Advertisement

pp 1-6 | Cite as

Analysis of GOCE Omission Error and Its Contribution to Vertical Datum Offsets in Greece and Its Islands

  • Martin Willberg
  • Thomas Gruber
  • Georgios S. Vergos
Chapter
Part of the International Association of Geodesy Symposia book series

Abstract

In this paper we evaluate three different geoid models (a pure and an extended satellite-only model and a local geoid solution) for the mainland of Greece and fourteen of its biggest islands in terms of signal content and applicability for height system unification. By comparing local geoid heights from GPS and spirit levelling with the three geoid models it is possible to make statements about the Earth’s gravity signal that is omitted in these models (omission error). In a further step we try to quantify the contribution of the omission error to the height system unification between the investigated islands. It becomes obvious that a satellite-only gravity field model (GOCO05S) until degree and order 200 is not sufficient for the mountainous islands of Greece due to an omission error of up to 2 m. The same model with high frequency corrections from EGM08 as well as topography is able to reduce the omission error drastically and shows similar results as for the local geoid model. As an outcome, we can see homogenous omission errors for the smaller islands and in general a high correlation between the size of the island and the amplitudes of the omission error.

Keywords

GOCE Height systems Local vertical datum Omission error 

References

  1. Becker JJ et al (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geodesy 32(4):355–371. doi: 10.1080/01490410903297766 CrossRefGoogle Scholar
  2. Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W-D (2014) EGM TIM RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi: 10.1002/2014GL061904 ADSCrossRefGoogle Scholar
  3. Drewes H, Kuglitsch F, Adám J, Rózsa S (2016) The Geodesist’s handbook 2016. J Geodesy 90:907–1205. doi: 10.1007/s00190-016-0948-z ADSCrossRefGoogle Scholar
  4. Drinkwater MR, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) GOCE: ESA’s first Earth explorer core mission. In: Earth gravity field from space-from sensors to Earth sciences. Space sciences series of ISSI, vol 17. Kluwer, Dordrecht, pp 419–432. ISBN: 1-4020-1408-2Google Scholar
  5. Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45(2):RG2004. doi: 10.1029/2005RG000183 ADSCrossRefGoogle Scholar
  6. Grigoriadis VN (2009) Geodetic and geophysical approach of the Earth’s gravity field and applications in the Hellenic area. Dissertation, Aristotle University of Thessaloniki (in Greek)Google Scholar
  7. Grigoriadis VN, Kotsakis C, Tziavos IN, Vergos GS (2014) Estimation of the reference geopotential value for the local vertical datum of continental Greece using EGM08 and GPS/leveling data. In: International association of geodesy symposia, vol 141. Springer, Cham, pp 249–255. doi: 10.1007/978-3-319-10837-7_32 Google Scholar
  8. Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geodesy 85:845–860. doi: 10.1007/s00190-011-0486-7 ADSCrossRefGoogle Scholar
  9. Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geodetic Sci 2(4):240–280. doi: 10.2478/v10156-012-0001-y ADSCrossRefGoogle Scholar
  10. Gruber T, Rummel R, Ihde J, Liebsch G, Rülke A, Schäfer U, Sideris M, Rangelova E, Woodworth P, Hughes C, Gerlach C (2014) STSE - GOCE + height system unification with GOCE: summary and final report, Issue 1.0, 24 Feb 2014Google Scholar
  11. Haagmans R, de Min E, van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT and a comparison with existing methods for Stokes’ integral. Manuscr Geodaet 18:227–241Google Scholar
  12. Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman & Co Ltd, New YorkGoogle Scholar
  13. Hirt C, Featherstone WE, Marti U (2010) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geodesy 84(9):557–567. doi: 10.1007/s00190-010-0395-1 ADSCrossRefGoogle Scholar
  14. Kotsakis C, Katsambalos K, Ampatzidis D (2012) Estimation of the zero-height geopotential level W0 LVD in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands. J Geodesy 84:423–439. doi: 10.1007/s00190-011-0530-7 ADSCrossRefGoogle Scholar
  15. Lemoine FG et al (1998) The development of the joint NASA GSFC and National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA Technical Paper, 1998-206861Google Scholar
  16. Mayer-Gürr T, GOCO Team (2015) The combined satellite gravity field model GOCO05s. Presentation at EGU 2015, ViennaGoogle Scholar
  17. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406. doi: 10.1029/2011JB008916 ADSCrossRefGoogle Scholar
  18. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2013) Correction to the development and evaluation of the earth gravitational model 2008 (EGM2008). J Geophys Res 118:2633. doi: 10.1002/jgrb.50167 CrossRefGoogle Scholar
  19. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi: 10.1029/2004GL019920 ADSCrossRefGoogle Scholar
  20. Vergos GS, Grigoriadis VN, Tziavos IN, Kotsakis C (2014) Evaluation of GOCE/GRACE global geopotential models over Greece with collocated GPS/levelling observations and local gravity data. In: International Association of Geodesy symposia, vol 141. Springer, Cham, pp 85–92. doi: 10.1007/978-3-319-10837-7_11 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Martin Willberg
    • 1
  • Thomas Gruber
    • 1
  • Georgios S. Vergos
    • 2
  1. 1.Institute of Astronomical and Physical Geodesy, Technical University of MunichMunichGermany
  2. 2.GravLab, Department of Geodesy and SurveyingAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations