Performance of Sentinel-3A SAR Altimetry Retrackers: The SAMOSA Coastal Sea Surface Heights for the Baltic Sea

  • Elzbieta BirgielEmail author
  • Artu Ellmann
  • Nicole Delpeche-Ellmann
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 150)


Performance of the Sentinel-3A SRAL altimeter data is evaluated in the coastal waters of the Gulf of Finland, Baltic Sea. Sea Surface Heights (SSH) were computed along three ascending passes nearby three tide gauge (TG) sites in Estonia. These SSH were compared to a high-resolution marine geoid model in conjunction with a TG corrected hydrodynamic model (HDM). The SAMOSA2 and SAMOSA+ retracker retrieved SSH values were inter-compared as well. The quality assessment yielded the root mean square error of 115 and 99 mm for the SAMOSA2 and SAMOSA+ retrieved Sentinel-3A SSH data, respectively. The near-zero mean of discrepancies shows that there is no significant systematic bias between the geodetic infrastructure and Sentinel-3A SSH data.


Coastal altimetry Gulf of Finland Hydrodynamic model Marine geoid SAMOSA Sentinel-3A Tide gauges 



This research was supported by Connecting Europe Facility (CEF) project “FAMOS (Finalising Surveys for the Baltic Motorways of the Sea) Odin” (project VEU16013) and TUT’s internal funding project SS440 “Iterative marine geoid modelling in near-coast regions by using re-tracked satellite altimetry, in-situ and modelled data”. The participation of the prime author in the “International Review Workshop on Satellite Altimetry cal/val activities and applications” in 26-26.04.2018 was supported by International Association of Geodesy. We thank two anonymous reviewers whose helpful comments improved this manuscript.


  1. Ågren J, Svensson R (2007) Postglacial land uplift model and system definition for the New Swedish Height System RH 2000. LMV-rapport 2007:4, Lantmäteriet, SwedenGoogle Scholar
  2. Bonnefond P, Exertier P, Laurain O, Menard Y, Orsoni A, Jan G, Jeansou E (2003) Absolute calibration of Jason 1 and TOPEX/Poseidon altimeters in Corsica, special issue on Jason 1 calibration/validation, part 1. Mar Geod 26(3–4):261–284. CrossRefGoogle Scholar
  3. Bonnefond P, Laurain O, Exertier P, Boy F, Guinle T, Picot N, Labroue S, Raynal M, Donlon C, Féménias P, Parrinello T, Dinardo S (2018) Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica facilities. Remote Sens 10:92. CrossRefGoogle Scholar
  4. Cheng K-C (2004) Radar altimeter absolute calibration using GPS water level measurements. Geodetic and GeoInformation Science Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University Columbus, OhioGoogle Scholar
  5. Cipollini P, Calafat FM, Jevrejeva S et al (2017) Monitoring Sea level in the coastal zone with satellite altimetry and tide gauges. Surv Geophys 38:33. CrossRefGoogle Scholar
  6. Delpeche-Ellmann N, Mingelaitė T, Soomere T (2017) Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea. J Mar Syst 171:21–30. CrossRefGoogle Scholar
  7. Delpeche-Ellmann N, Soomere T, Kudryavtseva N (2018) The role of nearshore slope on cross-shore surface transport during a coastal upwelling event in Gulf of Finland, Baltic Sea. Estuar Coast Shelf Sci 209:123–135. CrossRefGoogle Scholar
  8. Dinardo S (2013) Guidelines for the SAR (Delay-Doppler) L1b processingGoogle Scholar
  9. Dinardo S, Lucas B, Benveniste J (2015) Sentinel-3 STM SAR ocean retracking algorithm and SAMOSA model. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), Milan, pp 5320–5323.
  10. Dinardo S, Fenoglio L, Buchhaupt C, Becker M, Scharroo R, Fernandes MJ, Benveniste J (2017) Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv Space Res 62:1371–1404. CrossRefGoogle Scholar
  11. Dong X, Woodworth PL, Moore P, Bingley R (2002) Absolute calibration of the TOPEX/Poseidon altimeters using UK tide gauges, GPS and precise, local geoid-differences. Mar Geod 25:189–204. CrossRefGoogle Scholar
  12. Ellmann A (2005) Two deterministic and three stochastic modifications of Stokes’s formula: a case study for the Baltic countries. J Geod 79:11–23CrossRefGoogle Scholar
  13. Ellmann A, Oja T, Jürgenson H (2011) Application of space technologies to improve geoid and gravity field models over Estonia (in Estonian). Geodeet 41(65):22–25Google Scholar
  14. Ellmann A, Märdla S, Oja T (2019) The 5 mm geoid model for Estonia computed by the least squares modified Stokes’s formula. Surv Rev. Accepted for publications.
  15. EUMETSAT (2018) Sentinel-3 SRAL marine user handbookGoogle Scholar
  16. Gruno A, Liibusk A, Ellmann A, Oja T, Vain A, Jürgenson H (2013) Determining sea surface heights using small footprint airborne laser scanning. In: Proceedings of the SPIE 8888, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2013, 88880R (16 October 2013).
  17. Kolenkiewicz R, Nerem RS (1994) Calibration of TOPEX/POSE-IDON at platform harvest. J Geophys Res 99(C12):24465–24485CrossRefGoogle Scholar
  18. Lagemaa P (2012) Operational forecasting in Estonian marine waters. PhD thesis, TUT PressGoogle Scholar
  19. Lagemaa P, Elken J, Kõuts T (2011) Operational Sea level forecasting in Estonia. Est J Eng 17(4):301–331CrossRefGoogle Scholar
  20. Liibusk A, Ellmann A, Kõuts T, Jürgenson H (2013) Precise hydrodynamic leveling by using pressure gauges. Mar Geod 36(2):138–163. CrossRefGoogle Scholar
  21. Madsen KS, Høyer JL, Tscherning CC (2007) Near-coastal satellite altimetry: sea surface height variability in the North Sea – Baltic Sea area. Geophys Res Lett 34(14):L14601. CrossRefGoogle Scholar
  22. Märdla S, Ågren J, Strykowski G, Oja T, Ellmann A, Forsberg R, Bilker-Koivula M, Omang O, Paršeliūnas E, Liepinš I, Kaminskis J (2017) From discrete gravity survey data to a high-resolution gravity field representation in the Nordic-Baltic region. Mar Geod 40(6):416–453. CrossRefGoogle Scholar
  23. Mertikas SP, Daskalakis A, Tziavos IN, Georgios S, Vergos GS, Xenophon Frantzis X, Achilleas Tripolitsiotis A, Partsinevelos P, Andrikopoulos D, Zervakis V (2011) Ascending and descending passes for the determination of the altimeter bias of Jason satellites using the Gavdos facility. Mar Geod 34(3):261–276. CrossRefGoogle Scholar
  24. Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819. CrossRefGoogle Scholar
  25. Passaro M, Cipollini P, Vignudelli S, Quartly GD, Snaith HM (2014) ALES: a multi-mission adaptive subwaveform retracker for coastal and open ocean. Remote Sens Environ 145(2014):173–189CrossRefGoogle Scholar
  26. Passaro M, Cipollini P, Benveniste J (2015) Annual sea level variability of the coastal ocean: the Baltic Sea-North Sea transition zone. J Geophys Res Oceans 120(4):3061–3078CrossRefGoogle Scholar
  27. Ray C, Martin-Puig C, Clarizia MP, IEEE Member, Ruffini G, Dinardo S, Gommenginger C, Benveniste J (2015) SAR altimeter backscattered waveform model. IEEE Trans Geosci Remote Sens 53:911–919. CrossRefGoogle Scholar
  28. SAMOSA Team (2013) Detailed processing model of the Sentinel-3 SRAL SAR altimeter ocean waveform retracker. ESA, v2.3.0Google Scholar
  29. Stammer D, Cazenave A (2017) Satellite altimetry over oceans and land surfaces. In: Earth observation of global changes, 1st edn. Taylor & Francis, AbingdonGoogle Scholar
  30. Varbla S, Ellmann A, Märdla S, Gruno A (2017) Assessment of marine geoid models by ship-borne GNSS profiles. Geodesy Cartography 43(2):41–49CrossRefGoogle Scholar
  31. Woodworth PL, Pugh DT, Plater A (2015) Sea-level measurements from tide gauges. In: Handbook of sea-level research Shennan/Handbook of sea-level research. Wiley, Hoboken, pp 555–574. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elzbieta Birgiel
    • 1
    Email author
  • Artu Ellmann
    • 1
  • Nicole Delpeche-Ellmann
    • 2
  1. 1.Department of Civil Engineering and ArchitectureTallinn University of Technology (TUT)TallinnEstonia
  2. 2.Department of CyberneticsTallinn University of TechnologyTallinnEstonia

Personalised recommendations