Advertisement

Improvement of the Arctic Ocean Bathymetry and Regional Tide Atlas: First Result on Evaluating Existing Arctic Ocean Bathymetric Models

  • M. Cancet
  • O. AndersenEmail author
  • A. Abulaitijiang
  • D. Cotton
  • J. Benveniste
Conference paper
  • 22 Downloads
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 150)

Abstract

The quality of existing bathymetry models for the Arctic Ocean is evaluated through visual comparison and the response of modelled tides. The high resolution ArcTide 2017 hydrodynamic model was used to evaluate the bathymetry in selected shallow water regions where tides are significant. The Southern Barents Sea was identified as a problematic region where inconsistencies were identified, resulting from methods used to patch in regional models and incorrect definitions of coastlines and depths. More generally, the investigation shows that careful verifications are needed to ensure seamless transitions between bathymetry datasets.

More accurate bathymetry in the Arctic Ocean is needed and we outline the development of a new Arctic bathymetry using bathymetry inversion which uses a combination of the existing Arctic bathymetry and topography inverted from a band-pass filtered version of the most recent DTU17 gravity field. We also illustrate the regions where we find adequate spatial correlation to perform such inversion.

Keywords

Arctic Ocean, Bathymetry, Ocean tide, Satellite altimetry 

Notes

Acknowledgement

The authors would like to acknowledge the ESA contribution to the research, through the Cryosat Plus for Oceans program supported under the ESA Support to Science Element Programme (contract 4000106169/12/I-NB).

References

  1. Abulaitijiang A, Andersen OB, Sandwell D (2019) Improved arctic ocean bathymetry derived from DTU17 gravity model. Earth Space Sci 6.  https://doi.org/10.1029/2018EA000502 CrossRefGoogle Scholar
  2. Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. In: NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, Boulder.  https://doi.org/10.7289/V5C8276M CrossRefGoogle Scholar
  3. Andersen OB, Knudsen P (2019) The DTU17 global marine gravity field – first validation results. In: International association of geodesy symposia. Springer Nature, Basel.  https://doi.org/10.1007/1345_2019_65 CrossRefGoogle Scholar
  4. Arndt JE, Jokat W, Dorschel B, Myklebust R, Dowdeswell JA, Evans J (2015) A new bathymetry of the Northeast Greenland continental shelf: constraints on glacial and other processes. Geochem Geophys Geosyst 16:3733–3753.  https://doi.org/10.1002/2015GC005931 CrossRefGoogle Scholar
  5. Bamber JL, Griggs JA, Hurkmans RTWL, Dowdeswell JA, Gogineni SP, Howat I, Mouginot J, Paden J, Palmer S, Rignot E, Steinhage D (2013) A new bed elevation dataset for Greenland. Cryosphere 7:499–510.  https://doi.org/10.5194/tc-7-499-2013 CrossRefGoogle Scholar
  6. Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Rosenberg JV, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32:355–372.  https://doi.org/10.1080/01490410903297766 CrossRefGoogle Scholar
  7. Björk G, Jakobsson M, Assmann K, Andersson LG, Nilsson J, Stranne C, Mayer L (2018) Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge. Ocean Sci 14:1–13CrossRefGoogle Scholar
  8. Cancet M, Andersen O, Lyard F, Cotton D, Benveniste J (2018) Arctide2017, a high-resolution regional tidal model in the Arctic Ocean. Adv Space Res 62(6):1324.  https://doi.org/10.1016/j.asr.2018.01.007 CrossRefGoogle Scholar
  9. Carrère L, Lyard F, Cancet M, Guillot A, Roblou L (2012) FES2012: a new global tidal model taking advantage of nearly twenty years of altimetry. In: Proceeding of the 20 years of progress in radar altimetry symposium, Venice, ItalyGoogle Scholar
  10. Carrère L, Lyard F, Cancet M, Guillot A, Picot N, Dupuy S (2015) FES2014: A new global tidal model. Presented at the Ocean Surface Topography Science Team meeting, Reston, USAGoogle Scholar
  11. Jakobsson M, Mayer L, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke HW, Yarayskaya Z, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik O, Kristoffersen Y, Marcussen C, Mohammed R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012) The International Bathymetric Chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39:L12609.  https://doi.org/10.1029/2012GL052219 CrossRefGoogle Scholar
  12. Kowalik Z, Proshutinsky AY (1994) The Arctic Ocean Tides. In: Johannessen OM, Muench RD, Overland JE (eds) The Polar Oceans and their role in shaping the global environment. American Geophysical Union, Washington, D.C.  https://doi.org/10.1029/GM085p0137 CrossRefGoogle Scholar
  13. Laske G, Masters G (1997) A global digital map of sediment thickness. EOS Trans AGU 78:F483Google Scholar
  14. Lyard F, Lefèvre F et al (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  15. Mayer L, Jakobsson M, Allen G, Dorschel B, Falconer R, Ferrini V, Lamarche G, Snaith H, Weatherall P (2018) The Nippon Foundation—GEBCO Seabed 2030 Project: the quest to see the World’s Oceans completely mapped by 2030. Geosciences 8:63. https://www.mdpi.com/2076-3263/8/2/63 CrossRefGoogle Scholar
  16. Padman L, Erofeeva S (2004) A barotropic inverse tidal model for the Arctic Ocean. Geophys Res Lett 31:L02303.  https://doi.org/10.1029/2003GL019003 CrossRefGoogle Scholar
  17. Padman L, Siegfried MR, Fricker HA (2018) Ocean tide influences on the Antarctic and Greenland ice sheets. Rev Geophys 56:142–184.  https://doi.org/10.1002/2016RG000546 CrossRefGoogle Scholar
  18. Sandwell DT, Gille ST, Smith WHF (2002) Bathymetry from space: oceanography, geophysics, and climate, Bethesda, MD, USA, pp 1–24Google Scholar
  19. Schaffer J, Timmermann R, Arndt J, Kristensen SS, Mayer L, Morlighem M, Steinhage D (2016) A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst Sci Data 8(2):543–557.  https://doi.org/10.5194/essd-8-543-2016 CrossRefGoogle Scholar
  20. Seroussi H, Morlighem M, Rignot E, Larour E, Aubry D, Dhia HB, Kristensen SS (2011) Ice flux divergence anomalies on 79north Glacier, Greenland. Geophys Res Lett 38:L09501.  https://doi.org/10.1029/2011GL047338 CrossRefGoogle Scholar
  21. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334):1956–1962.  https://doi.org/10.1126/science.277.5334.1956 CrossRefGoogle Scholar
  22. Timmermann R, Le Brocq A, Deen T, Domack E, Dutrieux P, Galton-Fenzi B, Hellmer H, Humbert A, Jansen D, Jenkins A, Lambrecht A, Makinson K, Niederjasper F, Nitsche F, Nøst OA, Smedsrud LH, Smith WHF (2010) A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst Sci Data 2:261–273.  https://doi.org/10.5194/essd-2-261-2010 CrossRefGoogle Scholar
  23. Weatherall PK, Marks K, Jakobsson M, Schmitt T, Tani S, Arndt JE, Rovere M, Chayes D, Ferrini V, Wigley R (2015) A new digital bathymetric model of the world’s oceans. Earth Space Sci 2:331–345.  https://doi.org/10.1002/2015EA000107 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Cancet
    • 1
  • O. Andersen
    • 2
    Email author
  • A. Abulaitijiang
    • 2
  • D. Cotton
    • 3
  • J. Benveniste
    • 4
  1. 1.NOVELTISLabègeFrance
  2. 2.DTU SpaceCopenhagenDenmark
  3. 3.SatOCDerbyshireUK
  4. 4.ESA/ESRINFrascatiItaly

Personalised recommendations