Advertisement

Exploitation of Marine Gravity Measurements of the Mediterranean in the Validation of Global Gravity Field Models

  • M. F. Lequentrec-Lalancette
  • C. Salaűn
  • S. Bonvalot
  • D. Rouxel
  • S. Bruinsma
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)

Abstract

Over the oceans, data from altimetry are currently the only input data for the latest global geoid models such as EGM08 or EIGEN6C. Over the Mediterranean sea, satellite altimetry does not give good results for gravity models. In particular because of the high ocean variability and in the vicinity of the coast in some areas. A marine gravity data compilation and screening was conducted as part of an international project GEOMED2 for calculating the geoid of the Mediterranean sea. In this paper, marine gravity data and their processing are described. The shipborne gravity data are validated and an estimation of the error is done. Then the cleaned data are used to validate the Global Geoid models (GGm).

Keywords

BGI GOCE Mediterranean Shipborne gravity 

Notes

Acknowledgements

The authors acknowledge the CNES (Centre National d’Etudes Spatiales), the SHOM (Service Hydrographique et Oceanographique de la Marine) and the BGI for their support. This work is part of the TOSCA projects “SWOT” and “GEOMED”.

References

  1. Allan TD, Morelli C (1971) A geophysical study of the Mediterranean sea. Nato Subcommittee on oceanographic Research, Technical reports n 55, 141 ppGoogle Scholar
  2. Allan TD, Dehlinger P, Gantar C, Morelli C, Pisani M, Harrison JC (1962) Comparison of Graf-Askania and Lacoste-Romberg surface-ship gravity meters. J Geophys Res 67:5157–5162CrossRefGoogle Scholar
  3. Andersen OB, Knudsen P, Berry P (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84:3. doi:10.1007/s00190-009-0355-9CrossRefGoogle Scholar
  4. Bruinsma SL, Foerste C, Abrikosov O, Marty JC, Mulet S, Rio MH, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 40:3607–3612CrossRefGoogle Scholar
  5. Denker H, Roland R (2003) Compilation and evaluation of a consistent marine gravity data set surrounding Europe. Poster IUGG, Sapporo, June 30–July 11Google Scholar
  6. Denker H, Barriot JP, Barzaghi R, Forsberg R, Ihde J, Kenyeres A, Marti U, Tziavos IN (2005) Status of the European gravity and geoid project EGGP. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Berlin, pp 218–223CrossRefGoogle Scholar
  7. Drewes H, Hornik H, Adam J, Rozsa S (eds) (2012) The international gravimetric bureau. In: The Geodesist’s handbook. International Association of Geodesy. J Geodesy 86(10). doi:10.1007/s00190-012-0584-1Google Scholar
  8. Featherstone WE (2003) Comparison of different satellite altimeter-derived gravity anomaly grids with ship-borne gravity data around Australia. In: Tziavos IN (ed) Gravity and geoid-3rd meeting of the international gravity and geoid commission, Thessaloniki, 26–30 Aug 2002, pp 326–331Google Scholar
  9. Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geodesy 75:313–330CrossRefGoogle Scholar
  10. Főrste C, Bruinsma SL, Abrikosov O, Lemoine J-M, Schaller T, Gtze H-J, Ebbing J, Marty JC, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4 the latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, presented at the 5th GOCE User Workshop, Paris, 25–28ăNovă2014Google Scholar
  11. Hunegnaw A, Hipkin RG, Edwards J (2009) A method of error adjustment for marine gravity with application to Mean Dynamic Topography in the northern North Atlantic. J Geod 83:161–174CrossRefGoogle Scholar
  12. Lequentrec-Lalancette M-F (1992) Tutorial BGI. http://www.bgi.fr
  13. Moysan Y. (2010) Traitement et validation gravimetrique en Mediterranee. Shom report, 30pp. http://www.shom.fr/ Google Scholar
  14. Olesen AV, Tziavos IN, Forsberg R (2002) New airborne gravity data around Crete - First results from the CAATER campaign. In: Proceedings of the 3rd meeting of the international gravity and geoid commission, GG2002, Thessaloniki, Aug 26–30Google Scholar
  15. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916CrossRefGoogle Scholar
  16. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS1 satellite altimetry. J Geophys Res102(B5):10039–10054Google Scholar
  17. Torge W (1989) Gravimetry. Walter de Gruyter, Berlin/New York, 254 ppGoogle Scholar
  18. Wessel P, Watts AB (1988) On the accuracy of marine gravity measurements. J Geophys Res 93(B1):393–413CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. F. Lequentrec-Lalancette
    • 1
  • C. Salaűn
    • 1
  • S. Bonvalot
    • 2
  • D. Rouxel
    • 1
  • S. Bruinsma
    • 3
  1. 1.Shom/GRGSBrestFrance
  2. 2.BGI/GRGS - GET (CNES, CNRS, IRD, UPS)ToulouseFrance
  3. 3.CNES - Space GeodesyToulouseFrance

Personalised recommendations