Advertisement

Analysis Strategies for the Densification of the ICRF with VLBA Calibrator Survey Sources

Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 147)

Abstract

Six campaigns with a total of twenty-four Very Long Baseline Array Calibrator Survey (VCS) observing sessions were carried out with ten radio telescopes located on U.S. territory from 1994 to 2007. The aim of those astrometric sessions was to estimate source positions and to make snapshot images of compact radio sources. Coordinates of about two thirds of the sources in the ICRF2 catalogue are estimated from VCS sessions, most of them from two scans in one session only. Moreover, there are systematic errors due to the deficiencies of a continent-wide network for the estimation of Earth orientation parameters (EOP) and the linking between the celestial and terrestrial frame. We investigate the impact of EOP estimation on source positions for those sessions and we use polar motion estimates from the analysis of Global Navigation Satellite Systems (GNSS) observations to strengthen the solution. We find that there is a systematic effect up to 1 mas in the estimated source coordinates between a solution with fixed EOP coming from the GNSS techniques and a solution where the EOP are estimated in the Very Long Baseline Interferometry analysis. Furthermore, we discuss analysis strategies for these sessions including the proper use of datum or “transfer sources”.

Keywords

Celestial reference frames Earth orientation parameters ICRF VLBI 

Notes

Acknowledgements

We gratefully acknowledge Chris Jacobs and two anonymous reviewers for their valuable and constructive comments which helped to improve the manuscript significantly. The authors acknowledge the International VLBI Service for Geodesy and Astrometry (IVS) and all its components for providing VLBI data (Nothnagel et al. 2015). The VLBA is operated by the National Radio Astronomy Observatory, which is a facility of the National Science Foundation, and operated under cooperative agreement by Associated Universities, Inc. Hana Krásná works within the Hertha Firnberg position T697-N29, funded by the Austrian Science Fund (FWF).

References

  1. Beasley AJ, Gordon D, Peck AB, Petrov L, MacMillan DS, Fomalont EB, Ma C (2002) The VLBA calibrator survey-VCS1. Astrophys J Suppl Ser 141:13–21. doi:10.1086/339806 CrossRefGoogle Scholar
  2. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2005. In: IAG Symposium Series, vol 134, pp 265–270. doi: 10.1007/978-3-642-00860-3 41.Google Scholar
  3. Böckmann S, Artz T, Nothnagel A (2010) VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84:201–219. doi:10.1007/s00190-009-0357-7 CrossRefGoogle Scholar
  4. Böhm J, Böhm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI software VieVS. IAG Symposium Series, vol 136, pp 1007–1011. doi:10.1007/978-3-642-20338-1_126 Google Scholar
  5. Fey A, Gordon D, Jacobs CS (eds) (2009) The second realization of the international celestial reference frame by very long baseline interferometry, presented on behalf of the IERS/IVS working group. IERS Technical Note, No. 35. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, Germany, 204 p. ISBN 3-89888-918-6Google Scholar
  6. Fey A, Gordon D, Jacobs CS, Ma C, Gaume RA et al (2015) The second realization of the international celestial reference frame by very long baseline interferometry Astron J 150:58Google Scholar
  7. Fomalont EB, Petrov L, MacMillan DS, Gordon D, Ma C (2003) The second VLBA calibrator survey: VCS2. Astron J 126:2562–2566. doi:10.1086/378712 CrossRefGoogle Scholar
  8. Gambis D (2004) Monitoring Earth orientation using space-geodetic techniques: state-of-the-art and prospective. J Geod 78:295–303. doi:10.1007/s00190-004-0394-1 CrossRefGoogle Scholar
  9. Gordon D, Jacobs C, Beasley A, Peck A, Gaume R, Charlot P, Fey A, Ma C, Titov O, Boboltz D (2016) Second epoch VLBA calibrator survey observations: VCS-II. Astron J 151:154. doi:10.3847/0004-6256/151/6/154 CrossRefGoogle Scholar
  10. Kovalev YY, Petrov L, Fomalont EB, Gordon D (2007) The fifth VLBA calibrator survey: VCS5. Astron J 133:1236–1242. doi:10.1086/511157 CrossRefGoogle Scholar
  11. Nothnagel A, International VLBI Service for Geodesy and Astrometry (IVS) et al (2015) The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry, GFZ Data Services. doi:10.5880/GFZ.1.1.2015.002. http://doi.org/10.5880/GFZ.1.1.2015.002
  12. Petrov L, Kovalev YY, Fomalont E, Gordon D (2005) The third VLBA calibrator survey: VCS3. Astron J 129:1163–1170. doi:10.1086/426920 CrossRefGoogle Scholar
  13. Petrov L, Kovalev YY, Fomalont E, Gordon D (2006). The fourth VLBA calibrator survey: VCS4. Astron J 131:1872–1879. doi:10.1086/499947 CrossRefGoogle Scholar
  14. Petrov L, Kovalev YY, Fomalont E, Gordon D (2008). The sixth VLBA calibrator survey: VCS6. Astron J 136:580–585. doi:10.1088/0004-6256/136/2/580 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Geodesy and GeoinformationTechnische Universität WienWienAustria

Personalised recommendations