. 2013;22:2953–70.  https://doi.org/10.1111/mec.12228.PubMedPubMedCentralCrossRefGoogle Scholar
  201. Renaut S, Dion-Côté AM. History repeats itself: genomic divergence in copepods. Mol Ecol. 2016;25:1417–9.  https://doi.org/10.1111/mec.13577.PubMedCrossRefGoogle Scholar
  202. Riginos C, Crandall ED, Liggins L, et al. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr Zool. 2016;62:581–601.  https://doi.org/10.1093/cz/zow067.CrossRefGoogle Scholar
  203. Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet. 2014;13:505–16.  https://doi.org/10.1038/nrg3229.Comparative.CrossRefGoogle Scholar
  204. Roncalli V, Cieslak MC, Lenz PH. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense. Nat Publ Group 2016; 1–13.  https://doi.org/10.1038/srep25708.
  205. Ryan JF, Pang K, Schnitzler CE, et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342:1242592.  https://doi.org/10.1126/science.1242592.PubMedPubMedCentralCrossRefGoogle Scholar
  206. Saborowski R, Buchholz F. Metabolic properties of northern krill, Meganyctiphanes norvegica, from different climatic zones. I. Respiration and excretion. Mar Biol. 2002;140:547–56.  https://doi.org/10.1007/s00227-001-0730-4.CrossRefGoogle Scholar
  207. Sales G, Deagle BE, Calura E, et al. KrillDB: a de novo transcriptome database for the Antarctic krill (Euphausia superba). PLoS One. 2017;12:1–12.  https://doi.org/10.1371/journal.pone.0171908.Google Scholar
  208. Sanchez Alvarado A. Transcriptome - adult Mnemiopsis leidyi. BioProject Acc. No. PRJNA344880. Direct Submission 2016. https://mnemiopsis.github.io/transcriptome.html
  209. Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14:807–20.  https://doi.org/10.1038/nrg3522.PubMedCrossRefGoogle Scholar
  210. Schindel DE, Miller SE. DNA barcoding a useful tool for taxonomists. Nature. 2005;435:17.ADSPubMedCrossRefGoogle Scholar
  211. Schlötterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals – mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749–63.  https://doi.org/10.1038/nrg3803.PubMedCrossRefGoogle Scholar
  212. Schoville SD, Barreto FS, Moy GW, et al. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evol Biol. 2012;12:170.  https://doi.org/10.1186/1471-2148-12-170.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Schunter C, Carreras-Carbonell J, MacPherson E, et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol Ecol. 2011;20:5167–81.  https://doi.org/10.1111/j.1365-294X.2011.05355.x.PubMedCrossRefGoogle Scholar
  214. Shao Z, Graf S, Chaga OY, Lavrov DV. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): a linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene. 2006;381:92–101.  https://doi.org/10.1016/j.gene.2006.06.021.PubMedCrossRefGoogle Scholar
  215. Shen X, Wang H, Ren J, et al. The mitochondrial genome of Euphausia superba (Prydz Bay) (Crustacea: Malacostraca: Euphausiacea) reveals a novel gene arrangement and potential molecular markers. Mol Biol Rep. 2010;37:771–84.  https://doi.org/10.1007/s11033-009-9602-7.PubMedCrossRefGoogle Scholar
  216. Shen X, Wang H, Wang M, Liu B. The complete mitochondrial genome sequence of Euphausia pacifica (Malacostraca: Euphausiacea) reveals a novel gene order and unusual tandem repeats. Genome. 2011;54:911–22.  https://doi.org/10.1139/g11-053.PubMedCrossRefGoogle Scholar
  217. Sherman CDH, Lotterhos KE, Richardson MF, et al. What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Mar Biol. 2016;163:1–24.  https://doi.org/10.1007/s00227-016-2961-4.CrossRefGoogle Scholar
  218. Siegel V, Watkins JL. Distribution, biomass and demography of Antarctic krill, Euphausia superba. In: Volker S, editor. Biology and ecology of Antarctic krill. Cham: Springer; 2016. p. 21–100.CrossRefGoogle Scholar
  219. Skjoldal HR, Wiebe PH, Postel L, et al. Intercomparison of zooplankton (net) sampling systems: results from the ICES/GLOBEC sea-going workshop. Prog Oceanogr. 2013;108:1–42.  https://doi.org/10.1016/j.pocean.2012.10.006.ADSCrossRefGoogle Scholar
  220. Smolina I. Calanus in the North Atlantic: species identification, stress response, and population genetic structure. PhD Aquatic Biosciences 2015; 15, p 64.Google Scholar
  221. Smolina I, Kollias S, Poortvliet M, et al. Genome- and transcriptome-assisted development of nuclear insertion/deletion markers for Calanus species (Copepoda: Calanoida) identification. Mol Ecol Resour. 2014;14:1072–9.  https://doi.org/10.1111/1755-0998.12241.PubMedGoogle Scholar
  222. Smolina I, Kollias S, Møller E, et al. Contrasting transcriptome response to thermal stress in two key zooplankton species, Calanus finmarchicus and C. glacialis. Mar Ecol Prog Ser. 2015;534:79–93.  https://doi.org/10.3354/meps11398.ADSCrossRefGoogle Scholar
  223. Smolina I, Harmer R, Lindeque P, Hoarau G. Reduced up-regulation of gene expression in response to elevated temperatures in the mid-Atlantic population of Calanus finmarchicus. J Exp Mar Biol Ecol. 2016;485:88–93.  https://doi.org/10.1016/j.jembe.2016.09.003.CrossRefGoogle Scholar
  224. Stapley J, Reger J, Feulner PGD, et al. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25:705–12.  https://doi.org/10.1016/j.tree.2010.09.002.PubMedCrossRefGoogle Scholar
  225. Stopar K, Ramšak A, Trontelj P, Malej A. Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Mol Phylogenet Evol. 2010;57:417–28.  https://doi.org/10.1016/j.ympev.2010.07.004.PubMedCrossRefGoogle Scholar
  226. Sun C, Wyngaard G, Walton DB, et al. Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics. 2014;15:186.  https://doi.org/10.1186/1471-2164-15-186.PubMedPubMedCentralCrossRefGoogle Scholar
  227. Sun C, Zhao Y, Li H, et al. Unreliable quantitation of species abundance based on high-throughput sequencing data of zooplankton communities. Aquat Biol. 2015;24:9–15.  https://doi.org/10.3354/ab00629.CrossRefGoogle Scholar
  228. Tarrant AM, Baumgartner MF, Hansen BH, et al. Transcriptional profiling of reproductive development, lipid storage and molting throughout the last juvenile stage of the marine copepod Calanus finmarchicus. Front Zool. 2014;11:91.  https://doi.org/10.1186/s12983-014-0091-8.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Thabet AA, Maas AE, Saber SA, Tarrant AM. Assembly of a reference transcriptome for the gymnosome pteropod Clione limacina and profiling responses to short-term CO2 exposure. Mar Genomics. 2017;34:39–45.  https://doi.org/10.1016/j.margen.2017.03.003.PubMedCrossRefGoogle Scholar
  230. Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30.  https://doi.org/10.1111/j.1365-294X.2012.05664.x.PubMedCrossRefGoogle Scholar
  231. Toullec JY, Corre E, Bernay B, et al. Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the Ice krill, Euphausia crystallorophias. PLoS One. 2013;8(8):e71609.  https://doi.org/10.1371/journal.pone.0071609.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  232. Tsagkogeorga G, Cahais V, Galtier N. The population genomics of a fast evolver: high levels of diversity, functional constraint, and molecular adaptation in the tunicate Ciona intestinalis. Genome Biol Evol. 2012;4:740–9.  https://doi.org/10.1093/gbe/evs054.PubMedCrossRefGoogle Scholar
  233. Unal E, Bucklin A. Basin-scale population genetic structure of the planktonic copepod Calanus finmarchicus in the North Atlantic Ocean. Prog Oceanogr. 2010;87:175–85.  https://doi.org/10.1016/j.pocean.2010.09.017.ADSCrossRefGoogle Scholar
  234. Voolstra CR, Wörheide G, Lopez JV. Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invertebr Syst. 2017;31:1–7.  https://doi.org/10.1071/IS16059.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Wang S, Meyer E, McKay JK, Matz MV. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods. 2012;9:808–10.  https://doi.org/10.1038/nmeth.2023.PubMedCrossRefGoogle Scholar
  236. Wang K, Omotezako T, Kishi K, et al. Maternal and zygotic transcriptomes in the appendicularian, Oikopleura dioica: novel protein-encoding genes, intra-species sequence variations, and trans-spliced RNA leader. Dev Genes Evol. 2015;225:149–59.  https://doi.org/10.1007/s00427-015-0502-7.PubMedCrossRefGoogle Scholar
  237. Waples RS. Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered. 1998;89:438–50.  https://doi.org/10.1093/jhered/89.5.438.CrossRefGoogle Scholar
  238. Waples RS, Punt AE, Cope JM. Integrating genetic data into management of marine resources: how can we do it better? Fish Fish. 2008;9:423–49.  https://doi.org/10.1111/j.1467-2979.2008.00303.x.CrossRefGoogle Scholar
  239. Weersing K, Toonen RJ. Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser. 2009;393:1–12.  https://doi.org/10.3354/meps08287.ADSCrossRefGoogle Scholar
  240. Wei S, Li P, Yang M, et al. The mitochondrial genome of the pelagic chaetognath, Pterosagitta draco. Mitochondrial DNA Part B. 2016;1:515–6.  https://doi.org/10.1080/23802359.2016.1197055.CrossRefGoogle Scholar
  241. Weydmann A, Przyłucka A, Lubośny M, et al. Mitochondrial genomes of the key zooplankton copepods Arctic Calanus glacialis and North Atlantic Calanus finmarchicus with the longest crustacean non-coding regions. Sci Rep. 2017;7:13702.  https://doi.org/10.1038/s41598-017-13807.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  242. Whitehead A. Comparative genomics in ecological physiology: toward a more nuanced understanding of acclimation and adaptation. J Exp Biol. 2012;215:884–91.  https://doi.org/10.1242/jeb.058735.PubMedCrossRefGoogle Scholar
  243. Wiebe PH. Plankton patchiness: effects on repeated net tows. Limnol Oceanogr. 1968;13:315–21.  https://doi.org/10.4319/lo.1968.13.2.0315.ADSCrossRefGoogle Scholar
  244. Wiebe PH, Harris RP, St. John MA, et al. BASIN: basin-scale analysis, synthesis, and integration. Science Plan and Implementation Strategy. GLOBEC Report 27: iii 2009; p 43.Google Scholar
  245. Wiebe PH, Bucklin A, Madin L, et al. Deep-sea sampling on CMarZ cruises in the Atlantic Ocean – an introduction. Deep Sea Res Part II Top Stud Oceanogr. 2010;57:2157–66.  https://doi.org/10.1016/j.dsr2.2010.09.018.ADSCrossRefGoogle Scholar
  246. Wiebe PH, Lawson GL, Lavery AC, et al. Improved agreement of net and acoustical methods for surveying euphausiids by mitigating avoidance using a net-based LED strobe light system. ICES J Mar Sci. 2013;70:650–64.  https://doi.org/10.1093/icesjms/fsr005.CrossRefGoogle Scholar
  247. Wyngaard GA, Rasch EM. Patterns of genome size in the copepoda. Hydrobiologia. 2000;417:43–56.  https://doi.org/10.1023/A:1003855322358.CrossRefGoogle Scholar
  248. Wyngaard GA, McLaren IA, White MM, Sévigny JM. Unusually high numbers of ribosomal RNA genes in copepods (Arthropoda: Crustacea) and their relationship to genome size. Genome. 1995;38:97–104.  https://doi.org/10.1139/g95-012.PubMedCrossRefGoogle Scholar
  249. Wyngaard GA, Rasch EM, Connelly BA. Unusual augmentation of germline genome size in Cyclops kolensis (Crustacea, Copepoda): further evidence in support of a revised model of chromatin diminution. Chromosom Res. 2011;19:911–23.  https://doi.org/10.1007/s10577-011-9234-3.CrossRefGoogle Scholar
  250. Yang EJ, Ha HK, Kang S-H. Microzooplankton community structure and grazing impact on major phytoplankton in the Chukchi sea and the western Canada basin, Arctic ocean. Deep Sea Res Part II Top Stud Oceanogr. 2014;120:91–102.  https://doi.org/10.1016/j.dsr2.2014.05.020.CrossRefGoogle Scholar
  251. Zane L, Patarnello T. Krill: a possible model for investigating the effects of ocean currents on the genetic structure of a pelagic invertebrate. Can J Fish Aquat Sci. 2000;57:16–23.  https://doi.org/10.1139/f00-166.CrossRefGoogle Scholar
  252. Zane L, Ostellari L, Maccatrozzo L, et al. Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba Dana) populations. Proc Biol Sci. 1998;265:2387–91.PubMedPubMedCentralCrossRefGoogle Scholar
  253. Zane L, Ostellari L, Maccatrozzo L, et al. Genetic differentiation in a pelagic crustacean (Meganyctiphanes norvegica: Euphausiacea) from the north East Atlantic and the Mediterranean Sea. Mar Biol. 2000;136:191–9.  https://doi.org/10.1007/s002270050676.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ann Bucklin
    • 1
  • Kate R. DiVito
    • 2
  • Irina Smolina
    • 3
  • Marvin Choquet
    • 3
  • Jennifer M. Questel
    • 1
  • Galice Hoarau
    • 3
  • Rachel J. O’Neill
    • 2
  1. 1.Department of Marine SciencesUniversity of ConnecticutGrotonUSA
  2. 2.Institute for Systems Genomics and Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  3. 3.Marine Ecology Research Group, Faculty of Biosciences and AquacultureNord UniversityBodøNorway

Personalised recommendations