Free Core Nutation Parameters from Hydrostatic Long-Base Tiltmeter Records in Sainte Croix aux Mines (France)

  • U. Riccardi
  • J-P. Boy
  • J. Hinderer
  • S. Rosat
  • F. Boudin
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)


The resonance associated with the Free Core Nutation (FCN) has been widely studied in Very Long Base Interferometry (VLBI) network measurements and in superconducting gravity records, but few experiments have been done with tiltmeters. In this study we use records collected with a pair of about 100 m long hydrostatic silica tiltmeters, orthogonally installed in an abandoned silver mine at Sainte Croix aux Mines (Alsace, in North-Eastern France). Main difficulties in retrieving FCN parameters from tidal analysis arise from the weak amplitude of PSI1 tidal wave (the closest in frequency to the FCN), as well as from the inaccuracy of the available ocean loading correction. Moreover because of the closeness in frequency of the single constituents of the diurnal tidal band, long (>1 year) records are needed for resolving K1, PSI1 and PHI1 waves. Hence we analyze a 10-year dataset of tilt records, which has preliminarily required a critical review and a relevant editing for making records suitable for tidal analysis and subsequent inversion of the tidal parameters. A Bayesian inversion is used for a preliminary retrieval of the FCN parameters.


Earth tides Free core nutation Gamma tidal factor Long-base tiltmeters 



We thank the three anonymous reviewers who fruitfully commented on the submitted manuscript allowing to significantly improve the accepted paper.


  1. Amalvict M, Hinderer J, Boy J-P, Gegout P (2001) A three year comparison between a superconducting gravimeter (GWR C026) and an absolute gravimeter (FG5#206) in Strasbourg (France). J Geod Soc Jpn 47:334–340Google Scholar
  2. Amoruso A, Botta V, Crescentini L (2012) Free core resonance parameters from strain data: sensitivity analysis and results from the Gran Sasso (Italy) extensometers. Geophys J Int 189:923–936Google Scholar
  3. Boudin F, Bernard P, Longuevergne L, Florsch N, Larmat C, Courteille C, Blum P-A, Vincent T, Kammentaler M (2008) A silica long base tiltmeter with high stability and resolution. Rev Sci Instrum 79:034502. doi: 10.1063/12829989
  4. Crossley DJ, Hinderer J, Jensen O, Xu H (1993) A slew rate detection criterion applied to SG data processing. Bull d'Inf Mar Terr 117:8675–8704Google Scholar
  5. Crossley D, Hinderer J, Riccardi U (2013) The measurement of surface gravity. Rep Prog Phys 76:046101. doi: 10.1088/0034-4885/76/4/046101
  6. Dehant V, Defraigne P, Wahr JM (1999) Tides for a convective Earth. J Geophys Res 104(B1):1035–1058CrossRefGoogle Scholar
  7. Ducarme B, Sun H-P, Xu J-Q (2007) Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. J Geodesy 81:179–187. doi: 10.1007/s00190-006-0098-9
  8. Eanes RJ (1994) Diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry. Eos Trans AGU 75(16):108Google Scholar
  9. Florsch N, Hinderer J (2000) Bayesian estimation of the free core nutation parameters from the analysis of precise tidal gravity data. Phys Earth Planet Inter 117(1):21–35CrossRefGoogle Scholar
  10. Harrison JC (1976) Cavity and topographic effects in tilt and strain measurements. J Geoph Res l81(2):319–328Google Scholar
  11. Herring TA, Gwinn CR, Shapiro II (1986) Geodesy by radiointerferometry: studies of the forced nutations of the earth 1 data analysis. J Geophys Res 91(b5):4745–4754Google Scholar
  12. King GCP, Bilham R (1973) Tidal tilt measurement in Europe. Nature 243:74–75CrossRefGoogle Scholar
  13. Koot L, Rivoldini A, de Viron O, Dehant V (2008) Estimation of earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series. J Geophys Res 113:B08414. doi: 10.1029/2007JB005409
  14. Lefèvre F, Lyard FH, Le Provost C, Schrama E (2002) FES99: a tide finite element solution assimilating tide gauge and altimetric information. J Atmos Oceanic Tech 19(9):1345–1356CrossRefGoogle Scholar
  15. Longuevergne L, Boy J-P, Florsch N, Viville D, Ferhat G, Ulrich P, Luck B, Hinderer J (2009) Local and global hydrological contributions to gravity variations observed in Strasbourg. J Geodyn 48:189–194CrossRefGoogle Scholar
  16. Lyard L, Lefèvre L, Letellier T, Francis O (2006) Modelling the global ocean tides: insights from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  17. Matsumoto K, Takanezawa T, Ooe M (2000) Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J Oceanogr 56:567–581CrossRefGoogle Scholar
  18. Neuberg J, Zürn W (1986) Investigation of the nearly diurnal resonance using gravity, tilt and strain data simultaneously. In: Proceedings of the 10th international symposium on earth tides, Madrid, pp 305–312Google Scholar
  19. Riccardi U, Rosat S, Hinderer J (2012) On the accuracy of the calibration of superconducting gravimeters using absolute and spring sensors: a critical comparison. Pure Appl Geophys 169:1343–1356. doi: 10.1007/s00024-011-0398-8
  20. Rosat S, Lambert SB (2009) Free core nutation resonance parameters from VLBI and superconducting gravimeter data. Astron Astrophys 503:287–291. doi: 10.1051/0004-6361/200811489
  21. Rosat S, Florsch N, Hinderer J, Llubes M (2009) Estimation of the free core nutation parameters from SG data: sensitivity study and comparative analysis using linearized Least-Squares and Bayesian methods. J Geodyn 48:331–339. doi: 10.1016/jjog200909027
  22. Sato T (1991) Fluid core resonance measured by quartz tube extensometers at Esashi earth tide station. In: Kakkuri J (ed) Proceedings of the 11th international symposium on earth tides. Schweizerbart, Stuttgart, pp. 573–582Google Scholar
  23. Sato T, Tamura Y, Matsumoto K, Imanishi Y, McQueen H (2004) Parameters of the fluid core resonance inferred from superconducting gravimeter data. J Geodyn 38:375–389CrossRefGoogle Scholar
  24. Tarantola A, Valette B (1982) Inverse problems-quest for information. J Geophys 50:159–170Google Scholar
  25. Van Camp M, Vauterin P (2005) Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput Geosci 31(5):631–640. doi: 10.1016/jcageo200411015
  26. Wenzel H-G (1996) The nanogal software: earth tide data processing package ETERNA 330. Bull Inf Mar Terr 124:9425–9439Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • U. Riccardi
    • 1
  • J-P. Boy
    • 2
  • J. Hinderer
    • 2
  • S. Rosat
    • 2
  • F. Boudin
    • 3
  1. 1.Dipartimento di Scienze della Terradell’Ambiente e delle Risorse (DiSTAR) Università “Federico II” di NapoliNaplesItaly
  2. 2.Institut de Physique du Globe de Strasbourg, IPGS – UMR 7516, CNRS et Université de Strasbourg (EOST)Strasbourg CedexFrance
  3. 3.Ecole Normale Supérieure – 24 Rue Lhomond 75231Paris CEDEX 5France

Personalised recommendations