Advertisement

Arctic Freshwater Fluxes from Earth Observation Data

  • Ole B. AndersenEmail author
  • Karina Nilsen
  • Louise S. Sørensen
  • Henriette Skourup
  • Natalia H. Andersen
  • Thomas Nagler
  • Jan Wuite
  • Alexei Kouraev
  • Elena Zakharova
  • Diego Fernandez
Conference paper
  • 52 Downloads
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 150)

Abstract

Through both atmospheric and oceanic circulation, heat is transferred between the equator and the poles. Possible ways in which the Arctic ecological systems can be affected by warmer temperatures include: changes in amount and duration of snow and ice cover; frequency and extent of spring floods; changes in the ratio of precipitation minus evapotranspiration; amounts of water transport from lakes and rivers from snow and permafrost melting; and a decrease in frozen precipitation. A key component in transferring heat is through freshwater exchange in and out of the Arctic. Hence, accurate mapping freshwater fluxes and potentially its changes with time is vital to describe the heat transfer and its possible temporal changes.

Our results demonstrate how ESA’s Earth Observation data together with in-situ measurements can be used to improve the mapping of the major Arctic Ocean freshwater fluxes. In this paper, we outline how four of the five major freshwater fluxes can be determined using present day Earth Observation data exclusively. These are: discharge from rivers; inflow through ice and melt run off; outflow of freshwater in sea ice; and in/outflow of freshwater through ocean currents. We subsequently present key finding and estimates of these four freshwater fluxes and compare our results with estimates based on in-situ data provided through previous studies.

Keywords

Altimetry Arctic freshwater Earth observation 

Notes

Acknowledgement

The authors are thankful to ESA for funding the ArcFlux study under the STSE ITT Arctic+ program. The authors would also like to thank the space agencies and data repositories (RADS and seaice.dk) for providing state-of-the-art data for the investigation. Finally, the authors would like to thank an anonymous reviewer for valuable comments and suggestions to improve the manuscript.

References

  1. Andersen OB, Piccioni G (2016) Recent arctic sea level variations from satellites. Front Marine Sci 3:76. journal.frontiersin.org/article/10.3389/fmars.2016.00076,  https://doi.org/10.3389/fmars.2016.00076
  2. Armitage TWK, Bacon S, Ridout AL, Thomas SF, Aksenov Y, Wingham DJ (2016) Arctic Sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014. J Geophys Res Oceans 121:4303–4322.  https://doi.org/10.1002/2015JC011579 CrossRefGoogle Scholar
  3. Bøssing Christensen O, Drews M, Hesselbjerg Christensen J, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2007) The HIRHAM Regional Climate Model. Version 5 (beta). Danish Climate Centre, Danish Meteorological Institute. Denmark. Danish Meteorological Institute. Technical Report, No. 06-17Google Scholar
  4. Carmack EC, Yamamoto-Kawai M, Haine TWN, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans M-L, Williams WJ (2016) Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. JGR Biogeosci 121(3):675–717.  https://doi.org/10.1002/.JG003140 CrossRefGoogle Scholar
  5. Cherniawsky JY, Crawford WR, Nikitin OP, Carmack EC (2005) Bering Strait transports from satellite altimetry. J Mar Res 63:887–900CrossRefGoogle Scholar
  6. Gallee H, Schayes G (1994) Development of a three-dimensional meso-γ primitive equations 5 model. Mon Wea Rev 122:671–685CrossRefGoogle Scholar
  7. Haine TW, Curry B, Gerdes R, Hansen E, Karcher M, Lee C et al (2015) Arctic freshwater export: status, mechanisms, and prospects. Glob Planet Chang 125:13–35CrossRefGoogle Scholar
  8. Kouraev AV, Zakharova EV, Samain O, Mognard E, Cazenave A (2004) ‘Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens Environ 93(1–2):238–245. ISSN 0034-4257.  https://doi.org/10.1016/j.rse.2004.07.007 CrossRefGoogle Scholar
  9. Morlighem M, Williams CN, Rignot E, An L, Arndt JE, Bamber JL, Zinglersen KB (2017) BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation. Geophys Res Lett 44:11,051–11,061.  https://doi.org/10.1002/2017GL074954 CrossRefGoogle Scholar
  10. Nagler T, Rott H, Hetzenecker M, Wuite J, Potin P (2015) The Sentinel-1 Mission: new opportunities for ice sheet observations. Remote Sens 7:9371–9389CrossRefGoogle Scholar
  11. Nielsen K, Stenseng L, Andersen OB, Villadsen H, Knudsen P (2015) Validation of CryoSat-2 SAR mode based lake levels. Remote Sens Environ 171(15):162–170CrossRefGoogle Scholar
  12. Oltmanns M, Karstensen J, Fischer J (2018) Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers. Nat Clim Chang 8:300–304CrossRefGoogle Scholar
  13. Proshutinsky A, Dukhovskoy D, Timmermans M-L, Krishfield R, Bamber JL (2015) Arctic circulation regimes. Philos Trans R Soc.  https://doi.org/10.1098/rsta.2014.0160 CrossRefGoogle Scholar
  14. RGI Consortium (2017) Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media.  https://doi.org/10.7265/N5-RGI-60
  15. Serreze MC, Barrett AP, Slater AG, Woodgate RA, Aagaard K, Lammers RB, Steele M, Moritz R, Meredith M, Lee CM (2006) The large-scale freshwater cycle of the Arctic. J Geophys Res Oceans (1978–2012) 111(C11)Google Scholar
  16. Spreen G, Kern S, Stammer D, Hansen E (2009) Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data. Geophys Res Lett 36(19):L19502.  https://doi.org/10.1029/2009GL039591 CrossRefGoogle Scholar
  17. Van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk B, Lenderink G, Siebesma AP (2008) Technical Report 302: the KNMI regional atmospheric climate model RACMO version 2.1. Royal Netherlands Meteorological Institute, De BiltGoogle Scholar
  18. Woodgate RA, Stafford KM, Prahl FG (2015) A synthesis of year-round interdisciplinary mooring measurements in the Bering Strait (1990–2014) and the RUSALCA years (2004–2011). Oceanography 28(3):46–67.  https://doi.org/10.5670/oceanog.2015.57 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ole B. Andersen
    • 1
    Email author
  • Karina Nilsen
    • 1
  • Louise S. Sørensen
    • 1
  • Henriette Skourup
    • 1
  • Natalia H. Andersen
    • 1
  • Thomas Nagler
    • 2
  • Jan Wuite
    • 2
  • Alexei Kouraev
    • 3
  • Elena Zakharova
    • 4
  • Diego Fernandez
    • 5
  1. 1.Technical University of Denmark, DTU SpaceLyngbyDenmark
  2. 2.ENVEOInnsbruckAustria
  3. 3.LEGOS/CNRSToulouseFrance
  4. 4.IWP RASMoscowRussia
  5. 5.ESA ESRINFrascatiItaly

Personalised recommendations