Advertisement

pp 1-8 | Cite as

GOCE Variance and Covariance Contribution to Height System Unification

  • V. D. Andritsanos
  • V. N. Grigoriadis
  • D. A. Natsiopoulos
  • G. S. Vergos
  • T. Gruber
  • T. Fecher
Chapter
Part of the International Association of Geodesy Symposia book series

Abstract

The definition and realization of vertical datum is a key concept in support of not only geodetic works but also for surveying and hydraulic studies to name a few. In the GOCE era, this is customarily done by estimating height and/or geopotential offsets with respect to a conventional reference geopotential value or to available GNSS/Leveling observations on trigonometric BMs and a GOCE-based geoid. This work investigates the influence of GOCE errors in the determination of the Hellenic Local Vertical Datum. This is facilitated through a least-squares adjustment of collocated GNSS/Leveling and GOCE geoid heights over a network of 1,542 BMs. TIM-R5, GOCO05s and GOCO05c Global Geopotential Models (GGMs) are used for representing the contribution of GOCE and GRACE to the Earth’s gravity field. First, a weighted adjustment is carried out employing the GGMs commission error as indicative of the geoid height variance for all stations. Then, full variance-covariance matrices of the GGMs are employed for utilizing realistic GOCE error information and investigating their influence on the adjustment results. Using the available GNSS/Leveling formal errors, a Variance Component Estimation (VCE) is performed to evaluate height (h, H, N) error matrices and assess the stochastic model for the corresponding observational noise. VCE is used to address the impact of a simplified uniform variance assumption for all geoid height data on the final prediction variances in contrast to using the full covariance matrices. Finally, zero-level geopotential values are estimated for the Greek mainland following weighting schemes as the ones described above.

Keywords

Covariance GOCE GPS-levelling Height system unification LVD Variance VCE 

Notes

Acknowledgments

Funding provided for this work by the Greek State Scholarship Foundation (IKY) and Deutsche Akademischer Austausch Dienst (DAAD) (IKYDA2016) in the frame of the “GOCE for height system unification and dynamic ocean topography determination in the Mediterranean Sea (GOCEMed)” project is gratefully acknowledged.

References

  1. Albertella A, Savcenko R, Janjić T, Rummel R, Bosch W, Schröter J (2012) High resolution dynamic ocean topography in the Southern Ocean from GOCE. Geophys J Int 190(2):922–930. doi: 10.1111/j.1365-246X.2012.05531.x ADSCrossRefGoogle Scholar
  2. Andritsanos VD, Arabatzi O, Gianniou M, Pagounis V, Tziavos IN, Vergos GS, Zachris E (2015) Comparison of various GPS processing solutions toward an efficient validation of the Hellenic Vertical Network: The ELEVATION Project. J Surv Eng, 142(1), doi:  10.1061/(ASCE)SU.1943-5428.0000164, 04015007.
  3. Carrion D, Vergos GS, Albertella A, Barzaghi R, Tziavos IN, Grigoriadis VN (2015) Assessing the GOCE models accuracy in the Mediterranean area. Newton’s Bull 5:63–82Google Scholar
  4. Brockmann JM, Zehentner N, Höck E, Pail R, Loth I, Mayer-Gürr T, Schuh W-D (2014) EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys Res Lett 41(22):8089–8099. doi: 10.1002/2014GL061904 ADSCrossRefGoogle Scholar
  5. Bruinsma S, Foerste C, Abrikosov O, Marty J-C, Rio M-H, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophys Res Lett 40(14):3607–3612. doi: 10.1002/grl.50716 ADSCrossRefGoogle Scholar
  6. Ekman M (1989) Impacts of geodynamic phenomena on systems for height and gravity. Bull Geod 63(3):281–296CrossRefGoogle Scholar
  7. Fecher T, Pail R, Gruber T, the GOCO Project Team (2016) The combined gravity field model GOCO05C. EGU General Assembly, Geophys Res Abstr, vol 18, EGU2016-7696Google Scholar
  8. Fuchs MJ, Bouman J, Broerse T, Visser P, Vermeersen B (2013) Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry. J Geophys Res 118(10):5712–5721CrossRefGoogle Scholar
  9. Gianniou M (2008) HEPOS: designing and implementing an RTK network. GEOInformatics 11:10–13Google Scholar
  10. Grigoriadis VN, Kotsakis C, Tziavos IN, Vergos GS (2014) Estimation of the geopotential value W o for the local vertical datum of continental Greece using EGM08 and GPS/leveling data. In: Marti U (ed) Gravity, geoid and height systems, International Association of Geodesy Symposia, vol 141. Springer, Cham, pp 249–255. doi: 10.1007/978-3-319-10837-7_32. Google Scholar
  11. Heiskanen WA, Moritz H (1967) Physical geodesy. W.H. Freeman and Company, San FranciscoGoogle Scholar
  12. Kotsakis C, Katsambalos K, Ampatzidis D (2012) Estimation of the zero-height geopotential level in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands. J Geod 86(6):423–439ADSCrossRefGoogle Scholar
  13. Kotsakis C, Katsambalos K (2010) Quality analysis of global geopotential models at 1542 GPS/levelling benchmarks over the Hellenic mainland. Surv Rev 42(318):327–344CrossRefGoogle Scholar
  14. Kotsakis C, Sideris MG (1999) On the adjustment of combined GPS/levelling/geoid networks. J Geod 73(8):412–421ADSCrossRefGoogle Scholar
  15. Mayer-Gürr T et al (2015) The combined satellite gravity field model GOCO05s. Presentation at EGU 2015, Vienna, April 2015Google Scholar
  16. Pavlis N, Holmes S, Kenyon S, Factor J (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 117(B04):406. doi: 10.1029/2011JB008916 Google Scholar
  17. Rao CR (1971) Estimation of variance components – MINQUE theory. J Multivar Statist 1:257–275MathSciNetCrossRefGoogle Scholar
  18. Rao CR, Kleffe J (1988) Estimation of variance components and applications. North-Holland series in statistics and probability, vol 3Google Scholar
  19. Reguzzoni M, Sampietro D, Sans F (2013) Global Moho from the combination of the CRUST 2.0 model and GOCE data. Geophys J Int 195(1):222–237ADSCrossRefGoogle Scholar
  20. Takos I (1989) New adjustment of the national geodetic networks in Greece (in Greek). Bull Hellenic Mil Geogr Serv 49(136):19–93Google Scholar
  21. Tocho C, Vergos GS (2015) Assessment of different-generation GOCE-only and GOCE/GRACE Earth global gravity models over Argentina using terrestrial gravity anomalies and GPS/levelling data. Newton’s Bull 5:105–126Google Scholar
  22. Tziavos IN, Vergos GS, Grigoriadis VN (2010) Investigation of topographic reductions and aliasing effects to gravity and the geoid over Greece based on various digital terrain models. Surv Geophys 31(3):23–67. doi: 10.1007/s10712-009-9085-z ADSCrossRefGoogle Scholar
  23. Tziavos IN, Vergos GS, Mertikas SP, Daskalakis A, Grigoriadis VN, Tripolitsiotis A (2013) The contribution of local gravimetric geoid models to the calibration of satellite altimetry data and an outlook of the latest GOCE GGM performance in GAVDOS. Adv Space Res 51(8):1502–1522. doi: 10.1016/j.asr.2012.06.013 ADSCrossRefGoogle Scholar
  24. Tziavos IN, Vergos GS, Grigoriadis VN, Tzanou EA, Natsiopoulos DA (2016) Validation of GOCE/GRACE satellite only and combined global geopotential models over Greece, in the frame of the GOCESeaComb project. In: Rizos C, Willis P (eds) IAG 150 years, International Association of Geodesy Symposia, vol 143. Springer, Cham, pp 297–304. doi: 10.1007/1345_2015_160 Google Scholar
  25. Vergos G, Grigoriadis V, Tziavos I, Kotsakis C (2014) Evaluation of GOCE/GRACE global geopotential models over Greece with collocated GPS/levelling observations and local gravity data. In: Marti U (ed) Gravity, geoid and height systems, International Association of Geodesy Symposia, vol 141. Springer, Switzerland, pp 85–92. doi: 10.1007/978-3-319-10837-7_11. Google Scholar
  26. Vergos GS, Andritsanos VD, Grigoriadis VN, Pagounis V, Tziavos IN (2015) Evaluation of GOCE/GRACE GGMs over Attika and Thessaloniki, Greece, and Wo determination for height system unification. In: International Association of Geodesy Symposia, vol 145. Springer, New York. doi: 10.1007/1345_2015_53 Google Scholar
  27. Vergos GS, Sideris MG (2002) Evaluation of geoid models and validation of geoid and GPS/leveling undulations in Canada. IGeS Bull 12:3–17Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • V. D. Andritsanos
    • 1
  • V. N. Grigoriadis
    • 2
  • D. A. Natsiopoulos
    • 2
  • G. S. Vergos
    • 2
  • T. Gruber
    • 3
  • T. Fecher
    • 3
  1. 1.Geospatial Technology Research Lab, Department of Civil Engineering and Surveying & Geoinformatics EngineeringTechnological and Educational Institute of AthensAthensGreece
  2. 2.GravLab, Department of Geodesy and SurveyingAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Institute for Astronomical and Physical GeodesyTechnical University of MunichMunichGermany

Personalised recommendations