Advertisement

Genotyping and Sequencing Technologies in Population Genetics and Genomics

  • J. A. HollidayEmail author
  • E. M. Hallerman
  • D. C. Haak
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Genotypes are the central data to any population genetic and genomic study, and genotyping methods have steadily evolved since the first direct glimpses of genetic variation were enabled through enzyme protein electrophoresis. Following the development of the polymerase chain reaction, allozymes were supplanted by methods that directly measured allelic variation in nuclear and organellar DNA, most notably through the use of restriction fragment length polymorphisms (RFLPs), amplified fragment length polymorphisms (AFLPs), and microsatellites. At the turn of the millennium, genome-scale polymorphism detection and scoring still was hampered by the low-throughput nature of Sanger sequencing. This limitation changed with the advent of genotyping microarrays that at first yielded hundreds of data points per sample – a revolution at the time – and that subsequently improved to the point where hundreds of thousands of genetic variants could be scored simultaneously. These methods suffered a major flaw, however, in that their cost put them out of reach for studies of most ecologically important but economically unimportant species. The democratization of population genomics arrived with the advent of high-throughput, short-read sequencers and subsequent development of DNA library techniques to subsample the genome in a large number of individuals. Today, such methods – genotyping-by-sequencing, restriction site-associated DNA sequencing, RNA sequencing, and sequence capture – have become mainstays of the population geneticist’s toolkit. Refinements to existing library and sequencing methods continue to emerge at a rapid pace, and novel sequencing platforms may soon put the gold standard of long-read, genome-wide coverage within a broader reach. In this chapter, we comprehensively review genotyping methods used in population genetics, beginning with allozymes and progressing through AFLPs, microsatellites, and SNP arrays. We subsequently turn to a detailed discussion of methods that leverage next-generation technologies to enable truly genome-scale genotyping. Finally, we discuss recent developments and emerging technologies that constitute the “third wave” of sequencing and genotyping methods. Throughout, our aim is to provide methodological details that will be of use to population geneticists.

Keywords

Ecological genomics Genotyping by sequencing Illumina Population genomics Sequence capture 

References

  1. Avise JC. Molecular markers, natural history, and evolution. 2nd ed. Sunderland: Sinauer Associates; 2004.Google Scholar
  2. Backert S, Nielsen BL, Börner T. The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci. 1997;2:477–83.Google Scholar
  3. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:e3376.PubMedPubMedCentralGoogle Scholar
  4. Barendse W, Armitage SM, Kossarek LM, Shalom A, Kirkpatrick BW, Ryan AM, Clayton D, Li L, Neibergs HL, Zhang N, Grosse WM. A genetic linkage map of the bovine genome. Nat Genet. 1994;6:227–35.PubMedGoogle Scholar
  5. Barrett JW, Rajora OP, Yeh FCH, Dancik BP, Strobeck C. Mitochondrial-DNA variation and genetic-relationships of Populus species. Genome. 1993;36:87–93.PubMedGoogle Scholar
  6. Beckmann JS, Kashi Y, Hallerman EM, Nave A, Soller M. Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls. Anim Genet. 1986;17:25–38.PubMedGoogle Scholar
  7. Beismann H, Barker JH, Karp A, Speck T. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol Ecol. 1997;6:989–93.Google Scholar
  8. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40:e72.PubMedPubMedCentralGoogle Scholar
  9. Bensch S, Åkesson M. Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol. 2005;14:2899–914.PubMedGoogle Scholar
  10. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.PubMedPubMedCentralGoogle Scholar
  11. Berlin K, Koren S, Chin CS, et al. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol. 2015;33:623.PubMedGoogle Scholar
  12. Bernatchez L, Guyomard R, Bonhomme F. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol. 1992;1:161–73.PubMedGoogle Scholar
  13. Birky CW Jr. Transmission genetics of mitochondria and chloroplasts. Annu Rev Genet. 1978;12:471–512.PubMedGoogle Scholar
  14. Birky CW Jr. Evolution and variation in plant chloroplast and mitochondrial genomes. In: Gottlieb L, editor. Plant evolutionary biology. Netherlands: Springer; 1988. p. 23–53.Google Scholar
  15. Birol I, Raymond A, Jackman SD, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.PubMedPubMedCentralGoogle Scholar
  16. Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SL, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J. A genetic linkage map for cattle. Genetics. 1994;136:619–39.PubMedPubMedCentralGoogle Scholar
  17. Blouin MS, Parsons M, Lacaille V, Lotz S. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol. 1996;5:393–401.PubMedGoogle Scholar
  18. Boitard S, Schlotterer C, Nolte V, Pandey RV, Futschik A. Detecting selective sweeps from pooled next-generation sequencing samples. Mol Biol Evol. 2012;29:2177–86.PubMedPubMedCentralGoogle Scholar
  19. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.PubMedPubMedCentralGoogle Scholar
  20. Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016;98:116–26.PubMedPubMedCentralGoogle Scholar
  21. Buchert GP, Rajora OP, Hood JV, Dancik BP. Effects of harvesting on genetic diversity in old growth eastern white pine in Ontario, Canada. Conserv Biol. 1997;11:747–58.Google Scholar
  22. Buerkle CA, Gompert Z. Population genomics based on low coverage sequencing: how low should we go? Mol Ecol. 2013;22:3028–35.Google Scholar
  23. Buth DG. Genetic principles and the interpretation of electrophoretic data. In: Whitmore DH, editor. Electrophoretic and isoelectric focusing techniques in fishery management. Boca Raton: CRC Press; 1990. p. 1–22.Google Scholar
  24. Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993;52:922–7.PubMedPubMedCentralGoogle Scholar
  25. Camper SA, Luck DN, Yao Y, Woychik RP, Goodwin RG, Lyons RH Jr, Rottman FM. Characterization of the bovine prolactin gene. DNA. 1984;3:237–49.PubMedGoogle Scholar
  26. Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987;325:31–6.PubMedGoogle Scholar
  27. Cavers S, Navarro C, Lowe AJ. Chloroplast DNA phylogeography reveals colonization history of a Neotropical tree, Cedrela odorata L., in Mesoamerica. Mol Ecol. 2003;12:1451–60.PubMedGoogle Scholar
  28. Cervera MT, Storme V, Soto A, Ivens B, Van Montagu M, Rajora OP, Boerjan W. Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers. Theor Appl Genet. 2005;111:1440–56.PubMedGoogle Scholar
  29. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988;16:11141–56.PubMedPubMedCentralGoogle Scholar
  30. Chat J, Chalak L, Petit RJ. Strict paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in intraspecific crosses of kiwifruit. Theor Appl Genet. 1999;99:314–22.Google Scholar
  31. Chhatre VE, Rajora OP. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, eastern white pine (Pinus strobus) from northern Ontario. PLoS One. 2014;9:e97291.PubMedPubMedCentralGoogle Scholar
  32. Christe C, Stölting KN, Paris M, et al. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol Ecol. 2016;26:59.  https://doi.org/10.1111/mec.13765.CrossRefPubMedGoogle Scholar
  33. Clegg MT, Brown AH, Whitfeld PR. Chloroplast DNA diversity in wild and cultivated barley: implications for genetic conservation. Genet Res. 1984;43:339–43.Google Scholar
  34. Clegg MT, Ritland K, Zurawski G. Processes of chloroplast DNA evolution. In: Karlin S, Nevo E, editors. Evolutionary processes and theory. New York: Academic Press; 1986. p. 275–94.Google Scholar
  35. Craft KJ, Owens JD, Ashley MV. Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites. Forensic Sci Int. 2007;165:64–70.PubMedGoogle Scholar
  36. Curtis SE, Clegg MT. Molecular evolution of chloroplast DNA sequences. Mol Biol Evol. 1984;1:291–301.PubMedGoogle Scholar
  37. Dayanandan S, Bawa KS, Kesseli R. Conservation of microsatellites among tropical trees (Leguminosae). Am J Bot. 1997;84:1658–63.PubMedGoogle Scholar
  38. De Wit P, Pespeni MH, Ladner JT, et al. The simple fool's guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour. 2012;12:1058–67.PubMedGoogle Scholar
  39. Demesure B, Sodzi N, Petit RJ. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 1995;4:129–31.PubMedGoogle Scholar
  40. DeWoody JA, Avise JC. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol. 2000;56:461–73.Google Scholar
  41. Doebley J, Renfroe W, Blanton A. Restriction site variation in the zea chloroplast genome. Genetics. 1987;117:139–47.PubMedPubMedCentralGoogle Scholar
  42. Dowling TE, Moritz C, Palmer JD, Rieseberg LH. Nucleic acids III: analysis of fragments and restriction sites. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. 2nd ed. Sunderland: Sinauer Associates; 1996. p. 249–320.Google Scholar
  43. Duminil J, Pemonge MH, Petit RJ. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes. 2002;2:428–30.Google Scholar
  44. Dumolin-Lapegue S, Pemonge M-H, Petit RJ. An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol. 1997;6:393–7.PubMedGoogle Scholar
  45. Eckert AJ, Pande B, Ersoz ES, et al. High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes. 2009;5:225–34.Google Scholar
  46. Edelist C, Lexer C, Dillmann C, Sicard D, Rieseberg LH. Microsatellite signature of ecological selection for salt tolerance in a wild sunflower hybrid species, Helianthus paradoxus. Mol Ecol. 2006;15:4623–34.PubMedPubMedCentralGoogle Scholar
  47. Elshire RJ, Glaubitz JC, Sun Q, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.PubMedPubMedCentralGoogle Scholar
  48. Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, Guyomard R. Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol Ecol. 1998;7:339–53.PubMedGoogle Scholar
  49. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet. 2002;104:399–407.PubMedGoogle Scholar
  50. Evans J, Kim J, Childs KL, et al. Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum. Plant J. 2014a;79:993–1008.PubMedPubMedCentralGoogle Scholar
  51. Evans LM, Slavov GT, Rodgers-Melnick E, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. 2014b;46:1089–96.PubMedGoogle Scholar
  52. Fabian DK, Kapun M, Nolte V, et al. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol Ecol. 2012;21:4748–69.PubMedPubMedCentralGoogle Scholar
  53. Fageria MS, Rajora OP. Effects of harvesting of increasing intensities on genetic diversity and population structure of white spruce. Evol Appl. 2013;6:778–94.PubMedPubMedCentralGoogle Scholar
  54. Faivre-Rampant P, Zaina G, Jorge V, et al. New resources for genetic studies in Populus nigra: genome-wide SNP discovery and development of a 12k Infinium array. Mol Ecol Resour. 2016;16:1023–36.PubMedGoogle Scholar
  55. Fan JB, Oliphant A, Shen R, et al. Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol. 2003;68:69–78.PubMedGoogle Scholar
  56. Fischer MC, Rellstab C, Tedder A, et al. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol Ecol. 2013;22:5594–607.PubMedPubMedCentralGoogle Scholar
  57. Fullwood MJ, Wei C-L, Liu ET, Ruan Y. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res. 2009;19:521–32.PubMedPubMedCentralGoogle Scholar
  58. Gagnaire P-A, Pavey SA, Normandeau E, Bernatchez L. The genetic architecture of reproductive isolation during speciation-with-gene-flow in lake whitefish species pairs assessed by RAD sequencing. Evolution. 2013;67:2483–97.PubMedGoogle Scholar
  59. Ghislain M, Spooner DM, Rodriguez F, et al. Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet. 2004;108:881–90.PubMedGoogle Scholar
  60. Gill P, Jeffreys AJ, Werrett DJ. Forensic application of DNA ‘fingerprints’. Nature. 1985;318:577–9.PubMedGoogle Scholar
  61. Gillham NW. Organelle heredity. New York: Raven Press; 1978.Google Scholar
  62. Gnirke A, Melnikov A, Maguire J, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27:182–9.PubMedPubMedCentralGoogle Scholar
  63. Godoy JA, Jordano P. Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Mol Ecol. 2001;10:2275–83.PubMedGoogle Scholar
  64. Goncalves da Silva A, Barendse W, Kijas JW, et al. SNP discovery in nonmodel organisms: strand bias and base-substitution errors reduce conversion rates. Mol Ecol Resour. 2015;15:723–36.PubMedGoogle Scholar
  65. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.Google Scholar
  66. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguichi AY, Young AB, Shoulson I, Bonilla E, Martin JB. A polymorphic DNA marker linked to Huntington's disease. Nature. 1983;306:238–44.Google Scholar
  67. Hamilton MB. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol. 1999;8:521–2.PubMedGoogle Scholar
  68. Harris SA, Ingram R. Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon. 1991;1:393–412.Google Scholar
  69. Hebert FO, Renaut S, Bernatchez L. Targeted sequence capture and resequencing implies a predominant role of regulatory regions in the divergence of a sympatric lake whitefish species pair (Coregonus clupeaformis). Mol Ecol. 2013;22:4896–914.PubMedGoogle Scholar
  70. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet. 1986;72:761–9.PubMedGoogle Scholar
  71. Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG. Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol Ecol. 2004;13:3437–52.PubMedGoogle Scholar
  72. Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.PubMedGoogle Scholar
  73. Hoelzel AR. Molecular genetic analysis of populations: a practical approach. Oxford: IRL Press; 1992.Google Scholar
  74. Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol. 2010;188:501–14.PubMedGoogle Scholar
  75. Holliday JA, Zhou L, Bawa R, Zhang M, Oubida RW. Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytol. 2016;209:1240.  https://doi.org/10.1111/nph.13643.CrossRefPubMedGoogle Scholar
  76. Hou ZG, Jiang P, Swanson SA, et al. A cost-effective RNA sequencing protocol for large-scale gene expression studies. Sci Rep. 2015;5:9570.PubMedPubMedCentralGoogle Scholar
  77. Hugot JP, Chamaillard M, Zouali H, Lesage S. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599.PubMedGoogle Scholar
  78. Johns C, Lu M, Lyznik A, Mackenzie S. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell. 1992;4:435–49.PubMedPubMedCentralGoogle Scholar
  79. Johnston SE, Orell P, Pritchard VL, et al. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar). Mol Ecol. 2014;23:3452–68.PubMedGoogle Scholar
  80. Jones FC, Grabherr MG, Chan YF, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61.PubMedPubMedCentralGoogle Scholar
  81. Kang BY, Mann IK, Major JE, Rajora OP. Near-saturated and complete genetic linkage map of black spruce (Picea mariana). BMC Genomics. 2010;24:515.Google Scholar
  82. Kang BY, Major JE, Rajora OP. A high-density genetic linkage map of a black spruce (Picea mariana) × red spruce (Picea rubens) interspecific hybrid. Genome. 2011;54:128–43.PubMedGoogle Scholar
  83. Kashi Y, Hallerman E, Soller M. Marker-assisted selection of candidate bulls for progeny testing programmes. Anim Prod. 1990;51:63–74.Google Scholar
  84. Kessler C. Class II restriction endonucleases. In: Obe G, Basler A, editors. Cytogenetics. Berlin: Springer Verlag; 1987. p. 225–79.Google Scholar
  85. Kiialainen A, Karlberg O, Ahlford A, et al. Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. PLoS One. 2011;6:e16486.PubMedPubMedCentralGoogle Scholar
  86. Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289–320.PubMedGoogle Scholar
  87. Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press; 1983.Google Scholar
  88. King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA. Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation. Mol Ecol. 2001;10:807–21.PubMedGoogle Scholar
  89. Knoop V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet. 2004;46:123–39.PubMedGoogle Scholar
  90. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA. 1989;86:6196–200.PubMedGoogle Scholar
  91. Kofler R, Pandey RV, Schlotterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27:3435–6.PubMedPubMedCentralGoogle Scholar
  92. Kofler R, Betancourt AJ, Schlotterer C. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLoS Genet. 2012;8:e1002487.PubMedPubMedCentralGoogle Scholar
  93. Kofler R, Gomez-Sanchez D, Schlotterer C. PoPoolationTE2: comparative population genomics of transposable elements using pool-seq. Mol Biol Evol. 2016a;33:2759–64.PubMedPubMedCentralGoogle Scholar
  94. Kofler R, Langmuller AM, Nouhaud P, Otte KA, Schlotterer C. Suitability of different mapping algorithms for genome-wide polymorphism scans with pool-seq data. G3 Genes Genomes Genet. 2016b;6:3507–15.Google Scholar
  95. Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK. Estimating population size by genotyping faeces. Proc R Soc Lond B Biol Sci. 1999;266:657–63.Google Scholar
  96. Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318:420–6.PubMedPubMedCentralGoogle Scholar
  97. Kozarewa I, Ning Z, Quail MA, et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G plus C)-biased genomes. Nat Methods. 2009;6:291–5.PubMedPubMedCentralGoogle Scholar
  98. Kress WJ, Erickson DL. DNA barcodes: methods and protocols. Methods Mol Biol. 2012;858:3–8.PubMedGoogle Scholar
  99. Kwok PY. Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet. 2001;2:235–58.PubMedGoogle Scholar
  100. Lansman RA, Shade RO, Shapira JF, Avise JC. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol. 1981;17:214–26.PubMedGoogle Scholar
  101. Lansman RA, Avise JC, Aquadro CF, Shapira JF, Daniel SW. Extensive genetic variation in mitochondrial DNAs among geographic populations of the deer mouse, Peromyscus maniculatus. Evolution. 1983;37:1–16.PubMedGoogle Scholar
  102. Lawson Handley LJ, Perrin N. Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol. 2007;16:1559–78.PubMedGoogle Scholar
  103. Lee H, Gurtowski J, Yoo S, et al. Third-generation sequencing and the future of genomics. bioRxiv. 2016.  https://doi.org/10.1101/048603.
  104. Lepoittevin C, Bodenes C, Chancerel E, et al. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Mol Ecol Resour. 2015;15:1446–59.PubMedGoogle Scholar
  105. Lewontin RC, Hubby JT. A molecular approach to the study of genic heterozygosity in natural populations: amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966;54:595–609.PubMedPubMedCentralGoogle Scholar
  106. Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genomics Hum Genet. 2009;10:387–406.PubMedPubMedCentralGoogle Scholar
  107. Little P, Annison G, Darling S, Williamson R, Cambar T, Model B. Model for antenatal diagnosis of b-thalassemia and other monogenic disorders by molecular analysis of linked DNA polymorphisms. Nature. 1980;285:144–7.PubMedGoogle Scholar
  108. Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P. Evidence for two independent domestications of cattle. Proc Natl Acad Sci USA. 1994;91:2757–61.PubMedGoogle Scholar
  109. Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH. The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity. Philos Trans R Soc B. 1988;319:149–63.Google Scholar
  110. Loridon K, Burgarella C, Chantret N, et al. Single-nucleotide polymorphism discovery and diversity in the model legume Medicago truncatula. Mol Ecol Resour. 2013;13:84–95.PubMedGoogle Scholar
  111. Malenfant RM, Coltman DW, Davis CS. Design of a 9K illumina beadchip for polar bears (Ursus maritimus) from RAD and transcriptome sequencing. Mol Ecol Resour. 2015;15:587–600.PubMedGoogle Scholar
  112. Maxam AM, Gilbert W. New method for sequencing DNA. Proc Natl Acad Sci USA. 1977;74:560–4.Google Scholar
  113. Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65:499–559.PubMedGoogle Scholar
  114. May B. Starch gel electrophoresis of allozymes. In: Hoelzel AR, editor. Molecular genetic analysis of populations: a practical approach. 2nd ed. New York: Oxford University Press; 1998. p 1–28 and 371–378.Google Scholar
  115. McKernan KJ, Peckham HE, Costa GL, et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 2009;19:1527–41.PubMedPubMedCentralGoogle Scholar
  116. Metzlaff M, Börner T, Hagemann R. Variations of chloroplast DNAs in the genus Pelargonium and their biparental inheritance. Theor Appl Genet. 1981;60:37–41.PubMedGoogle Scholar
  117. Meyer A. Molecular phylogenetic studies of fishes. In: Beaumont AR, editor. Evolution and genetics of aquatic organisms. New York: Chapman and Hall; 1993.Google Scholar
  118. Meyer A, Kocher TD, Basasibwaki P, Wilson AC. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature. 1990;347:550–3.PubMedGoogle Scholar
  119. Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, Yamazaki M, Watanabe K, Goto K, Nakamura S, Bahram S. Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behcet disease. Proc Natl Acad Sci U S A. 1997;94:1298–303.PubMedPubMedCentralGoogle Scholar
  120. Moran Z, Orth DJ, Schmitt JD, Hallerman EM, Aguilar R. Effectiveness of DNA barcoding for identifying piscine prey items in stomach contents of piscivorous catfishes. Environ Biol Fish. 2015;99:161–7.Google Scholar
  121. Morgante M, Olivieri AM. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993;3:175–82.PubMedGoogle Scholar
  122. Morizot DC, Schmidt ME. Starch gel electrophoresis and histochemical visualization of proteins. In: Whitmore DH, editor. Electrophoretic and isoelectric focusing techniques in fishery management. Boca Raton: CRC Press; 1990. p. 23–80.Google Scholar
  123. Mostovoy Y, Levy-Sakin M, Lam J, et al. A hybrid approach for de novo human genome sequence assembly and phasing. Nat Methods. 2016;13:587.PubMedPubMedCentralGoogle Scholar
  124. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.PubMedGoogle Scholar
  125. Murphy RW, Sites JW, Buth DG, Haufler CH. Isozyme electrophoresis. In: Hillis DM, Moritz C, Mable BK, editors. Molecular systematics. 2nd ed. Sunderland: Sinauer Associates; 1996. p. 51–120.Google Scholar
  126. Nadeau NJ, Whibley A, Jones RT, et al. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Philos Trans R Soc B Biol Sci. 2012;367:343–53.Google Scholar
  127. Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987;235:1616–22.PubMedGoogle Scholar
  128. National Conservation Training Center (NCTC) 2017. https://nctc.fws.gov/courses/csp/csp3157/content/terms/microsatellite.html
  129. Neale DB, Sederoff RR. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet. 1989;77:212–6.PubMedGoogle Scholar
  130. Neiman MR, Sundling S, Groenberg H, et al. Library preparation and multiplex capture for massive parallel sequencing applications made efficient and easy. PLoS One. 2012;7:e48616.PubMedPubMedCentralGoogle Scholar
  131. Neves LG, Davis JM, Barbazuk WB, Kirst M. Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J. 2013;75:146–56.PubMedGoogle Scholar
  132. Nielsen EE, Hansen MM, Loeschcke V. Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Mol Ecol. 1997;6:487–92.Google Scholar
  133. Normark BB, McCune AR, Harrison RG. Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol Biol Evol. 1991;8:819–34.PubMedGoogle Scholar
  134. Okou DT, Steinberg KM, Middle C, et al. Microarray-based genomic selection for high-throughput resequencing. Nat Methods. 2007;4:907–9.PubMedGoogle Scholar
  135. Olson MS, McCauley DE. Mitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgaris. Evolution. 2002;56:253–62.PubMedGoogle Scholar
  136. Paetkau D, Calvert W, Stirling I, Strobeck C. Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol. 1995;4:347–54.PubMedGoogle Scholar
  137. Paetkau D, Waits LP, Clarkson PL, Craighead L, Vyse E, Ward R, Strobeck C. Variation in genetic diversity across the range of North American brown bears. Conserv Biol. 1998;12:418–29.Google Scholar
  138. Palmé AE, Su Q, Rautenberg A, Manni F, Lascoux M. Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Mol Ecol. 2003;12(2):201–12.PubMedGoogle Scholar
  139. Palmé AE, Su Q, Palsson S, Lascoux M. Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol Ecol. 2004;13(1):167–78.PubMedGoogle Scholar
  140. Palmer JD. Evolution of chloroplast and mitochondrial DNA in plants and algae. In: McIntyre RJ, editor. Molecular evolutionary genetics. New York: Plenum Press; 1985. p. 131–240.Google Scholar
  141. Palmer JD. Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis PS, Soltis DE, Doyle JJ, editors. Molecular systematics of plants. New York: Springer; 1992. p. 36–49.Google Scholar
  142. Palmer JD, Herbon LA. Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion. Nucleic Acids Res. 1986;14:9755–64.PubMedPubMedCentralGoogle Scholar
  143. Palmer JD, Herbon LA. Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence. J Mol Evol. 1988;28:87–97.PubMedGoogle Scholar
  144. Palmer JD, Thompson WF. Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA. 1981;78:5533–7.PubMedGoogle Scholar
  145. Palmer JD, Zamir D. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA. 1982;79:5006–10.PubMedGoogle Scholar
  146. Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA. 2000;97:6960–6.PubMedGoogle Scholar
  147. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, Malek TB, Johnson GS, DeFrance HB, Ostrander EA, Kruglyak L. Genetic structure of the purebred domestic dog. Science. 2004;304:1160–4.PubMedGoogle Scholar
  148. Pascoal S, Cezard T, Eik-Nes A, et al. Rapid convergent evolution in wild crickets. Curr Biol. 2014;24:1369–74.PubMedGoogle Scholar
  149. Pavy N, Pelgas B, Beauseigle S, et al. Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics. 2008;9:21.PubMedPubMedCentralGoogle Scholar
  150. Pavy N, Gagnon F, Rigault P, et al. Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol Ecol Resour. 2013;13:324–36.PubMedGoogle Scholar
  151. Pavy N, Gagnon F, Deschenes A, et al. Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (Picea mariana). Mol Ecol Resour. 2016;16:588–98.PubMedGoogle Scholar
  152. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol. 1998;15:1275–87.PubMedGoogle Scholar
  153. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7:e37135.PubMedPubMedCentralGoogle Scholar
  154. Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, van Dam B, Deans JD, Dumolin-Lapègue S, Fineschi S, Finkeldey R. Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manag. 2002;156:5–26.Google Scholar
  155. Phillips J, Panny S, Kazazian H, Bochun C, Scott C, Smith R. Prenatal diagnosis of sickle cell anemia by restriction endonuclease analysis: hindIII polymorphisms in v-globin genes extend applicability. Proc Natl Acad Sci USA. 1980;77:2853–6.PubMedGoogle Scholar
  156. Picelli S, Bjorklund AK, Reinius B, et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 2014;24:2033–40.PubMedPubMedCentralGoogle Scholar
  157. Plant-Microbe Genomics Facility (PMGF). 2017. https://pmgf.osu.edu/services/genotyping/example
  158. Plomion C, Bartholome J, Lesur I, et al. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Mol Ecol Resour. 2016;16:574–87.PubMedGoogle Scholar
  159. Pring DR, Lonsdale DM. Molecular biology of higher plant mitochondrial DNA. Int Rev Cytol. 1985;97:1–46.Google Scholar
  160. Prober JM, Trainor GL, Dam RJ, Hobbs FW, Robertson CW, Zagursky RJ, Cocuzza AJ, Jensen MA, Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987;238:336–41.PubMedGoogle Scholar
  161. Quéméré E, Hibert F, Miquel C, Lhuillier E, Rasolondraibe E, Champeau J, Rabarivola C, Nusbaumer L, Chatelain C, Gautier L, Ranirison P. A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range. PLoS One. 2013;8:e58971.PubMedPubMedCentralGoogle Scholar
  162. Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530:228.PubMedPubMedCentralGoogle Scholar
  163. Rajora OP, Rahman MH, Buchert GP, Dancik BP. Microsatellite DNA analysis of genetic effects of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Mol Ecol. 2000;9:339–48.PubMedGoogle Scholar
  164. Remington DL, Whetten RW, Liu BH, O’Malley DM. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet. 1999;98:1279–92.PubMedGoogle Scholar
  165. Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell. 2015;58:586–97.PubMedPubMedCentralGoogle Scholar
  166. Rheindt FE, Fujita MK, Wilton PR, Edwards SV. Introgression and phenotypic assimilation in Zimmerius flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs. Syst Biol. 2014;63:134–52.PubMedGoogle Scholar
  167. Ritter E, Gebhardt C, Salamini F. Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics. 1990;125:645–54.PubMedPubMedCentralGoogle Scholar
  168. Rivin CJ, Zimmer EA, Cullis CA, Walbot V, Huynh T, Davis RW. Evaluation of genomic variability at the nucleic acid level. Plant Mol Biol Report. 1983;1:9–16.Google Scholar
  169. Roberts JR. Restriction and modification enzymes and their recognition sequences. Nucleic Acids Res. 1984;12:R167–204.PubMedPubMedCentralGoogle Scholar
  170. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242:84–9.PubMedGoogle Scholar
  171. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science. 1998;281:363.Google Scholar
  172. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA. 1984;81:8014–8.PubMedGoogle Scholar
  173. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.PubMedGoogle Scholar
  174. Saiki RK, Gelfand DH, Stoffel S, Scharf ST, Higuchi R, Horn GT, Mullis KB, Ehrlich HA. Primer-directed enzymatic amplification of DNA. Science. 1988;239:487–91.PubMedGoogle Scholar
  175. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.PubMedGoogle Scholar
  176. Schardl CL, Pring DR, Lonsdale DM. Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell. 1985;43:361–8.PubMedGoogle Scholar
  177. Scheet P, Stephens M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006;78:629–44.PubMedPubMedCentralGoogle Scholar
  178. Schlotterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals-mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749–63.PubMedGoogle Scholar
  179. Shen R, Fan JB, Campbell D, et al. High-throughput SNP genotyping on universal bead arrays. Mutat Res Fundam Mol Mech Mutagen. 2005;573:70–82.Google Scholar
  180. Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345.  https://doi.org/10.1038/nature24286. Advance Online Publication.CrossRefPubMedGoogle Scholar
  181. Sinclair WT, Morman JD, Ennos RA. The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol Ecol. 1999;8:83–8.Google Scholar
  182. Sobel JM, Streisfeld MA. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution. 2015;69:447–61.PubMedGoogle Scholar
  183. Soria-Carrasco V, Gompert Z, Comeault AA, et al. Stick insect genomes reveal natural Selection’s role in parallel speciation. Science. 2014;344:738–42.PubMedGoogle Scholar
  184. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98:503–17.PubMedGoogle Scholar
  185. Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce. Mol Ecol. 2001;10:257–63.PubMedGoogle Scholar
  186. Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A. 2005;102:14694–9.PubMedPubMedCentralGoogle Scholar
  187. Straub SCK, Parks M, Weitemier K, et al. Navigating the tip of the genomic icebeg: next-generation sequencing for plant systematics. Am J Bot. 2012;99:349–64.PubMedGoogle Scholar
  188. Streiff RE, Labbe TH, Bacilieri RO, Steinkellner HE, Glossl JO, Kremer AN. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol. 1998;7:317–28.Google Scholar
  189. Suren H, Hodgins KA, Yeaman S, et al. Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour. 2016;16:1136–46.PubMedGoogle Scholar
  190. Sytsma KJ, Gottlieb LD. Chloroplast DNA evolution and phylogenetic relationships in Clarkia Sect. peripetasma (Onagraceae). Evolution. 1986;40:1248–61.PubMedGoogle Scholar
  191. Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol. 1991;17:1105–9.PubMedGoogle Scholar
  192. Taberlet P, Camarra JJ, Griffin S, Uhres E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J. Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol. 1997;6:869–76.PubMedGoogle Scholar
  193. Tollefsrud MM, Kissling R, Gugerli F, Johnsen Ø, Skrøppa T, Cheddadi R, Van der Knaap WO, Latałowa M, TerHürne-Berson RU, Litt T, Geburek T. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol. 2008;17:4134–50.PubMedGoogle Scholar
  194. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res. 2010;38:e159.PubMedPubMedCentralGoogle Scholar
  195. Travis SE, Ritland K, Whitham TG, Keim P. A genetic linkage map of Pinyon pine (Pinus edulis) based on amplified fragment length polymorphisms. Theor Appl Genet. 1998;97:871–80.Google Scholar
  196. Tuskan GA, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.PubMedGoogle Scholar
  197. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–8.Google Scholar
  198. Vigilant L, Pennington R, Harpending H, Kocher TD, Wilson AC. Mitochondrial DNA sequences in single hairs from a southern African population. Proc Natl Acad Sci USA. 1989;86:9350–4.PubMedGoogle Scholar
  199. Vignal A, Milan D, San Cristobal M, Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 2002;34:275–305.PubMedPubMedCentralGoogle Scholar
  200. Vila C, Leonard JA, Gotherstrom A, et al. Widespread origins of domestic horse lineages. Science. 2001;291:474–7.PubMedGoogle Scholar
  201. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–14.PubMedPubMedCentralGoogle Scholar
  202. Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP, Allard RW. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA. 1987;84:2097–100.PubMedGoogle Scholar
  203. Wang DG, Fan JB, Siao CJ, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280:1077–82.PubMedGoogle Scholar
  204. Ward BL, Anderson RS, Bendich AJ. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell. 1981;25:793–803.PubMedGoogle Scholar
  205. Wendel JF. New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA. 1989;86:4132–6.PubMedGoogle Scholar
  206. Williams JGK, Kubelik AR, Livak KJ, Rafalski SA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–5.PubMedPubMedCentralGoogle Scholar
  207. Wilson GA, Strobeck C, Wu L, Coffin JW. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol. 1997;6:697–9.PubMedGoogle Scholar
  208. Yanez JM, Naswa S, Lopez ME, et al. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations. Mol Ecol Resour. 2016;16:1002–11.PubMedGoogle Scholar
  209. Zhou L, Holliday JA. Targeted enrichment of the black cottonwood (Populus trichocarpa) gene space using sequence capture. BMC Genomics. 2012;13:703.PubMedPubMedCentralGoogle Scholar
  210. Zhou L, Bawa R, Holliday JA. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa). Mol Ecol. 2014;23:2486–99.PubMedGoogle Scholar
  211. Zurawski G, Clegg MT. Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol. 1987;38:391–418.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • J. A. Holliday
    • 1
  • E. M. Hallerman
    • 2
  • D. C. Haak
    • 3
  1. 1.Department of Forest Resources and Environmental ConservationVirginia TechBlacksburgUSA
  2. 2.Department of Fish and Wildlife ConservationVirginia TechBlacksburgUSA
  3. 3.Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgUSA

Personalised recommendations