Orbit Optimization for Future Satellite Gravity Field Missions: Influence of the Time Variable Gravity Field Models in a Genetic Algorithm Approach

  • Siavash Iran Pour
  • Nico Sneeuw
  • Matthias Weigelt
  • Alireza Amiri-Simkooei
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 151)


Many studies in the past have discussed potential orbit configurations of future satellite gravity missions. Most of those works have targeted orbit optimization of the satellite missions of the next generation in the so-called Bender formation. The studies have investigated the impact of the Keplerian orbital parameters, especially the influence of the repeat orbits and mission altitude of both satellite pairs and the inclination of the second pair in Bender formation on the satellite configurations’ gravity field recovery quality performance.

Obviously, the search space for the orbit optimization in the Bender formation is vast and, therefore, different approaches have been suggested for optimal orbit design. Among approaches, however, different assumptions about input geophysical models as well as the error models into the simulation software play a role. Our paper shows how different assumptions for input models change the orbit optimization results. For this purpose, the genetic algorithm has been utilized for orbit optimization of the Bender formation where different input models were considered. Those input models include (1) the updated ESA geophysical models, and (2) error models for the Ocean Tide (OT error) and Atmosphere-Ocean (AO error). Here, we focus on the impact of the models on relative difference of the longitude of ascending nodes between the two pairs in Bender formation. The results of the paper clearly state that our current and future knowledge about signal and error models can significantly affect the orbit optimization problem.


Genetic algorithm Gravity field recovery Orbit optimization Time-variable gravity field 


  1. Anselmi A, Visser P, van Dam T, Sneeuw N, Gruber T, Altès B et al (2011) Assessment of a next generation gravity mission to monitor the variations of Earth’s gravity field. European Space Agency (ESA)Google Scholar
  2. Bender P, Wiese D, Nerem R (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the third international Symposium on formation flying, missions and technologies, ESA/ESTEC, Noordwijk. ESA, ESTEC, Noordwijk, The Netherlands, pp 1–6. Retrieved April 23–25, 2008, from
  3. Dobslaw H, Bergmann-Wolf I, Dill R, Forootan E, Klemann V, Kusche J, Sasgen I (2015) The updated ESA earth system model for future gravity mission simulation studies. J Geod 89:505–513. CrossRefGoogle Scholar
  4. Ellmer M (2011) Optimization of the orbit parameters of future gravity missions using genetic algorithms. University of Stuttgart, Stuttgart. Retrieved from Google Scholar
  5. Elsaka B (2010) Simulated satellite formation flights for detecting temporal variations of the Earth’s gravity field. University of Bonn, Bonn. Retrieved from Google Scholar
  6. Elsaka B, Kusche J, Ilk K (2012) Recovery of the Earth’s gravity field from formation-flying satellites: temporal aliasing issues. Adv Space Res 50(11):1534–1552. CrossRefGoogle Scholar
  7. Elsaka B, Raimondo J-C, Brieden P, Reubelt T, Kusche J, Flechtner F et al (2014) Comparing seven candidate mission configurations for temporal gravity field retrieval through full-scale numerical simulation. J Geod 88(2):31–43CrossRefGoogle Scholar
  8. Gruber T, Bamber J, Bierkens M, Dobslaw H, Murböck M, Thomas M et al (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3(1):19–35. CrossRefGoogle Scholar
  9. Gruber T, Baldesarra M, Brieden P, Danzmann K, Daras I, Doll B et al (2014) e2motion - earth system mass transport mission - concept for a next generation gravity field mission. Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Reihe B, Angewandte Geodäsie, Munich, p 318Google Scholar
  10. Iran Pour S, Reubelt T, Sneeuw N (2013) Quality assessment of sub-Nyquist recovery from future gravity satellite missions. Adv Space Res 52(5):916–929. CrossRefGoogle Scholar
  11. Iran Pour S, Reubelt T, Sneeuw N, Daras I, Murböck M, Gruber T et al (2015) ESA SC4MGV Project “Assessment of Satellite Constellations for Monitoring the Variations in Earth’s Gravity Field”. European Space Agency (ESA)Google Scholar
  12. Iran Pour S, Weigelt M, Reubelt T, Sneeuw N (2016) Impact of groundtrack pattern of double pair missions on the gravity recovery quality: lessons from the ESA SC4MGV Project. In: International symposium on earth and environmental sciences for future generations, vol 147. Springer International Publishing, Prague, pp 97–101. CrossRefGoogle Scholar
  13. Iran-Pour S, Weigelt M, Amiri-Simkooei A-R, Sneeuw N (2018) Impact of groundtrack pattern of a single pair mission on the gravity recovery quality. Geosciences (Switzerland) 8(9):315. CrossRefGoogle Scholar
  14. Klokočník J, Wagner C, Kostelecký J, Bezděk A (2015) Ground track density considerations on the resolvability of gravity field harmonics in a repeat orbit. Adv Space Res 56(6):1146–1160. CrossRefGoogle Scholar
  15. Ray R (2008) GOT4.7 (2008) (Private communication), extension of Ray R., A global ocean tide model from Topex/Poseidon altimetry. GOT99.2 NASA Tech Memo 209478Google Scholar
  16. Reubelt T, Sneeuw N, Iran Pour S, Hirth M, Fichter W, Müller J et al (2014) Future gravity field satellite missions. In: Flechtner F, Sneeuw N, Schuh W-D (eds) CHAMP, GRACE, GOCE and future missions; Geotechnologien Science Report No. 20, “Advanced Technologies in Earth Sciences”. Springer, Berlin, pp 165–230.
  17. Savcenko R, Bosch W (2008) EOT08a – empirical ocean tide model from multi-mission satellite altimetry. Deutsches Geodätisches Forschungsinstitut (DGFI), München. Retrieved from
  18. Schmitt L (2001) Theory of genetic algorithms. Theor Comp Sci 259(1–2):1–61. CrossRefGoogle Scholar
  19. Sharifi M, Sneeuw N, Keller W (2007) Gravity recovery capability of four generic satellite formations. In: Kilicoglu A, Forsberg R (eds) Gravity field of the Earth. General Command of Mapping, ISSN 1300-5790, Special Issue 18, pp 211–216Google Scholar
  20. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9).
  21. Wiese D, Folkner W, Nerem R (2009) Alternative mission architectures for a gravity recovery satellite mission. J Geod 83(6):569–581. CrossRefGoogle Scholar
  22. Wiese D, Nerem R, Lemoine F (2012) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geod 86(2):81–98. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Siavash Iran Pour
    • 1
    • 2
  • Nico Sneeuw
    • 2
  • Matthias Weigelt
    • 3
  • Alireza Amiri-Simkooei
    • 1
    • 4
  1. 1.Department of Geomatics Engineering, Faculty of Civil Engineering and TransportationUniversity of IsfahanIsfahanIran
  2. 2.Institute of Geodesy, University of StuttgartStuttgartGermany
  3. 3.Institute of Geodesy, Leibniz University of HannoverHannoverGermany
  4. 4.Department of Control and Operations, Technical University of DelftDelftThe Netherlands

Personalised recommendations