On the Numerical Implementation of a Perturbation Method for Satellite Gravity Mapping
- 102 Downloads
Abstract
In 2008 P. Xu (Celest Mech Dyn Astron, 100:231–249) proposed a strictly kinematic perturbation method for determining the Earth’s gravitational field from continuous satellite tracking. The main idea is to process orbital arcs of arbitrary length, thus minimizing superfluous parameter estimation associated with stitching together short-arc solutions, and at the same time formulating the problem in terms of standard linear parameter estimation. While the original formulation appears mathematically robust, its nested quadruple along-track integrations are computationally challenging. We reduce the formulation to double integrals and show that the method is numerically not feasible as originally envisaged. On the other hand, by abandoning the rigorous Gauss-Markov formalism, we show the numerical feasibility of processing multiple-day orbital arcs. The methodology lends itself to high-low and low-low satellite-to-satellite tracking, or combinations thereof, as for GRACE-like systems.
Keywords
GNSS satellite tracking Gravitational field estimation Numerical orbit integration Satellite perturbation theoryNotes
Acknowledgments
The authors wish to thank Prof. Torsten Mayer-Gürr and an anonymous reviewer for valuable comments that improved the manuscript.
References
- Kondo J (1991) Integral equations. Clarendon Press, OxfordGoogle Scholar
- Krogh FT (1970) VODQ/SVDQ/DVDQ - variable order integrators for the numerical solution of ordinary differential equations. Tech. Util. Doc. No. CP-2308, NPO-11643, JPL, PasadenaGoogle Scholar
- Mayer-Gürr T (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Dissertation, Friedrich-Wilhelms-Universität, Bonn, GermanyGoogle Scholar
- Naeimi M, Flury J (eds) (2017) Global gravity field modeling from satellite-to-satellite tracking. Lecture Notes in Earth System Sciences. Springer, BerlinGoogle Scholar
- Xu P (2008) Position and velocity perturbations for the determination of geopotential from space geodetic measurements. Celest Mech Dyn Astron 100:231–249CrossRefGoogle Scholar